HIP Rendezvous Extensions

draft-eggert-hip-rvs-00.txt

Lars Eggert, Julien Laganier

HIP WG, 60th IETF San Diego, CA, USA

Thurday, August 5th, 2004

HIP Rendezvous Basics

- A HIP node might frequently change its IP address
- To maintain reachability, such node might either:

- Update DNS with its current IP address

Or

- Put its Rendezvous Server's IP address in DNS
- Update its RVS with its current IP address

HIP Rendezvous Requirements

- Needs two new HIP sub-protocols
 - A node updates its RVS with its current IP address
 - A RVS relays HIP packets to the responder

Rendezvous Extensions

- Header extensions
 - New HIP parameters
 - RVA_REQUEST, RVA_REPLY, FROM, TO, VIA_RVS
 - New HIP control fields
 - RVS_CAPABLE, CONCEAL_IP
 012345679012345
 CR
- Protocol extensions
 - Create a Rendezvous Association (RVA)
 - Establish a HIP Association (HA) through a RVS

RVA_{REQUEST / REPLY}

0 1 2 3
0123456789012345678901
type length
lifetime

RVA type #1 RVA type #2

RVA type #n padding

FROM / TO

0 1 2 3 0123456789012345678901 type length
Address

VIA RVS

01234567890123456789012345678901 length type Address Address

Establishing a Rendezvous Association

- A soft association between a RVS and its client
- Allows the RVS to relay HIP packets
 - Without maintaining full blown HA
- Created by adding two new parameters
 - RVA_REQUEST added on I2
 - RVA_REPLY added on R2
 - Then, most of the HA state can be deleted
 - Retain only client HIT, IP address, RVA lifetime and HIP integrity keys for RVA_HMAC keying

Establishing an HA through a RVS (1)

- New HIP parameters
 - Protect integrity between RVS and client (RVA_HMAC)
 - RVS preserve original source IP address (FROM)
 - Responder loose source-routes R1/R2 via RVSs (TO)
 - Signal the IP addresses of traversed RVSs (VIA_RVS)

Establishing a HA through a RVS (2) RVS relays only 11

- RVS rewrite I1's destination IP address
 - Egress filtering on RVS's network might prevent that
- So RVS may also rewrites I1's source IP address
 - FROM parameter preserves original source IP address
- FROM requires authentication
 - Spoofed RVS => Reflection / amplification attacks
- RVA_HMAC authenticates all packets flowing between RVS and responder

Establishing a HA through a RVS (3) RVS relays further HIP packets

- Responder MAY answer via the RVS with TO
 - TO contains the IP address included in FROM
- New CONCEAL_IP control field
 - Initiator and/or responder can conceal IP address(es)
 - RVS rewrites all source IP addresses
 - End-nodes disclose IP addresses after authentication
 - Using REA after getting an I2 or an R2
- RVS authenticates all packets relayed further I1
 - ECHO_REQUEST in I1 and possibly I2
 - ECHO REPLY in R1 and possibly R2

Next Steps

- Get (more;) feedback from the WG
- Implementation
 - HIPL team already has a preliminary one
- Adopt this I-D as a WG item?

Questions or comments...

ju@sun.com