TFRC for Voice: the VoIP Variant

Sally Floyd, Eddie Kohler. March 2005 <u>http://www.icir.org/floyd/papers/</u> draft-ietf-dccp-tfrc-voip-01.txt

http://www.icir.org/floyd/talks.html

First, four repeat viewgraphs from last IETF...

VoIP: fairness in Bps.

- Standard TFRC has the goal of fairness in pps with TCP flows using the same packet size.
- The VoIP variant of TFRC has the goal of fairness in Bps with TCP flows using 1500-byte packets, (following RFC 3714).
- The VoIP variant assumes optimistically that the network limitation is in Bps, not in pps.

VoIP: fairness in Bps.

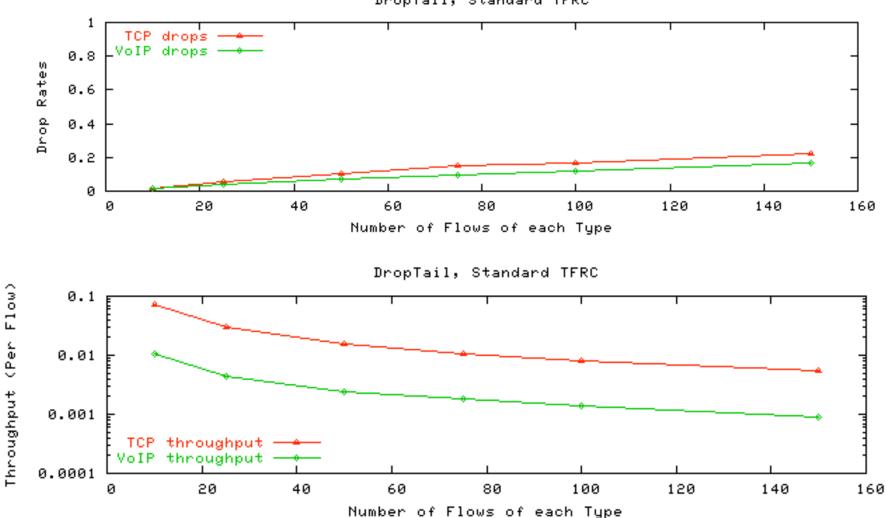
- In the TCP throughput equation, use the measured loss event rate and a packet size of 1460 bytes.
- Reduce the allowed transmit rate to account for the fraction of the VoIP bandwidth that would be used by 40-byte headers:
 - X <- X * TruePktSize/(TruePktSize + Header)</p>
 - TruePktSize = average segment size in bytes
 - Header = 40 bytes
- Enforce a Min Interval between packets of 10 ms.

Measuring Congestion:

- The VoIP variant of TFRC uses the loss event rate.
 - RFC 3714 uses the packet drop rate.
- These are both affected by packet size and by the smoothness of the sending rate.
- The effect of packet size on the packet drop rate could use more investigation.

The VoIP variant of TFRC:

- As it stands now, it sometimes favors the VoIP TFRC flow over the large-packet TCP flow.
- This needs to be quantified and evaluated.


Changes from draft-ietf-dccp-tfrc-voip-00.txt:

- Added more simulations.
- Added a Related Work section.

Small Packets, Standard TFRC:

- The problem:
 - TCP flows with 1460-byte packets, competing against:
 - Standard TFRC flows with 200-byte packets,
 10 ms between packets (e.g., 160 Kbps)

Small Packets, Standard TFRC:

DropTail, Standard TFRC

Simulations with VoIP TFRC:

- The algorithm so far in the draft:
 - TCP flows with 1460 bytes, competing against
 - VoIP TFRC flows with 200-byte packets.

Simulations with VoIP TFRC:

