Host Identity Indirection Infrastructure – Hi³

Jari Arkko, Pekka Nikander and Börje Ohlman Ericsson Research

Presentation outline

- Motivation
- Background
- Secure i³
- Hi³
- Summary

Hi³ motivation

- Question: How to get data based on HIT only?
 - HITs look like 128-bit random numbers
- Possible answer: DHT based overlay like i³
- Extra bonus: DDoS protection
 - Inherited from Secure i³ and enhanced

Background

- Current HIP name resolution
- Basic HIP rendezvous service
- About Distributed Denial-of-Service attacks
- Two slide introduction to Distributed Hash Tables

Current HIP name resolution

- HITs or HIs in the DNS
- DNS query asks for addresses and HITs
- Requires one to have a DNS name
- HITs not resolvable due to name space being flat

Basic HIP rendezvous service

- Keep track of Responder's IP address(es)
- Forward I1 to Responder
- Optionally forward R1 back to the Initiator and then I2 to the Responder
 - Keeps Responder's IP address(es) hidden until it has a chance to verify the puzzle

Distributed Hash Tables (DHT)

- Distributed directory for flat data
- Several different ways to implement
- Each server maintains a partial map
- Overlay addresses to direct to the right server
- Resilient through parallel, unrelated mappings

DHTs: Example

About DDoS Attacks

- Attacks a victim from dozens to thousands of network locations at the same time
- Employs zombies, typically hacked PCs
- Observation:
 - Keeping IP address hidden protects from DDoS
- Question:
 - How to keep a server's IP address hidden?

Secure i³

- i³ overview
- Secure i³ principles
- Diluting a DoS/DDoS attack in i³

i³ overview

- Efficient indirection layer on top of IP
 - Overlay network consisting of rendezvous servers
- Rendezvous based communication abstraction
 - Each packet has a recipient identifier
 - Rendezvous servers maintain triggers
- Trigger is an (id, destination) pair
 - Destination is typically an IP address

Rendezvous Communication

- Packets addressed to identifiers ("names")
- Trigger: (Identifier, IP address): inserted by receiver and then used by sender
- Triggers are mappings set up by end-hosts, and stored in DHTs (can point to other triggers too)

Secure i³ principles

- Hide IP addresses
 - Must use overlay
- End-hosts have ability to defend against attacks (in the network)
- Don't create additional vulnerabilities

Diluting a DoS attack in i³

Attacker floods victim via i³ public triggers

Victim dilutes attack by dropping two of its four public triggers

(Slide courtesy to Dan Adkins, UC Berkeley)

Hi³

- Basic approach: Combine HIP and (Secure) i³
 - Use i³ as a transport for HIP packets
 - Use regular IP(sec) for regular data traffic
- Hides IP addresses until the Responder has been able to verify the puzzle
- HIP mobility and multi-homing can be used to redirect and redistribute regular traffic

Hi³ overlay and IPsec connectivity

Hi³ overlay and IPsec connectivity

- i³ overlay for signalling (control plane)
 - Routes only HIP control packets
- E2E IPsec ESP for data traffic (user plane)
 - Firewalls/middle boxes opened dynamically
- Only end-to-end signalling (HIP)
 - Middle boxes "snoop" e2e messages

HIP vs IP connectivity

IP connectivity

Between any IP addresses

Created by routing

Hosts always reachable

Unsecure

Broken by NATs and FWs

HIP connectivity Between any HITs Created by DHT Hosts reachable after signalling (Opportunistically) Secure Goes through NATs and FWs

Upper layer view

- IP connectivity problematic today
 - Broken by firewalls, NATs, mobility
 - Two versions of IP: IPv4 and IPv6
- Hi³ as a potential remedy
 - Restores end-to-end connectivity
 - Handles mobility and multi-homing
 - Protects from DDoS attacks

Where is network state?

- Routers know addresses
 - Just like today
- DHT knows HITs
 - Lease based storage
- Middle boxes know SPIs
 - Soft state

Summary

- Combine HIP and i³
 - HIP packets flow through i³ overlay
 - Regular traffic over today's IP
- IP addresses hidden in the beginning
- Solves the HIT referral problems
- Protects from DDoS attacks