
Multihoming and Applications

draft-nordmark-multi6dt-refer-00.txt

Erik Nordmark
erik.nordmark@sun.com

Multi6 design team: J. Arkko, I. Van Beijnum, M. 
Bagnulo, G. Houston, E. Nordmark, M. Wasserman, 

J. Ylitalo



Background

● Scalable IPv6 site multihoming
– Site connected to more than one ISP

– Scalable implies not dumping the problem in the routing 
system with one route per multihomed site

– Implies each site receives an IPv6 address prefix from 
ISP

● Keep the IPv6 socket API stable; 128 bit addresses
● Design team has been looking at a L3 shim
● But the application issues are not specific to that 

approach



Possible solution approaches

1.Do nothing

2.Only worry about the problem during connection 
establishment; choose a working locator pair

3.Introduce multiple locators and a sub-layer in the 
stack which will make transport communication 
survive by being able to switch between the 
locators

4.Introduce a new identifier name space with a 
distributed system for mapping from identifiers to 
the current set of locators



Implications

● In #3 and #4 the applications (at the socket API) 
see some 128-bit quantity
– We call this the ULID

– Underneath there are multiple 128-bit locators

● The ULID could be one of the locators (#3), or
● The ULID could be something which isn't 

reachable (#4)
● Whether it is reachable or not isn't central to this 

discussion



“multi6”

IPv6 socket API

Packets with locators



Likely outcome

● A new identifier name space would either
– Take a long time to define, implement and deploy

– Use the DNS AAAA and PTR records
● Implies a hierarchical allocation i.e., a managed ID space, 

which will probably require some fees
● But desire to provide multihoming benefits without 

registering in a managed space

● Thus multiple locators without any new ID name 
space is the likely outcome for at least the short 
and medium term



The good news

● No change for applications which use the IP 
address as a “short term” handle
– Take result of getaddrinfo() and pass it to connect() or 

sendto()



Other application usage

● “Long-term handle”
– Retain/cache for communication in the future

● “Callbacks”
– A connects to B; B retains A's IP address; later B 

connects to A

● Referral
– Pass address of self or of peer to a 3rd party

● “Identity Comparison”
– Use IP address to check if peer is the same as before

– Does anybody do this?



Possible application approaches

● Use FQDNs wherever possible
– But not possible if e.g., no FQDN assigned to host, 

FQDN for service instead of host, etc.

● Use a single IP address
– Works as long as that locator is reachable; would not 

benefit from the redundant paths present with 
multihoming

● Use the set of IP addresses aka locators
● Use the set of locators plus the ULID



Recommendations

● Move applications to use FQDNs if possible
– Not possible in all cases due to hosts not 

having/knowing their FQDN, FQDNs for service and 
not for host, etc.

● Use set of locators (+ULID?) instead of a single 
locator
– Need new API calls?

● getlocallocators(int socket, struct sockaddr *[], int *naddr);
● getpeerlocators(int socket, struct sockaddr *[], int *naddr);
● setpeerlocators(int socket, struct sockaddr *[], int *naddr);



Open Issues

● Make it clear that application doesn't interpret the 
locator set

● Does it apply to single IPv4 + single IPv6 address 
case?

● Clarify security issue around identity comparison?
● Clarify RFC 3041 and DNS
● If we will tweak the API, should we add a
– connect_to_name(, char *fqdn, int port);

– If so, what about UDP?



Questions?


