
Miika Komu <miika@iki.fi>
Helsinki Institute for Information Technology

Julien Laganier <ju@sun.com>
SUN Microsystems / LIP (INRIA/CNRS/UCBL/ENSL)

http://hipl.hiit.fi/hipl/hip-native-api-snapshot-
20040708.pdf

Native HIP API

Goals 1/3

● support variable sized HIs in the sockets API
● apps can gain a better control of the HIP layer
– application specified identifiers

– HIP socket options

● the API requires modifications in the app code
– the application becomes HIP aware

● compatibility with the sockets API
– extend where reuse is not possible

Goals 2/3
● hide HI/HIT/locator representation and

management from apps
– assumption: applications trust the system

– ease the transition to IPv6

– manual configuration is still possible

– enables process migration (delegation)

Goals 3/3

● src locator is a network interface instead of an IP
address
– e.g. bind() to interface rather than IP address

● opportunistic HIP can be used when no identifiers
for the peer are found
– fallback to plain TCP/IP also possible

Layering

IPv4 API IPv6 API

Ethernet

HIP

HIP API

IPv6

TCP UDP

Socket

Application
Application

Transport
Layer

Layer

Layer

HIP
Layer

Network
Layer

Link
Layer

IPv4

Socket Bindings

Dst HI

Src HI Src Iface

Ds t Addr

Dynamic Binding

*

* *

* 1

*

*
1

1

1

1

1

HIP
s ocket

Descriptor
Src HI

Ds t HI
Des criptor

Endpoint identity descriptor

● forward compatible
– the size and format of HIT can change

– host identifier mobility = delegation of HIs

– the “price” for this is the extra translation step

● collision free AID
– HIT is not 100% collision free

● modular
– each layer (app, transport, network) has their own

identifiers

PF_HIP socket family

● results a cleaner implementation
– no hooks required in the IP socket handlers

– garbage collection in networking stack is less prone to
cause problems

● HIP socket options
– HIP SA attributes

– QoS parameters

Resolver 1/2

● outputs endpoint identity descriptors, which can
be used directly in bind, connect, etc

● provides HI-to-IP mappings to the HIP module
● the HI-to-IP binding is secure
● detects the HIP capability of a host
– fall back to IP addresses possible

Resolver 2/2

DNS

Socket Layer

Transport

HIP

IPsec

Network

A pplication Resolver

a. <FQDN>

b. <FQDN>

e . <EID>

c. <HI, addre s s e s>

d. <HI, addre s se s >

f. <EID>

Benefits

● applications can utilize the HIP layer better
● clean interfaces
– PF_HIP socket family isolates HIP socket handler

from the PF_INET and PF_INET6 socket handlers

● EID guarantees forward compatibility

Drawbacks

● applications need to be changed
● referrals need to be queried via separate function

call
– obtain locators in addition to identifiers

● the endpoint descriptor adds another layer of
indirection
– but explicit identifiers can be returned from different

function calls

Evaluation

● resolver library implemented
● HIP socket handler was implemented on the

Linux kernel (2.4 and 2.6)
● application specified HIs implemented
● telnet v6 was succesfully ported to native API
● native HIP API for Java was implemented by

Jaakko Kangasharju

Conclusion

● Native API provides secure HI-to-IP bindings
● HIP socket options and application specified

identities are important elements of the API
● Is the generality of descriptors better than explicit

identifier handling?

Questions?

● Contact Miika Komu <miika@iki.fi>
● Source code available in
http://hipl.hiit.fi/hipl/
● See the full documentation in
http://hipl.hiit.fi/hipl/hip-native-api-snapshot-
20040708.pdf

