ECRTP Reordering
 draft-koren-avt-ecrtp-reorder-01.txt

Tmima Koren
Patrick Ruddy
Andrew Johnson (Presenting)

AVT WG
IETF 63
Paris, France

August 2nd, 2005

CRTP and ECRTP

- Reordering not considered
- "twice" algorithm:
- If you lose a packet then changes are doubled
- Uses checksums to allow handle packet loss
- ECRTP adds reliability for loss of up to N packets

Packet Loss is re-ordering (kind of)

- Re-ordering is a mix of forward and backward jumps
- A loss can be seen as a jump forward

- Forward jump handling detailed in ECRTP
- This document details how to handle backward jumps

Forward Jumps (twice)

Current Stored Context

```
Seq.: }
ID:101 Delta ID: 1
Time: 5050 Delta Time: }5
```

New packet arrives with a forward skip in sequence
seq.: 3
Checksum: 0x6421

Add deltas twice (3-1) and check using the checksum

Backward Jump Problem

Current Stored Context

```
Seq.: }
ID:103 Delta ID: }
Time: 5150 Delta Time: 50
```

New packet arrives with a backwards skip in sequence

```
    seq.: 2
Checksum: 0x2361
```

Can't decompress with this context, discard?

Backward Jump Solution

- Can apply "twice" backwards
- Can't verify IPv4 ID with checksum
- This is OK if:
- IPv4 ID is included in update or
- The delta is known
- Store RTP seq. of last change

Backward Jump Solution

Store Historical Contexts

Seq.: 1	ID: 101	Delta ID: 1	\ldots
Seq.: 2	Not received		
Seq.: 3	ID: 103	Delta ID: 1	\ldots

New packet arrives with a backwards skip in sequence

```
seq.: 2
Checksum: 0x2361
```

Apply "twice" using previous valid context, i.e. seq.: 1

So what can this achieve

- All re-ordering is now a forward jump
- Up to the implementer to limit the number of stored contexts to handle range of reordering
- Can jump up to $\mathrm{N}+1$ forward from any previous context
- Can skip more than N + 1 "forward" as long as checksum works (except ...)

IPv4 ID Limitation

- The IPv4 ID is not in the checksum
- This means you can't skip more than $\mathrm{N}+1$
- Unless the IPv4 ID is in the received packet
- IPv6 doesn't have this issue

Further Enhancements

- Jumping more than $\mathrm{N}+1$ doesn't necessitate discard
-Must send a Context Refresh
-Can store the packet in the context as another out-of-order packet may allow decompression later

