pmtud implementor's report

John Heftner
IETF 62
Minneapolis, MN
March 8, 2005

New implementation

* TCP implementation for Linux 2.6 (currently 2.6.11, tracking
Linus's bitkeeper tree)

* Just “finished”
— Still working on 1t, but the basics are there.

— Not well tested. Volunteers (guinea pigs) are welcome.

* (Can be found at
http://www.psc.edu/~jheftner/patches/mtup-2.6.11.patch

* Expect new versions.

* [may put up a more complete web page with a change log. I'll
post to the list about this.

Eating my own dogfood

* Running on my laptop right now

In action

Implementation overview

* Selection of 1nitial MSS

* Search strategy

* Deciding when to probe

* Verification

* Response to probe/verification results

* Moving to new MSS

Selection of initial MSS

* Currently a sysctl variable

e Idea:

— Start with maximal mss from current pmtu, and enter verification phase
immediately.

— Failure (timeout) results in backing off to search low.

Search strategy

* Very simple: double current MSS
* [ftarget > search high, we are done

* May implement more complicated heuristics later, but:

— Maybe this strategy is good enough

— MSS being an exact multiple or fraction of page size 1s good for
performance

Deciding when to probe

* Three results
— Probe now
— Don't probe (continue to send data if appropriate)

- Wait (don't send probe or any data)

* Tests:
— Currently probing or verifying Don't probe
— Inrecovery Don't probe
- cwnd <11 Don't probe
— Less than probe size data in send queue Don't probe
- packets in_flight + 2 > cwnd Wait

— probe not in receive window
* rwin < probe_size Don't probe
* else Wait

— Otherwise Probe now

Verification

* Want to use only full-sizes packets for verification

* [f header lengths change, hard to determine exact length of
packets when sent (we only know the payload length)

— Is this “good enough™?

* Chose to use a fixed number of 10 packets for verification, not
cwnd as the draft recommends

— My verification 1s currently fragile since I don't time out and retry

Response to probe/verification results
Y

Ready to probe?

Send probe

:

Probe success?

qo |Search_high = probe_size
— = supress cwnd reduction
mss = search low

mconclusive

mss = probe_size

1 Isearch high = probe size
mss = gearch_low

search low = probe size

Moving to the new MSS

* Linux segments data when copying from user space

* (Can have a full send buffer of data already segmented at old MSS
— Verification could take a while

* Consider probing higher before verification complete?

What's NOT implemented

* Timeout/retry for various events
* Handling of some failure cases (mostly related to above)

* Recommended search strategy (no fine scan)

ICMP attack protection

Open 1ssues

* Adding learned data to route cache

— Especially important for short-lived flows
— What to cache?

* [s saving search high too fragile?

— How often to access? (Locking issues)
* Bogus ICMP handling

— Shared IP-layer pmtu value causes difficulty

* Would need partition between “secure” and insecure protocol pmtu's

— Maybe an 1ssue for tsvwg? (current discussion in tcpm)
— Not planning on implementing anything here soon

— Paranoid systems can filter ICMP and rely only on mtu probing

