Datagram Congestion Control
Protocol (DCCP) Spec Walkthrough

S B &

Eddie Kohler
International Computer Science Institute

IETF 57 DCCP Meeting
July 16, 2003

Problem & alternatives
Design choices & philosophy
Connection overview

Generic header & sequence
numbers

Packet types
Reliable feature negotiation
Acknowledgement options

CCIDs

Much
will
be

skipped

* Increasing use of UDP for long-lived flows
Streaming media, telephony, on-line games
Prefer timeliness over reliability
TCP can introduce arbitrary retransmission delay

* Growth of long-lived, non-congestion-controlled traffic poses a threat
to the health of the Internet

Different congestion control mechanisms
TCP-like: higher throughput, abrupt rate changes (games)
TFRC: steadier rate, lower throughput in changing env (telephony)

Middlebox traversal
Low per-packet byte overhead
Buffering control: don’t deliver old data

Accessto ECN

DoS avoidance

Alternatives

Congestion control above UDP?
Burdensome to app designer

Access to ECN problematic

Congestion control below UDP? (CM)
Application feedback for acknowledgements burdensome

Multiple CC mechanisms?

Unreliable SCTP?

Verbose header (multiple stream support)

Single CC mechanism

A new transport protocol?

Best option

Fundamental design choices

* In-band signalling

Alternative: assume a separate signalling channel

* Bidirectional communication

Alternative: one-way data flow

* Per-packet sequence numbers
Even pure acknowledgements occupy sequence number space

Alternatives: per-byte or per-data-packet

Design philosophy

* Focus: modern congestion control
Provide access to all features required or helpful

Multiple CC mechanisms, ECN, ECN Nonce, partial checksums, ...

« Ancillary features: consider inclusion if they cannot be layered on top
No support for multiple streams, partial reliability, FEC, ...

Mobility cannot be layered on top

« “General principle of robustness”

Be conservative in what you do, liberal in what you accept from
others (modulo security)

Reserve MUST for absolute interoperability requirements

Example: Reserved fields MUST be ignored, SHOULD be set to
zero

* This spec walkthrough refers to DCCP as it currently is defined, with
changes suggested by reviewers. Most, but not all, of those changes
are in the most recently available drafts.

DCCP-Request client — server: open connection
DCCP-Response server — client: response
DCCP-Data transmit data (no ack info)
DCCP-Ack transmit ack info (no data)

DCCP-DataAck DCCP-Data+ DCCP-DataAck
DCCP-CloseReq server — client: close connection

DCCP-Close close connection
DCCP-Reset destroy connection
DCCP-Move move |P address/port

* No simultaneous open

CLOSED nonexistent connection

LISTEN server in passive listening state
REQUEST client beginning handshake
RESPOND serverresponding to request

OPEN data transfer (TCP’s ESTABLISHED)
CLOSEREQ server asking client to close
CLOSING waiting for final Reset

TIME-WAIT 2MSL wait (at receiver of Reset)

* No half-closed states

10

A half-connection is data flowing in one direction, plus the
corresponding acknowledgements
A DCCP connection contains two half-connections

A —— B data plus B——= A acks

B —— A data plus A —— B acks

Can piggyback acks on data (DCCP-DataAck)

Conceptually separate

May use different congestion control mechanisms

Terminology

Given a half-connection, the HC-Sender is the endpoint sending
data, the HC-Receiver the endpoint sending acks

11

CCIDs & feature negotiation

* Congestion control mechanism represented by a CC ldentifier (CCID)
CCID 2=TCP-like, CCID3=TFRC

Defines how the HC-Sender limits data rates and how the
HC-Receiver sends congestion feedback

* Feature negotiation

A generic mechanism to reliably negotiate the values of shared
parameters

Example feature type: CCID

Each feature type corresponds to two independent features, one
per half-connection

12

Choosing a CCID

 CCID 2 (TCP-like): quickly get available B/W
Cost: sawtooth rate—halve rate on single congestion event
May be more appropriate for on-line games

More bandwidth means more precise location information; Ul cost
of whipsawing rates not so bad

« CCID 3(TFRC [RFC 3448]): respond gradually to congestion
Single congestion event does not halve rate
Cost: respond gradually to available B/W as well
May be more appropriate for telephony, streaming media
Ul cost of whipsawing rates catastrophic
* Neither appropriate for apps that vary packet size in response to
congestion
Wait for standardization (TFRC-PS, ...)

