An Operational Perspective on BGP Security

Geoff Huston GROW WG IETF 63 August 2005

Risk Management

 Operational security is <u>not</u> about being able to create and maintain absolute security. Its about a pragmatic approach to <u>risk mitigation</u>, using a trade-off between cost, complexity, flexibility and outcomes

Its about making an informed and reasoned judgment to spend a certain amount of resources in order to achieve an acceptable risk outcome

Threat Model

Understanding the threat model for routing

- □ What might happen?
- What are the likely consequences?
- □ How can the consequences be mitigated?
- What is the cost tradeoff?
- □ Does the threat and its consequences justify the cost of implementing a specific security response?

Routing Security...

Protecting routing protocols and their operation

- □ What you are attempting to protect against:
 - Compromise the topology discovery / reachability operation of the routing protocol
 - Disrupt the operation of the routing protocol

Protecting the protocol payload

- □ What you are attempting to protect against:
 - Insert corrupted address information into your network's routing tables
 - Insert corrupt reachability information into your network's forwarding tables

Threats

- Corrupting the routers' forwarding tables can result in:
 - Misdirecting traffic (subversion, denial of service, third party inspection, passing off)
 - □ Dropping traffic (denial of service, compound attacks)
 - Adding false addresses into the routing system (support compound attacks)
 - □ Isolating or removing the router from the network

Operational Security Measures

- Security considerations in:
 - □ Network Design
 - □ Device Management
 - □ Configuration Management
 - □ Routing Protocol deployment

Issues:

- Mitigate potential for service disruption
- Deny external attempts to corrupt routing behaviour or payload

Protecting the BGP payload

- How to increase your confidence in determining that what routes you learn from your eBGP peers is authentic and accurate
- How to ensure that what you advertise to your eBGP peers is authentic and accurate

Routing Security

- The basic routing payload security questions that need to be answered are:
 - □ Who injected this address prefix into the network?
 - □ Did they have the necessary **credentials** to inject this address prefix? Is this a **valid** address prefix?
 - □ Is the forwarding path to reach this address prefix credible?
- What we have today is a relatively insecure system that is vulnerable to various forms of disruption and subversion
 - While the protocols can be reasonably well protected, the management of the routing payload cannot reliably answer these questions

What I (personally) really want to see...

- The use of authenticatable attestations to allow automated validation of:
 - □ the authenticity of the route object being advertised
 - □ authenticity of the origin AS
 - □ the binding of the origin AS to the route object
- Such attestations used to provide a cost effective method of validating routing requests
 - as compared to the today's state of the art based on techniques of vague trust and random whois data mining

And what would be even better...

 Such attestations to be carried in BGP as payload attributes

Attestation validation to be a part of the BGP route acceptance / readvertisement process

And what (I think) should be retained...

- BGP as a "block box" policy routing protocol
 - Many operators don't want to be forced to publish their route acceptance and redistribution policies.
- BGP as a "near real time" protocol
 - Any additional overheads of certificate validation should not impose significant delays in route acceptance and readvertisement

Status of Routing Security

- It would be good to adopt some basic security functions into the Internet's routing domain
 - Certification of Number Resources
 - Is the current controller of the resource verifiable?
 - Explicit verifiable trust mechanisms for data distribution
 - Signed routing requests
 - Adoption of some form of certificate repository structure to support validation of signed routing requests
 - Have they authorized the advertisement of this resource?
 - Is the origination of this resource advertisement verifiable?
 - Injection of reliable trustable data into the protocol
 - Address and AS certificate / authorization injection into BGP

Next Steps?

- PKI infrastructure support for IP addresses and AS numbers
- Certificate Repository infrastructure
- Operational tools for nearline validation of signed routing requests / signed routing filter requests / signed entries in route registries
- Carrying signature information as part of BGP Update attribute

Question for GROW

Is there interest in working on specification / description of tools that use a resource PKI for near line validation of routing requests?