TCP packet authentication on the cheap

Eric Rescorla

IETF 60 TCPM meeting

(with some ideas from Vern Paxson)

Background

- Current attacks depend on forging TCP packets
 - Standard defense is to integrity check packets
- TCP MD5 would do the job
 - But keying is a problem
 - Not specified in the RFC
 - Manual keying is sort of assumed
- IPsec way too heavyweight

Some observations

- We're mostly concerned about blind attacks
 - A solution that only works against off-path attackers is OK
 - If we believe in on-path attackers we've got big problems
- We don't need a perfect solution
 - Attack doesn't have to be impossible
 - ... just a lot harder

Cheap solution 1: Nonce-keyed TCP MD5

- TCP MD5's problem was key management
 - But with off-path attackers it's easier
- Exchange nonces in the TCP SYN handshake
 - In some newly invented option
 - Use a function of the nonces as TCP MD5 key
 - e.g. H(Nonce_A || Nonce_B)
 - Diffie-Hellman is too heavyweight here
- Work factor for off-path attacker: 2¹²⁸
- Interoperability
 - What do intermediaries do with new options?
 - What about intermediaries that change data stream?

Cheap solution 2: Short nonce-keyed TCP MAC

- ◆ TCP MD5 option adds 18 bytes
 - MACs can actually be much shorter
 - 80 bits gives you a 2⁸⁰ work factor
- Create a new option with a shorter MAC
 - Can also use something stronger like HMAC
- Slightly more implementation effort
- Interoperability
 - Mostly the same as with solution 1

Cheap solution 3: auto-keyed TCP MAC

- Do we really need 2⁸⁰ bits of security?
 - Probably not
- What if we get our randomness from the ISNs?
 - Key = H(ISN_1 || ISN_2)
- Need to signal that we're using this
 - Probably easiest to use a new TCP MAC option
 - So might as well truncate
 - Maybe could have automatic detection with TCP MD5 option
- Security depends on ISN randomness
- Interoperability
 - Maybe easier since can be done with no new option
 - Still have a problem with intermediaries that change the data

Cheap solution 4: auto-keyed TCP checksum

- Maybe we don't need a MAC at all
 - Just modify the TCP checksum to include the ISNs
- Security not as good
 - Only 2¹⁶ bits
 - Maybe this is good enough
- Potentially more interoperable
 - Updating checksum works
 - Recomputing does not
 - Intermediaries which check the checksum are a disaster

Bottom line

- Best choice depends on intermediary behavior
 - Not well understood
 - ... at least by me
- The more we worry about intermediaries the better the earlier (stronger) options look