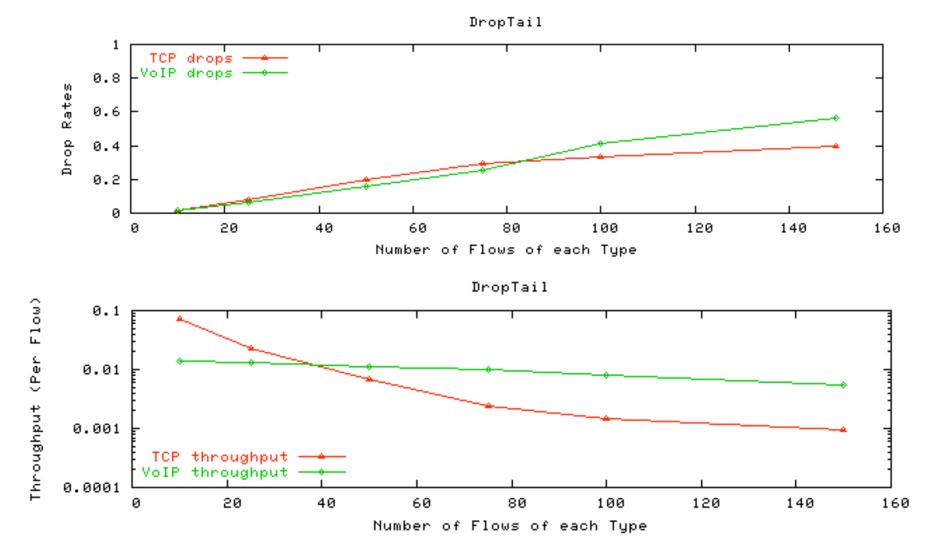
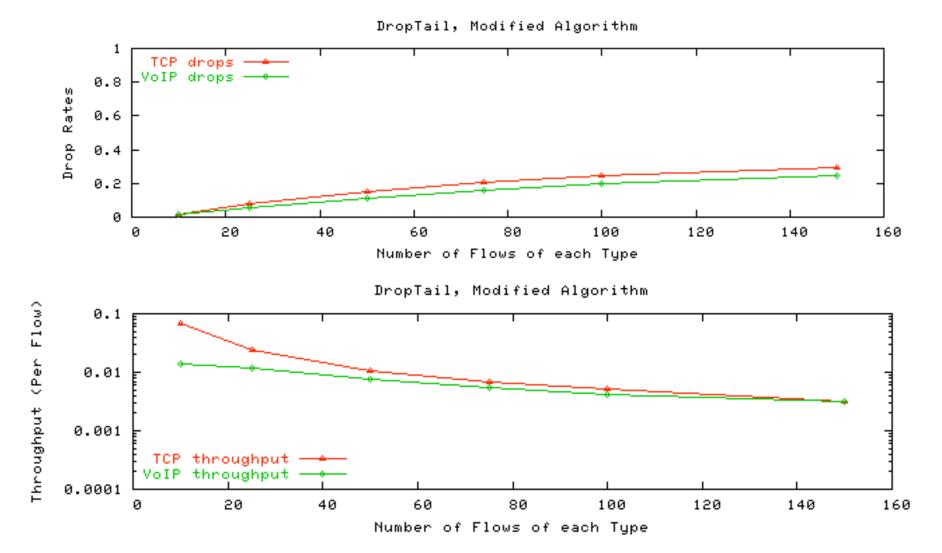


Table 1 from draft-ietf-dccp-tfrc-voip-01.txt.


This won't do.

- The problem [Widmer, Boutremans, and Le Boudec, 2004; Vasallo 2000]:
 - TCP and TFRC can't send multiple packets per RTT in the face of high congestion; VoIP TFRC can.
 - The loss event rate used by TFRC follows TCP by responding to at most one loss per RTT.
 - When TCP has one "loss event" for every two 1460byte packets, a rate-equivalent TFRC VoIP might have one "loss event" for every 30 100-byte packets.
 - So the "loss event rates" computed by VoIP TFRC can be too low in times of high congestion.
- One solution:
 - Loss rates have to be calculated differently, at least in times of high loss.

Solutions:

- Previously-explored solutions [WBB04]:
 - Count virtual packets [V00].
 - Do random sampling of arriving packets.
 - Shorten part of the Loss Interval.
- One possible solution for VoIP TFRC:
 - For short loss intervals (at most two RTTs), count the actual packet loss rate (but don't increase the number of loss intervals).
 - Somewhat like "random sampling" above, but only for short loss intervals.
 - Examples: "./test-all-friendly HighLossShort" and "./test-all-friendly printLossesShort" in tcl/test in NS.

The Modified TFRC VoIP:

Issues remaining:

- More exploration needs to be done.
- There were two problems:
 - VoIP TFRC can send many packets in one RTT, even in the face of heavy congestion. Taken care of.
 - VoIP TFRC, with small packets, sees different packet drops that it would have with larger packets. When is this a problem?
- For simulations with RED in byte mode (where small packets are less likely to be dropped than large packets):
 - Even the modified VoIP TFRC gets much more than its share of the bandwidth in times of high congestion.
 - Under investigation.

Assumptions:

- The sender doesn't know the packetmarking mechanisms used by the routers.
 - E.g., Drop-Tail? Queue in bytes or in packets?
 AQM in byte mode or in packet mode?
- The sender can't assume that packets or bytes are being dropped with some relatively stable dropping probability p.

– This is not necessarily the case.

Assumptions:

• The number of packets dropped in one round-trip time is not necessarily an indication of the level of congestion.

Extra Viewgraphs:

Measuring Congestion:

- Packet size in a Drop-Tail world:
 - Queue measured in bytes, packets, or in-between?
 - Smooth or bursty sending rates?
 - High or low levels of statistical multiplexing?
- RED in packet mode:
 - Same packet drop rate for big and small packets.
 - TFRC measures the loss interval in packets.
- RED in byte mode:
 - Same byte drop rate for big and small packets.

The state of TFRC in NS:

- Includes the VoIP variant.
- Includes RFC 3390 initial sending rates.
- More updating is needed.
 - Add RFC 3390 sending rates after idle periods.
 - Add Faster Restart.
 - Add overhead for packet headers.