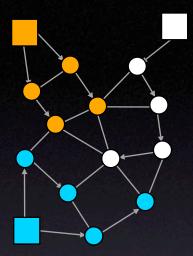
# Summary of the existing solutions

Prepared by: JaeHoon Kim, Pr. Kenichi Mase
Ryuji Wakikawa, Jaehoon Paul Jeong
Christophe Jelger, Anis Laouitti
Cedric Adjih, Thomas Clausen
Shubhranshu Singh

## draft-jelger-manet-gateway-autoconf-v6-03.txt

#### Scope:


- Proactive autoconfiguration with prefix continuity
- Prefix continuity: creation of a forest of logical spanning trees

#### Basic mechanism:

- Each gateway periodically sends global scope prefix\_information
- Each node selects one and only one prefix\_information and creates a global address according to the prefix (with extended-EUI-64)
- Because each node only forwards the information it uses, the propagation method leads to prefix continuity
- With multiple gateways, multiple prefixes, each logical tree is formed by nodes using the same global prefix: forwarding to the Internet is coherent

#### Drawbacks:

- Overhead due to proactive nature (around 1kb/s per second per node, including data and IP, Ethernet, and 802.11 headers)
- Cannot be applied straightforward to IPv4 (since EUI-64 are not usable)



### draft-mase-manet-autoconf-noaolsr-00.txt

## Scope:

autoconf of standalone MANETs

### Basic mechanism:

- self address selection based on the busy address list
- on-going duplicated address detection (DAD) using 10 simple rules, that can deal with the optimization of the OLSR
- gradual entry in the OLSR network and address conflict/routing table contamination avoidance using the three states
- implemented and verified to have satisfactory duplicated address detection and resolution performance under various scenarios using real-world experiments and simulations

### Limitations:

- routing protocol dependent
- not yet extended for multiple interfaces

## draft-clausen-manet-address-autoconf -00.txt

### Scope:

autoconf of MANETs which are edge-extenstions to the Internet

#### Basic mechanism:

- at least one node is "already configured" (Internet gw)
- periodic beaconing by configured nodes ADDR\_BEACON
- new node select "already configured" node ADDR\_CONFIG
- selected node acquires global addr. for new node (dhcp, autonomously, ...)

#### Limitations:

- does not address partitioning/merger
- routing protocol agnostic

## draft-laouiti-manet-olsr-addressautoconf-00.txt

### Scope:

Autoconf of OLSR MANETs (duplicate address detection)

#### Basic mechanism:

- Each OLSR node periodically floods M.A.D. messages:
  - List of its addresses (like OLSR MID msg.) plus a "node identifier"
  - Node identifier is initialized with (big) sequence of random bits
- Conflict: M.A.D. with same address but different node identifier.
- Special mechanisms to avoid some MPR flooding limitations.

#### Advantages and Limitations:

- + Simple while supporting merge/split/multi-homing and any addressing
- Overhead of MAD messages, and specific to OLSR

## draft-wakikawa-manet-global6-03.txt

- Scope:
  - Connecting MANET to the Internet (IPv6)
- Concept:
  - Internet Gateway
    - is a router connected to both MANET and the Internet
    - provides global address and route to the Internet
- Solved Items
  - Internet Gateway Discovery
    - Extended RA dissemination
    - Modified Routing Protocol exchange
  - Global Routable Address Assignment
  - Route Setup toward the Internet
  - MobileIPv6/NEMO Support
  - Route Examination, etc.
- Limitation
  - No multiple Gateways Support



### draft-perkins-manet-autoconf-01.txt

- Scope
  - Address Autoconfiguration for MANET local address (v4/v6)
- Mechanism
  - Use a temporary address to acquire an address and to operate DAD
    - Temporary address is randomly selected from MANET initial prefix
    - It identifies a node by Unique ID and Requested IP address during address autoconfiguration
  - Send Address Request (AREQ) for address discover and receive Address Reply (AREP) if the requested address is already in use
    - similar to NS and NA for DAD in IPv6
  - Same Mechanism for both IPv4 and IPv6
- Limitation
  - Possibility of AREQ storm when MANET is merged

## Draft-manet-singh-mmg-00.txt

- Scope
  - Global addressing and routing solution for hybrid MANET
- Basic mechanism
  - Gateway provides global prefix using modified NS/NA
  - Nodes assigns unique IPv6 address
  - Routes packet to the Internet using either routing header or tunneling
- Limitations
  - Supports only IPv6

## (draft-jeong-adhoc-ip-addr-autoconf-04.txt)

- Step I:Address Selection
  - How to select one of IP addresses in the address space?
    - Random Address Selection
- Step 2: Duplicate Address Detection
  - How to detect a duplicate address?
    - Hybrid DAD = Strong DAD + Weak DAD
- Step 3:Address Change Negotiation
  - Which node should perform a reallocation procedure?
    - Victim Node Selection
    - Address change indication similar to MIP binding update
- Step 4: Maintenance of Upper-layer Sessions
  - How to let an upper-layer session avoid a connection breakage?
    - Data delivery through IP tunneling