
Real-Time Streaming
Protocol

draft-ietf-mmusic-rfc2326bis-11
draft-ietf-mmusic-rtsp-nat-04

Magnus Westerlund

IETF 64 Magnus Westerlund Real-Time Streaming Protoocol 2005-11-082

Changes in RTSP

Changed version from 1.1 to 2.0.
– This is motivated by that we should follow RTSP 1.0 rules for

versioning which leans on HTTP’s rules. Thus the changes to
Transport header requires a new major version number.

Updated ABNF Ref to RFC 4234
Changed sentence ending “after further experimentation.”
regarding SET_PARAMETER payloads.
Added the consensus regarding using Allow header also in
DESCRIBE and SETUP method.
Clarified that any “string” in ABNF is case-insensitive.
Restricted the Transport header parameter “mode” to only use a
quoted string structure.

IETF 64 Magnus Westerlund Real-Time Streaming Protoocol 2005-11-083

Open Issue

The minimal Implementation section needs revising.
Editorial Review
Possible Simplifications

IETF 64 Magnus Westerlund Real-Time Streaming Protoocol 2005-11-084

RTSP and NAT: Changes

Added an outline on how to use ICE with RTSP to the
draft.
Updated the references in the draft to be current
Replaced STUN language classification for NATs with
BEHAVE language

IETF 64 Magnus Westerlund Real-Time Streaming Protoocol 2005-11-085

RTSP and NAT: ICE Proposal

1. The session description indicate that ICE may be used. Proposal would be
”a=ICE-capable” for SDP. For DESCRIBE a feature-tag could also be used to
indicate the server’s capability. However this is only a hint and not necessary.

2. Clients prepares the SETUP: Gathers its addresses.
3. Client sends a SETUP with ICE parameter containing candidates in the

transport header. Syntax could be:
ICE=“candID compID passwd TRN qvalue addr port, candID..”

Example:
SETUP rtsp://foo.com/test.wav/streamid=0 RTSP/2.0
Transport: RTP/AVP/UDP;unicast;
dest_addr="120.23.34.53:6970"/"120.23.34.53:6971";mode="PLAY";ICE="
1 1 ytytytytyytyyt UDP 0.7 120.23.34.53 6970, 1 2 opopopopopo UDP 0.7
120.23.34.53 6971, 2 1 asfasdadasdad UDP 0.9 10.10.10.10 5310, 2 1
mmnmnmnmnmn UDP 0.9 10.10.10.10 5311"

IETF 64 Magnus Westerlund Real-Time Streaming Protoocol 2005-11-086

RTSP and NAT: ICE Proposal

4. The server gathers its address and responds with its candidate. A
server in public would only provide a single candidate:
RTSP/2.0 200 OK
Transport: RTP/AVP/UDP;
unicast;dest_addr="120.23.34.53:6970"/"120.23.34.53:6971";
src_addr="192.0.2.5:45784"/"192.0.2.5:45785";
mode="PLAY";ssrc=EAB98712; ICE="1 1 klklklklklkklk UDP 1.0
192.0.2.5 45784, 1 2 wewewewewe UDP 1.0 192.0.2.5 45785“

5. Connectivity checks are performed. Possible results:
1. The primary candidate reaches valid state
2. Another candidate reaches valid state
3. All the checks timeout => communication failure unless more

candidates are available => go to step 3

IETF 64 Magnus Westerlund Real-Time Streaming Protoocol 2005-11-087

RTSP and NAT: ICE Proposal

6. If another candidate pair, for example a peer-derived,
than the primary contained in the SETUP has reached
valid state while not the primary then new SETUP
requests must be sent to update the src_addr and
dest_addr.

7. The client can now send its PLAY request to the server
8. Server upon reception of PLAY verifies that

connectivity checks are completed, otherwise do not
provide 200 answer until it is done (1xx answer could
be defined). Upon valid state for primary candidates
start playing (200 OK).

IETF 64 Magnus Westerlund Real-Time Streaming Protoocol 2005-11-088

RTSP and NAT: ICE Proposal

Issues:
– How to prevent the that a long list of candidates consumes

to much server resources.
– Is continuing to perform STUN the best way of NAT keep-

alive in regards to mechanisms and server resources.

Cost
– In best case only the connectivity checks in extra setup time
– If not primary address is valid, then one extra RTT is

needed. Multiple SETUPs can in this case be pipelined.

IETF 64 Magnus Westerlund Real-Time Streaming Protoocol 2005-11-089

RTSP and NAT: Way forward

Propose to continue develop the ICE solution for RTSP
– ICE resolves the Denial of Service potential for RTSP which

would also allow greater flexibility in RTSP usage
– Will be capable of handling deployment of RTSP servers

behind NATs
Move all other proposals that requires server
modifications to an informational annex for history
Keep client side only methods that don’t have issues as
possible methods, especially for RTSP 1.0 usage.
Clarify firewall and ALG recommendations
Align it with RTSP 2.0 specification

