
1

XML Network Management
Interface

(draft-weijing-netconf-interface-00.txt)

57th IETF

Weijing Chen
wchen@labs.sbc.com

Keith Allen
kallen@labs.sbc.com

2

Interface Components:

Protocol Operations: Message XML Schema
<perform-request/perform-response>,

<abort-request/abort-response>,
<notif/notif-confirm>

Capabilities
XML Schema

Operating and Data Model XML Schema:
Standard

CLI
Proprietary

Multiple
RFCs

One
RFC

Protocol Transport: Concrete Transport
WSDL

SOAP, JMS, BEEP, SSH

Protocol Transport: Abstract Transport
WDSLOne

RFC

Multiple
RFCs

3

Processing Flow:

XML
Schema
Validator

XPath
Parser

Protocol Message
XML Schema

Operating/Data Model
XML Schema

Device Infoset
XML Document

Application

w/
XPath

w/o
XPath

Protocol
Message

Error
Condition

Web-based
Application

XSL
ProcessorNote: In additional to structured

document (text), XML provides rich
set of tools to easy application and
presentation development.

XSL Template

4

XML Schema and Document:

Message.XSD<perform-request ...>
<example:running-config name="active">

<example:ospf name="process 1">
<example:area name="area 0">
<example:interface action="get-all">
<address/>
<adminStatus>"up"</adminStaus>

</example:interface>
</example:area>

</example:ospf>
</example:running-config>
</perform-request>

Capabilities.XSD
Or DataModel.XSD

Device.XML
<example:running-config name="active">

<example:ospf name="process 1">
<example:area name="area 0">
<example:interface action="get-all">
<address/>
<adminStatus>"up"</adminStaus>

</example:interface>
</example:area>

</example:ospf>
</example:running-config>

<example:running-config name="active">
<example:ospf name="process 1">

<example:area name="area 0">
<example:interface action="get-all">

<address/>
<adminStatus>"up"</adminStaus>

</example:interface>
</example:area>

</example:ospf>
</example:running-config>

DataModel.XSD DataModel.XSD

Device.XML
<example:running-config name="active">

<example:ospf name="process 1">
<example:area name="area 0">
<example:interface action="get-all">
<address/>
<adminStatus>"up"</adminStaus>

</example:interface>
</example:area>

</example:ospf>
</example:running-config>

<example:running-config name="active">
<example:ospf name="process 1">

<example:area name="area 0">
<example:interface action="get-all">

<address/>
<adminStatus>"up"</adminStaus>

</example:interface>
</example:area>

</example:ospf>
</example:running-config>

5

Capabilities Schema

• The capabilities of optional operation function are described in
capabilities XML schema. Very simple devices will support only
the minimum, while more complex devices will be expected to
support more.
– Transaction
– Notification
– Data model schema

• It allows peers to exchange the actually functionality
implemented in other end using regular protocol message, no
special message required.
– perform-request/perform-response

• It is really a standardized data model schema, the first try of
defining a standard data model.

6

Operating Model Schema

• Again, different devices will support various management
operating models. The proper operating model would be
described in a separate operating model schema or a separate
part of data model schema.
– Candidate, running, startup config
– Validate, copy-config
– Lock, unlock, commit, rollback
– Multiple channels
– Kill a session

• Section 4 of draft-weijing is a rough description of such
operating model schema.

• We feel that the management operations should be as simple and
flexible as possible, with the operating and data model being the
focus for defining the complexity of the device.
– Separating the operating model from the protocol message work

would also help to increase the WG focus.

7

Configuration vs. state data
• First, operation-as-attribute is to address the ambiguity problem

on overwrites that has been discussed in the list. The draft-
enns-01 also takes similar approach.

• Second, it is to address configuration vs. state data:
– The idea of being able to retrieve just the configurable parameters of a

system, so that they may be stored is very appealing.
– Two possible mechanisms to distinguish configuration data vs. state data:
– Place “configuration” and “state” in separate subtrees (separate schema or

separate parts of the schema). We're afraid it will become overly tedious to
define, use, and maintain separate element trees for state and config data
(e.g. two “interface” elements under two trees).

– Via “configuration (readwrite)” or “state (readonly)” attributes. For example,
“administrative state” of the interface would be defined with “readwrite”
attribute (operation-as-attribute) while “operational state” would be defined
with “readonly” attribute. Thus, a “get-readwrite” operation on an interface
element would include “administrative state” in its return, while a “get-
readonly” operation would include “operational state.” It's sort of a
rudimental filtering capability.

8

WSDL

• The use of WSDL in this draft implied that WSDL is generic
enough to describe the SSH and BEEP bindings as well as the
SOAP binding. But neither BEEP nor SSH are currently included
in the WSDL specification, and neither BEEP nor SSH is currently
supported by WSDL tools.

• With some efforts, we will be able to describe SSH and BEEP
bindings in WSDL specification.

• But the SSH and BEEP WSDL tools must be developed by tool
vendors.

	Interface Components:
	Processing Flow:
	XML Schema and Document:
	Capabilities Schema
	Operating Model Schema
	Configuration vs. state data
	WSDL