13

1.

DCCP A
CLOSED
App opens
REQUEST —— DCCP-Request —>
OPEN <— DCCP-Response <—
OPEN — DCCP-Ack —>

Initial feature negotiation (CC mechanism,...)
OPEN < DCCP-Ack <
Data transfer
OPEN <> DCCP-Data, -Ack, <—
-DataAck
App closes
CLOSING —— DCCP-Close —>
TIME-WAIT <— DCCP-Reset <—

14

DCCP B
LISTEN

RESPOND
RESPOND
OPEN
OPEN
OPEN

CLOSED
CLOSED

Sample connection: server close

8.

<

<—

i
V

DCCP A
CLOSED
App opens
REQUEST — DCCP-Request
OPEN <— DCCP-Response
OPEN — DCCP-Ack
Initial feature negotiation (CC mechanism,...)
OPEN < DCCP-Ack
Data transfer
OPEN <— DCCP-Data, -Ack,
-DataAck
CLOSING <— DCCP-CloseReq
CLOSING —— DCCP-Close
TIME-WAIT <— DCCP-Reset

15

<

DCCPB
LISTEN

RESPOND
RESPOND
OPEN

OPEN
OPEN
App closes
CLOSEREQ

CLOSED
CLOSED

0 1 2 3

01234567890123456789012345678901
—t—totototot ot ottt ot ototototot ot ottt ottt t—t -ttt -+-+

Source Port | Dest Port |
A M St S S A ot

+
|
+
| Type | CCval | Sequence Number |
S S S S S
|
+
|
+

Data Offset | # NDP | Cslen | Checksum |
R S S S R ST S SRS S S S S S A S

Reserved | Acknowledgement Number |
-+

» Different packets have different headers
In all cases, header followed by options

Sometimes, options followed by payload

16

0 1 2 3

01234567890123456789012345678901
Fot—totot—totot—t-t-t-t-+

| Source Port | Dest Port |
totetetotototototototototototototatototototototatototatototatatot
| Type | CCval | Sequence Number |
AP S S bt S
| Data Offset | # NDP | Cslen | Checksum |
totetetototototototototototototatotototototototatototatototatatot
| Reserved | Acknowledgement Number |

tototototototototot—totototot—tototot—t—ttotot—t—totot-t—t-t-t-+

e Source Port and Dest Portasin TCP, UDP

« Type identifies packet type

Not flags word; 7 types left for expansion

 Data Offset: header length, including options, in 32-bit words
Up to 1008 bytes of options

17

0 1 2 3

01234567890123456789012345678901
—t—totototot ot ottt ot ototototot ot ottt ottt t—t -ttt -+-+

Source Port | Dest Port |
A M St S S A ot

+
|
+
| Type | CCval | Sequence Number |
TS S S TS TS TSN S AT S SSRGS NS
|
+
|
+

Data Offset | # NDP | Cslen | Checksum |
S S S R ST S SRS RS RS S S S S A

Reserved | Acknowledgement Number |
-+

» 4-bit space reserved for use by HC-Sender CCID
Can remove the need for options, reducing byte overhead

Example: TFRC’s Window Counter option

18

0 1 2 3

01234567890123456789012345678901
—t—totototot ot ottt ot ototototot ot ottt ottt t—t -ttt -+-+

Source Port | Dest Port |
At N S S S S o

+
|
+
| Type | CCval | Sequence Number |
S SRR S S S S S S O T SR S S S R S S S S S S S S S S
|
+
|
+

