École Nationale Supérieure des Télécommunications de Bretagne

IKEv2 peer address management

draft-dupont-ikev2-addrmgmt-05.txt

IETF60-Mobike

www.enst-bretagne.fr

Summary

- Peer address set
 - peer addresses = addresses IKE runs over = outer addresses of tunnel mode IPsec SAs
 - a primary peer address, some alternate peer addresses (per peer)
 - add/delete/set-primary operations
 - later: how to trust/verify a peer address
- Peer address update
 - doesn't deal with transport mode IPsec SAs
 - IPsec/IKE SA list
 - "all SAs" flag

Changes from previous drafts

 (Planned) More details about how to perform an update with return routability check (window of one issue)

 (Planned) Clone the NAT_DETECTION_* notifications into NAT_PREVENTION_* notifications (Pasi's idea)

 (Planned) Fork the statement about transport mode into a dedicated document using only an address list assumption

Differences from other proposals

No NAT traversal interoperability

 Support for SCTP (both the protocol itself and its model of multi-homing)

 Flexible trusting/verification of peer addresses (move the issue from the protocol to the policy: next slide)

Per SA update

How to trust/verify peer addresses

- First way: configured as trusted
- Common traditional IKE way: authenticated/authorized by certificates (present in an alternate subject name)
- Road-warrior way: verified by the implicit return routability check of IKE exchanges (note: needs a protection of the peer addresses: NAT_PREVENTION_* notifications, cookie)
- MIPv6 routing optimization way: explicit return routability check
- MIPv6 mobile node home agent way: topologically plausibleness by ingress filtering and trust in the peer

