
Netconf Protocol:
Security Considerations

Wes Hardaker
<hardaker@tislabs.com>

2004.Aug.05

 Netconf Authentication and Access Control

 There is inherent access control now:
 The authentication process should result in an entity whose permissions and capabilities are known to the

device. These permissions must be enforced during the NETCONF session. For example, if the native user
interface restricts users from changing the network interface configuration, the user should not be able to
change this configuration data using NETCONF.

 This implies that all netconf operations/data:
 MUST be mappable to existing access control specifications
 Not likely always possible
 Existing models are CLI based and very different

 MUST be checked against both:
 device access control
 future netconf access control systems

 accept by one, deny by other = ?
 Completely standardized access control may never happen

 Netconf Authentication and Access Control

 Existing access control systems aren’t network based
 Can’t say "must encrypt this data in transit"
 Can’t say "must not touch this except at the device"

 Netconf Authentication and Access Control

 Recommendation:

 Drop the existing requirement

 "Netconf MUST NOT be implemented without a suitable access control
mechanism"

 Netconf protocol chaining

 Some operations work on remote datasets
 copy-config
 URL based: ftp, http

 Recommendation:
 Discussion of login credentials and how to pass them
 Explicit passing
 Implicit passing

 copy-config MUST only operate over secure URL transports?

 Netconf Locking: DOS

 Not new. Long discussed. Discussed in document.

 Global locks mean global lock-outs
 Grants absolute permission to lock objects otherwise unmanageable by a user.
 Kill-session can be used to remove locks
 But there is a race condition		

 Point:
 Locks as is add insecurity if granted to peons

 Netconf Operations: Micro vs Global

 Netconf Assumptions:
 Configuration stores are always shared
 IE, there is not one candidate per user

 Netconf Operations: Micro vs Global

 Netconf Operations: Micro vs Global

 Consider policy:
 User P1 can only edit Var1, can’t edit Var2
 User P2 can edit Var2

 Easy:
 EDIT-CONFIG must disallow P1 from being able to edit Var2

 Global operations add complexity to the ACM (assume Var2
modified)

 P1 can not COMMIT() if Var2 is modified
 P1 can not COPY-CONFIG(running, startup) if Var2 is modified
 VALIDATE(candidate) must not disclose errors about Var2 to P1
 P1 can not CONFIRM changes if Var2 is modified
 P1 can not DISCARDS-CHANGES if Var2 modified
 If P2 modifies Var2, P1 can’t do any global operations

 Netconf Operations: Micro vs Global

 The state we’re in:
 MUST NOT give peon a lock
 MUST give peon a lock

 No secure state for multi-role enviornments

 Recommendation:
 "Netconf 1.0 MUST NOT be used in restricted-role environments"
 OR
 Fix the problems

 Netconf Operations: lock

 canditate config is locked by R

 running config is not

 Can someone else perform a commit?