Data Offset | # NDP | Cslen | Checksum |
A AR S S S S o

Reserved | Acknowledgement Number |
S U O O SO S

e Checksum: Internet checksum of the DCCP header, options, a
pseudoheader, plus some amount of the payload
* Cslen determines how much payload is covered by Checksum
0: no payload covered
15: all payload covered

1-14: that many initial 32-bit words of payload covered

19

Partial checksums

Inspired by UDP-Lite

Motivation: Some links frequently deliver corrupt data
Link-layer retransmissions can greatly delay delivery

Our target applications can deal with loss, many can also deal with
corruption

Delivering corrupt data may improve user’s perception of service
quality

Corruption is not always an indication of congestion

Congestion response to corruption too harsh on links with
constant nonminimal corruption rate

Want to differentiate corruption loss and congestion loss, whether
or not app can handle corrupt data

Partial checksums not useful with IPsec AH

20

Payload Checksum option

» Useful particularly with partial checksums

Partial header checksum cannot detect corruption in payload
Payload checksum option detects payload corruption only

e e L Foemme e +
100101101]00000100| Checksum |
S BT e T e +

Type=45 Length=4

* Checksumis Internet checksum of payload

If checksum broken, discard payload (or give to application with
explicit corruption notification)

Packet still “received”! (Data Dropped, later)

21

0 1 2 3

01234567890123456789012345678901
S S M T S O U O T S T e

Source Port | Dest Port |
P S S S R ST S SRS S S S S S A A

+
|
+
| Type | CCval | Sequence Number |
T ST TS S Yt ST S S YT S S Y ST S S ST S S S S S S S
|
+
|
+

Data Offset | # NDP | Cslen | Checksum |
St S S S

Reserved | Acknowledgement Number |
-+

* Number of non-data packets sent on the connection mod 16

* Intended mostly for HC-Receiver’s application
Was any of my payload lost?

Derive application sequence number from DCCP Sequence
Number and # NDP

 Ambiguous after > 16 consecutive lost packets

22

Sequence numbers

0 1 2 3

01234567890123456789012345678901
e S M o At S S U S g S e

| Source Port | Dest Port |
tototototatatatototatototototototototototatotatatatatatatatt-t-+
| Type | CCval | Sequence Number |
S A At e
| Data Offset | # NDP | Cslen | Checksum |
tototototototatatotoatotototototototototototototatatatatatattt-+
| Reserved | Acknowledgement Number |

totototototototototototototot—tototot—t—ttotot—t—tototot—t-t-t+-+

 Sequence Number
Increases by one on every packet sent, including pure acks
Wrapping an issue

 Acknowledgement Number
Acknowledges GSR, greatest (mod 224) valid segno received
Not present on DCCP-Request and DCCP-Data packets
Not a cumulative ack, not a promise of data delivery

23

Sequence number validity

 DCCP checks packet’'s Sequence and Acknowledgement Numbers for
validity

Defense against delivery of old segments
Defense against half-open connections

Defense against attack

* General approach: Loss Window

Sequence numbers within Loss Window are valid

« Compare TCP’s receive window

No cumulative ack, so packets older than GSR may be OK
(reordering)

Not a flow control mechanism

24

* Problem: sequence numbers advance on every packet

* A long enough burst of loss could cause the endpoints’ sequence
numbers to get out of sync relative to any window

Even if only acks are sent

* Need a mechanism to get back into sync

Identification option

Hold on to your hats

25

Loss window width

« HC-Sender decides on a loss window width Wg for sequence numbers
Should reflect how many packets the sender expects to be in flight
Suggestion: 3—4x the maximum number of packets sent per RTT
HC-Sender informs HC-Receiver of W through feature negotiation

Too small ——= often out of sync; too large —— attackable
Defaults to 1000

* HC-Receiver decides on a loss window width W, for ack numbers

Equals the loss window width it chose in its role as HC-Sender on
the other half-connection

