
Byte Range Delegations

Trond Myklebust

Network Appliance

Outline

Motivation
– Why would we want to strengthen caching in NFS?

Proposal for a model for caching

Random thoughts

An example customer

From : Nick I < clus terbu ilder@gm ail.com >
To: n fs@lis t s .sourceforge.net
Subject : [NFS] backbone of a large- file s t ream ing sys tem
Date: Tue, 8 Nov 2005 10:29:15 - 0700 (09:29 PST)

Hi,
I h elp m ain tain a Web s ite at www.clus terbu ilder .org. You m igh t h ave seen
before that I h ave a sect ion called Ask the Cluster Exper t , wh ere I am bu ild ing a
knowledgebase of clu s ter an d gr id in form at ion . When som eon e asks a quest ion
I am research ing th e answer to bu ild th is knowled gebase ou t . I received the
following ques t ion :

"I am lookin g for a var iety of so lu t ion s to be a backbon e of a large- file
s t ream in g sys tem p rovid in g th ousand s of con curren t d own load s t ream s.
Preferably com m od ity h ard ware an d Lin ux, th ough I'm op en to com m ercial
solu t ion s ."

I am won d er in g if anyon e here h as sugges t ions of what ap p licat ion s will work
bes t for th is typ e of setup . You can resp on d to th e quest ion at
www.clus terbu ilder .org/ FAQor resp on d in em ail.

Th an ks ,
Nick

An example: streaming multimedia

NFS

MPEG
encoder

http
Internet

Storage

An example: streaming multimedia

NFS

NFS

http

Web servers

MPEG
encoder

http
Internet

Storage

Did this help?

Caching works fine for static files

For live multimedia
– No...

The problem

Traditional NFSv4 caching cannot work
– Readers + writers means no delegations
– Change attribute is global to the file

• So append means it is constantly changing

What about locking?

– Doesn't help either: read locks ensure that nothing
changes while the locks are held, but once the lock is
released, the guarantees are lost.

– Mandatory write locks can help protect against write
ordering issues.

Other solutions

Write lots of little WORM files
– Yes, that would work
– Basically the route taken by applications like 'mh'

But
– Requires application support on both the writer +

reader

An alternative...

Teach NFSv4 to cache partial files

An alternative...

Teach NFSv4 to cache partial files

Instead of full file delegations, allow the client
to notify the server that it wishes to cache part
of a file

An alternative...

Teach NFSv4 to cache partial files

Instead of full file delegations, allow the client
to notify the server that it wishes to cache part
of a file

Allow the server to notify the client that the
cache needs invalidating
– Same thing we already do for file delegations

Byte range delegations

Extension to NFSv4 that allows client to
negotiate intent to cache with server
– Can declare intent to cache a region of the file for

reads
– Can declare to cache writeback data for a region of

the file
– Described in http://www.ietf.org/internet-drafts/draft-

myklebust-nfsv4-byte-range-delegations-00.txt

Server can notify client when cache needs to be
flushed by means of a callback
– Like delegations, the callback initiates a limited time

period during which client MUST flush cache, then
declare it is done

Allows for strong cache consistency

Some further enhancements

Instead of requiring client to flush writes, then
clear cache, server has the option of allowing
the client to downgrade its cache from a write
cache to a read cache.

Support for readahead-type requests which do
not trigger a recall of the write delegation.

Transparent to byte range locks
– but do enable caching of locks, like file delegations

do.

Application to the streaming multimedia
case

After opening the file, all clients issue a
DELEG_OPEN request in order to obtain a byte
range delegation stateid.

When the MPEG encoder has new data to write,
it may choose to cache the write.
– If so, it should issue a DELEG_RANGE request for

that byte range with the WRITEW_LT flag set.
– If granted, then any attempt to READ or WRITE in the

area covered by the delegation will trigger a callback
to the MPEG encoder, with a request to flush its
cache.

– After flushing, the MPEG encoder is free to continue
caching the data for reading.

What about the readers?

The http servers may either
– call DELEG_RANGE with the READW_LT flag set for

the byte range to cache
– or (better still) prepend any READ request with the

DELEG_PUT_STATEID operation.
– If someone decides to write data to this area, the

clients can expect to be called back and told to
invalidate the cached data.

Server responsibilities

The server needs to track the byte range
delegations held by each client
– Not slavishly, though.

• If circumstances permit it, the server may grant a
larger range than the client requested. (Cut down
on number of requests, and allows server to reduce
“fragmentation”).

Server also helps resolve conflicts
– Fair queueing

Fencing of write requests that refer to old state.

Enforcing “lease” aspect of delegation.

Random thoughts and speculation

Eisler's point that for write caching, the lease
timeout may be an obstacle (due to poor
scheduling performance on client).
– Address perhaps by converting “delegation” into

“lock with notification” if the client has the file open
for write. Leave it as a lease if the file is closed.

Scalability improvements
– Perhaps allow server to skip notifying those clients

who have file closed, but are caching read data.
• Requires a mechanism for revalidating delegation

stateid after OPEN (just do
DELEG_PUT_STATEID?)

Questions?

Storage Simplified

