Tunnel based FRR

<draft-bryant-ipfrr-tunnels-00.txt>
 RTWG IETF-60 August 2004

Stewart Bryant <stbryant@cisco.com>

Mike Shand <mshand@cisco.com>

Goals

- FRR MUST do no harm the impact of the mechanism is never worse than if it were not used.
- Once a router has detected the failure, no further packets will be lost.
- No topology tuning required.
- MUST be suitable for incremental deployment

Implications of the goals

- Following invocation of the repair a controlled convergence is needed to avoid undoing the FRR repair, and collateral damage due to micro-looping.
- Controlled convergence takes time, therefore repair must be 100% to prevent extending outage for un-repaired destinations.

Overview

- This is a long-reach repair mechanism to complement ECMP and "downstream" routes.
- Works by tunnelling the packet to a router in the network, which is reachable by the repairer, and which has a natural route to the destination that avoids the failure.
- Simplified computation by using other side of the failure as a proxy for the packet destination.

Basic Operation

Interference

- A node repair problem that SOMETIMES arises due to the packet getting sucked back towards the failed node.
- •Solved by concatenating repair paths using a selected neighbour (F) as an intermediary.
- •A encaps to F, repairs to F, F decaps and repairs as normal.
- •MAY need to repeat this secondary repair process to another neighbour.

Multi-homed Prefixes

- A very similar problem to interference in which nodes unaware of the failure "suck" the packet back to the failed node.
- Only affects node protection
- Solution is to encapsulate packet to alternate router with reachability to the prefix, and then repairing to that router.

Loop-free via delayed FIB update

Data-plane modifications

- Rapid detection mechanism and routing to alternative nexthop is common to all FRR solutions.
- To cover all pathological case may need three layers of tunnel encapsulation and one directed forwarding operation:
 - -Encapsulate to MHP
 - -Encapsulate to secondary repair
 - -Encapsulate to P
- Any tunnelling mechanism may be used: IP-IP, GRE, L2TPv3
- The only nodes needing modification are the encapsulating routers. Tunnel decapsulation is a "standard" mechanism.

Control Plane Modifications

New sub-TLV to flood FRR parameters

Router FRR capable

Link protected

DF vector

- IPFRR routers must calculate repair strategy.
- For traffic for which node is single point of failure, repairing router must do node-link discrimination check.
- Loop-free convergence requires additional calculation and controlled execution of FIB updates.

Dataplane complexity

Tunnel encapsulation, particularly the need to apply nested tunnels in sequence due to the need to fixup length and checksum

Control Plane Complexity – Link Protection

Symmetric costs

For each protected link, each node prunes the existing SPF and calculates 1 reverse SPF

Asymmetric costs

As above, plus up to k-1 SPF to extend Pspace if needed

Note – SPFs can terminate as soon as repair is found.

Control Plane Complexity – Node Protection

Symmetric Costs

If secondary repairs not needed, then for each protected neighbour we need 1 SPF prune plus k-1 reverse SPF.

For each neighbour taking part in a secondary repair we need one additional SPF.

Asymmetric Costs

As above, plus up to k-1 SPF to extend Pspace <u>if</u> needed

Loop-free convergence

Several methods – consider ordered FIB update

Each node effected by the failure computes 1 reverse SPF (from B), and determines it's position WRT the horizon

Each node must update its FIB within a maximum time.

As an optimisation may use signalling to reduce the time needed to converge.

Comparison with other methods

- This is a long-range method, capable of finding and using a repair point some distance from the failure.
- In symmetric cost networks (and non-pathological asymmetric cost networks) repair coverage is 100%, and when used with loop-free convergence, post repair packet loss is zero.
- Following an arbitrary number of failures, the network will recompute an equally effective repair strategy limited only by an induced single point of failure.
- Layered tunnelling allows us to overcome pathological topologies, and to repair multi-homed prefixes.
- Use of other side of failure as proxy for the destination results in a significant reduction in repair path computation.
- Does not require a change to forwarding behaviour of neighbours (U-turn).

What we can take from other methods

- Per-destination strategy may enable us to use less complex repair strategy to some destinations.
- IP loose source routing or multi-hop tunnels (e.g. MPLS) could enhance this solution.

Coverage In Some Operational Networks

Percentage of links fully protected

Thank You