26

Loss window definitions

« CLOSED and LISTEN states

All packets are sequence-valid

* Other states
Sequence number mustliein [GSR — |Ws/34 1], GSR+ [2W/3]]
Acknowledgement number must lie in [GSS — W4 + 1, GSS]

invalid valid Sequence Numbers invalid
GSR
|
|1 T
GSR — |Ws/3| | GSR — |Ws/3]| + 1 GSR + [2Ws/3] | GSR + [2Ws/3] + 1
invalid valid Acknowledgement Numbers invalid
|1 TT

GSS — W, | GSS — Wy +1 GSS | GSS + 1

27

* (1) The Acknowledgement Number is in the relevant window, AND
EITHER:

* (2a) The Sequence Number is in the relevant window, OR
* (2b) The packet has a correct Identification or Challenge option, OR
* (2c) The packetis a DCCP-Reset and its Sequence Number is zero.

* Explanation
(1) prevents replay attacks
(2b) is necessary for getting back in sync

(2c) is necessary for cleaning up half-open connections

28

If a packet is sequence-invalid

« Send a DCCP-Ack
Acknowledge the packet’'s Sequence Number (not GSR!)
Include a Challenge option

Exception: send nothing if the packet was a Reset

* DoS protection

SHOULD ignore packets with bad Sequence Numbers if
connection active (valid packet received within ~ 1s or 1 RTT)

MAY ignore packets with bad Sequence Numbers for some time
after receiving an incorrect ldentification option (checking
|ldentification may be CPU intensive)

MAY rate limit DCCP-Ack generation

29

* Endpoints exchange random Connection Nonces at startup

Or exchange them over a secure channel

* |dentification option:

S S S S S S oo .. m—tmm—mmm - +
100101010|00010010| Identification Data |
S S S S S oo .. m—tmmmmmm - +
Type=42 Len=18 \ 16 bytes /

MD5 sum of packet’s Sequence and Acknowledgement Numbers,
this endpoint’s Nonce, and the other endpoint’'s Nonce

Sequence and Acknowledgement Numbers prevent replay

Nonces prevent spoofing

« Challenge option is like Identification, but receiver should respond
with ldentification

30

0.

DCCP A

GSS =10,
GSR=5

GSS =11

GSS =30
GSS =31
GSR=6

GSS =32

Data(Seq = 11)

Data(Seq = 30)
Data(Seq = 31)

Ack(Seq =6,
Ack =31, Challenge)

Ack(Seq = 32,
Ack = 6, ldentification)

31

XXX

XXX

DCCP B

GSS =5,
GSR =10

299
GSS =6,
GSR =10
I
GSR = 32

0.

2.

4,

5.

DCCP A

OPEN
GSS =1

Crash!l!

CLOSED

REQUEST
3

REQUEST

REQUEST

<—

packets

Request(Seq = 40)

Ack(Seq = 11,
Ack =40, Challenge)

Reset(Seq =0,
Ack =11)

Request(Seq =41)

32

<—

DCCP B

OPEN
GSR =1,
GSS =10

OPEN
299

GSS =11
Il
LISTEN
RESPOND

rcv Close
or backoff]
[send Res:

[cancel tinper]

rcv any but Request, Reset, and Ack/
DataAck with valid Init Cookie

rcv Request

mut Reset
end Reset]

CLOSED

[send Reset]
/ listens

app denfes
[send Reget]

rcv Request

app acce|

using Inif

[send Response with
Init Cookie]

LISTEN

rcv Request

app accepts
[send Response]
[set timer]

[new socket]

RESPOND

rcv R¢set
[reset[timer]

app close
[send CloseReq]
[set timer]

fails
t]

| cLosErEQ
timer expires \
[send CloseReq] ~ Fev Res
[backoff timer] [reset tim

[cancel timgr]

[send Request]
rcv (lose [set timer]
[send Reset]

