

draft-touch-tcp-antispoof

Joe Touch Postel Center Director Research Assoc. Prof. CS & EE USC/ISI

Purpose of this ID

- Outline the 'current' problem
- Make taxonomy of solutions
- Make recommendations (?)
- Hint at underlying opportunity (?)
 - May or may not be right for this problem

-->> BCP?

TCP RST Vulnerability

- **-** Aug. 1998
 - Already Standards-Track

Quick summary of 2385

- TCP checks seqno's
 - Exact on SYNs
 - Within window elsewhere
- Increased window size = big opportunities
 - RSTs in the window kill the connection
- Sol'n is authentication
 - Preshared secret + MD5 TCP option
 - Currently missing keying

What needs to be known?

- IP addresses
 - Dest is announced for servers
 - Some pairwise associations are known
- Ports
 - Dest is (usually) fixed by protocol
 - Src can be predicted or guessed
- Whether segment is "in the window"
 - Increases as BW increases

What Changed?

- Bandwidth * delay product
 - Vulnerability = f(BW²)
 - Higher BW*delay = larger window
 - Higher BW = more attack RSTs can be sent
- Long-lived fragility
 - Persistent BGP connections
 - Well-known endpoints, port
 - BGP interpreting dropped TCPs

Vulnerability as BW²

BW		BW*del	(MB)	RSTs	needed	<u>Time</u>	
10	Gbps	125			35	1	us
1	Gbps	12.5			344	110	us
100	Mbps	1.25			3,436	10	ms
10	Mbps	0.125		3	34,360	1	sec
1	Mbps	0.0125		34	43,598	2	min
100	Kbps	0.00125	5	3,43	35,974	3	hours

Proposed Solutions

- Explicit protection
 - TCP/MD5
 - IPsec/IKE
- Obfuscation
 - Window Attenuation
 - RST Attenuation, Timestamps
 - Larger number space
 - Cookies / ISN / conn. IDs, Port randomization

Issues

- Transport vs. net vs. applic.
 - Where to protect attacks on identity?
 - Need to modify all transport protocols
 - Per connection, not per endpoint pair
- Complexity
 - Configuration effort, CA hierarchies
- Performance
 - Throughput impact, CPU load impacts

High-Perf. Anon. Security (TBP in SAAG Thurs.)

- What: To maintain anon. associations
 - Public servers (non a-priori clients)
 - Deliberately anonymous clients.
- How: Pairwise keys w/o shared secrets
 - Diffie-Hellman only
- How fast: Variety of modes
 - Cookie
 - First-block (header only)
 - Full