Example 1 (within N) side A

 $\mathrm{N}=2$Packet Order
1 Seq.: 1 ID: 101 Delta ID: 1 TS: 5050 Delta TS: 50

Seq.: 2 Not received

Seq.: 3 Not received

Seq.: 4 Not received

Seq.: 5 Not received

Seq.: 6 Not received

Example 1 (within N) side B

 $\mathrm{N}=2$Packet Order
1 Seq.: 1 ID: 101 Delta ID: 1 TS: 5050 Delta TS: 50

Seq.: 2 Not received

Seq.: 3 Not received

2 Seq.: 4 ID: 104 Delta ID: 1 TS: 5200 Delta TS: 50

Seq.: 5 Not received

Seq.: 6 Not received

Example 1 (within N) side c

Packet Order $N=2$

1 Seq.: 1 ID: 101 Delta ID: 1 TS: 5050 Delta TS: 50

Seq.: 2 Not received

Seq.: 3 Not received

2 Seq.: 4 ID: 104 Delta ID: 1 TS: 5200 Delta TS: 50

Seq.: 5 Not received
3 Seq.: 6 ID: 106 Delta ID: 1 TS: 5300 Delta TS: 50

Example 1 (within N) side D

Packet Order

$$
N=2
$$

1 Seq.: 1 ID: 101 Delta ID: 1 TS: 5050 Delta TS: 50

```
Seq.: 2 Not received
```

4 Seq.: 3 ID: 103 Delta ID: 1 TS: 5150 Delta TS: $50 \ldots$

2 Seq.: 4 ID: 104 Delta ID: 1 TS: 5200 Delta TS: 50

Seq.: 5 Not received
3 Seq.: 6 ID: 106 Delta ID: 1 TS: 5300 Delta TS: 50

Example 2 (more than N) side A

 $\mathrm{N}=2$Packet Order
1 Seq.: 1 ID: 101 Delta ID: 1 TS: 5050 Delta TS: $50 \ldots$
Seq.: 2 Not received

Seq.: 3 Not received

Seq.: 4 Not received

Seq.: 5 Not received

Seq.: 6 Not received

Example 2 (more than N) slide

 $N=2$Packet Order

```
Seq.: }1\mathrm{ ID: }101\mathrm{ Delta ID: }1\mathrm{ TS: }5050\mathrm{ Delta TS: 50
```

Seq.: 2 Not received

Seq.: 3 Not received

Seq.: 4 Not received

2 Seq.: 5 Can't decompress: send CS, store packet

Seq.: 6 Not received

Example 2 (more than N) sive c

Packet Order $\mathrm{N}=2$

1 Seq.: 1 ID: 101 Delta ID: 1 TS: 5050 Delta TS: 50

Seq.: 2 Not received

3 Seq.: 3 ID: 103 Delta ID: 1 TS: 5150 Delta TS: 50

Seq.: 4 Not received

2 Seq.: 5 Can't decompress: send CS, store packet

Seq.: 6 Not received

Example 2 (more than N) side D

Packet Order $\mathrm{N}=2$

```
1 Seq.: 1 ID: }101\mathrm{ Delta ID: 1 TS: 5050 Delta TS: 50
```

Seq.: 2 Not received
3 Seq.: 3 ID: 103 Delta ID: 1 TS: 5150 Delta TS: $50 \ldots$
Seq.: 4 Not received
Seq.: 5 ID: 105 Delta ID: 1 TS: 5250 Delta TS: 50
Seq.: 6 Not received

Example 3 (more than N) side A

N = 2, ID in packet

Packet Order

$$
\text { 1, ID }=101 \text { Seq.: } 1 \text { ID: } 101 \text { Delta ID: ? TS: } 5050 \text { Delta TS: } 50 \ldots
$$

Seq.: 2 Not received

Seq.: 3 Not received

Seq.: 4 Not received

Seq.: 5 Not received

Seq.: 6 Not received

Example 3 (more than N) side B

N = 2, ID in packet
Packet Order

$$
\text { 1, ID }=101 \text { Seq.: } 1 \text { ID: } 101 \text { Delta ID: ? TS: } 5050 \text { Delta TS: } 50
$$

Seq.: 2 Not received

Seq.: 3 Not received

Seq.: 4 Not received
2, ID = 105 Seq.: 5 ID: 105 Delta ID: ? TS: 5250 Delta TS: $50 \ldots$

Seq.: 6 Not received

Example 3 (more than N) silie c

Packet Order
$\mathrm{N}=2$, ID in packet

$$
\text { 1, ID }=101 \text { Seq.: } 1 \text { ID: } 101 \text { Delta ID: ? TS: } 5050 \text { Delta TS: } 50
$$

Seq.: 2 Not received
3, ID $=103$ Seq.: 3 ID: 103 Delta ID: ? TS: 5150 Delta TS: 50
Seq.: 4 Not received
2, ID $=105$ Seq.: 5 ID: 105 Delta ID: ? TS: 5250 Delta TS: 50

Seq.: 6 Not received

Questions?

Authors

- Tmima Koren - tmima@cisco.com
- Patrick Ruddy - pruddy@cisco.com
- Andrew Johnson - andrjohn@cisco.com

Please consider making a WG Item