[cancg] timer]

timer expires

REQUEST

send Request]
[backoff timer]

onapp close

or Rackoff fails
[sen{ Reset unless
Reselreceived]
[reset §mer]

rev (lose
OPEN [send Reset]
[cangel timer]
p close (either)
tinyer expires
rcv Repet sé¢nd Close]
[set tirper] backoff timer]
CLOSING
QV CloseReq
end Close]
eset [restart timer]
r backoff fails
[reset timer]
cv any but Reset
TIME-WAIT = Dend Reset]

timer expires

33

* Respond to sequence-valid packets and timeouts as follows:

Data/Ack/
State Request Resp. Move C-Req Close Reset [Timeout]
CLOSED Rst Rst Rst Rst Rst -
LISTEN RESP. Rst Rst(1) Rst Rst -
REQUEST Rst OPEN Rst Rst Rst TW REQ
RESPOND -/RESP. Rst Rst/OPEN Rst C-ED TW C-ED
Server OPEN -/Rst Rst OPEN Rst C-ED TW
Client OPEN Rst -/Rst OPEN C-ING C-ED TW
CLOSEREQ -/Rst Rst C-REQ Rst C-ED TW C-REQ
CLOSING Rst -/[Rst C-ING C-ING C-ED TW C-ING
TIME-WAIT Rst Rst Rst Rst Rst - C-ED

* Packets sent on state transitions: <+ App events:

REQUEST Request Passive open LISTEN
RESPOND Response Active open REQUEST
OPEN Ack/DataAck Close C-REQ/CLOSING

CLOSEREQ CloseReq
CLOSING Close
CLOSED Reset
TIME-WAIT -
34

0 1 2 3

01234567890123456789012345678901
totototototot—totototototottotototot ottt otototott -t -ttt -t-+
/ Generic DCCP Header (12 bytes) /
/ with Type=0 (DCCP-Request) /
Fotototototototototototototot ottt ottt ottt ottt ottt —t—+
| |
+ +
| |
+ +
| |

|
+

Service Name
ST SN SOt ST St NS LA ST O YN SN SOt SOt SOt St RS NS NS LR SN YN YT SOOY SOt SOt St NS N N Y Y S

Options / [padding]
S S S S S Y S S Y S Y S S S SN Y SRS ST S S S S SN S S S S S S S

data
|

tototototototototototototototototototttototott -ttt —t-t-t-

e Service Name
Specifies an app-level service CHTTP’ = 1213486160)
Ports also come with Service Names; mismatch causes Reset
|ANA registry: first-come, first-serve

e Contains data
Server may ignore

35

0 1 2 3

01234567890123456789012345678901
Fotototototototototodtotototototototototototototototot oottt ato
/ Generic DCCP Header (12 bytes)

/ with Type=1 (DCCP-Response)

St S S ST St St O S S Syt St Ot S S S ST SUUOE St S S S S SR Nt S N
|
+
|
+
|
|
+

Reserved | Acknowledgement Number
mttob ot ot ottt ottt

Options / [padding]
-t-t-t+-t-t-F-t+-t-t-t-t-t-t-t-t-t-t-t-t-Ft-t-t-t-t-t-t-t-t-t-+-+-

data

-+-

« Send in response to Requests
Including retransmitted Requests

lgnore data on retransmitted Requests

* For DoS protection, use Init Cookie

36

0 1 2 3

01234567890123456789012345678901
tototototatotatatatotatototototototototatatatatatatatatatatt-t-+
/ Generic DCCP Header (12 bytes) /
/ with Type=2 (DCCP-Data), 3 (DCCP-Ack), or 4 (DCCP-DataAck) /
Fotototototototototototototototot ot ottt ottt ottt ottt —t—+

|
+
|
+
|
|
+

| Reserved | Acknowledgement Number
A St S S

| Options / [padding]
tototototototototototatotototototototototototatatatatatatatatto
| data

tot—t—ttt-t-t-t-+-

« DCCP-Data = black + green
« DCCP-Ack = black + blue
« DCCP-DataAck = black + green + blue

DCCP-Data: minimal overhead in common (unidirectional) case

DCCP-Ack: separate type enables 0-length datagrams

37

0 1 2 3
01234567890123456789012345678901

S S S S S St St S TSSOt S ST SRt S ST SOt S ST St S S SUUOt NS S ST NS S S S
Generic DCCP Header (12 bytes) /

with Type=5 (DCCP-Close) or 6 (DCCP-CloseReq) /

S S ST S S ST S TSt N S SRt N ST SOE S ST SES SN S SEE WY S ST Y S ST T &
Reserved | Acknowledgement Number |
S S S S S S St St S TSt S ST SRt S ST SOt S ST SRt S S SEOt NS S ST NS S S RS
Options / [padding] |

-+

38

0 1 2 3

01234567890123456789012345678901
tototatetatatatatototatotatatatatotatatatatatatatatatatatatatt-t
Generic DCCP Header (12 bytes) /
with Type=7 (DCCP-Reset) /
S S S S S S
Acknowledgement Number |
S S S S S S SR S S S A ST S S S
Data 1 | Data 2 | Data 3 |
S S S S S SR S S S A ST S S S
Options / [padding] |
S S S S S S S S S ST S S S S S

|
+
|
+
|
+
|
+
1
+
1
+
|
v
+— +— +

» Reason specifies why the connection was reset

The Data bytes give more detail

 Example Reasons: Closed (normal close), Aborted, Fruitless
Negotiation (a feature negotiation took too long), etc.

39

Mobility

« Cannot be layered on top
Part of our charter
* Basic mechanism: endpoint moves, sends DCCP-Move from new
address
DCCP-Move contains old address so flow can be identified
Also security mechanisms (ldentification)
Stationary endpoint acknowledges with DCCP-[Data]Ack

* Authors vote “40.1” on mobility
But cleanly separable from rest of protocol

Doesn’t add complexity outside of Move itself

40

0 1

2

3

01234567890123456789012345678901
S S M T S O U O T S T e

DCCP Header (12 bytes)
Type=8 (DCCP-Move)

-+-

Acknowledgement

Number

-+-

01d Port

-+-

01d Address

/

[padding]

-+-

Options, including Identification
S O S O S S U S S S ST T St S S

+

/ Generic
/ with
+

| Reserved |

+

| 01d Address Family
+

/

/

+

|

+

|

data

/

[padding]

+-

 01d Address Family, Address, Port = old address

What about NATs?!

41

/
/

+-+

+-+

y
/
|

+-+

+-+

+-

DCCP-Move security

 Mandatory Identification prevents hijacking

Unless attacker snooped on Nonce exchange

* Ignore invalid Moves

Invalid sequence numbers, Identification, or connection not
mobility capable

Do not send Reset or Ack—would leak information!

e DoS resistance

MAY ignore all Moves for some time after receiving an invalid Move

42

* One-byte options: Type=0...31

* Multibyte options: Type =32...255

Fommmmme e Fommmm e tommmmmm e tommmmmm e tommm e

|Opt Type| Length | Data ...

Fem— - Fee - e —_——— - e —_——— Fem———
Length > 2

43

Fem - Fee - e ——— Fem——— Fem———
|00100000| Length |Opt Type| Opt Data ...

* Informs receiver that one of its options was not understood

44

CCID-specific options

 CCIDs will need to allocate options

New acknowledgement formats, ...
A shame to deal with IANA for this

* Options 128 ...255 are CCID-specific
128 ...191: option sender is HC-Sender
192 ...255: option sender is HC-Receiver

45

Feature negotiation

* The endpoints must agree on several of the connection’s parameters
The CCIDs, CCID-specific settings, Loss Window, Connection
Nonces,...

* This agreement must be reliable

A shame to reinvent reliability for each feature

* Invent a general framework for features
= Things that will be reliably negotiated
Identified by one-byte feature numbers

Use three options to negotiate feature values

46

* Change: “Please use this value for a feature”

fomm e bommmem - S S S b
|00100001| Length |Feature#| Value or Values ...

fommmem - bommmem - S S S b
Type=33

* Prefer: "l would rather use one of these values”

Fommmmme e Fommmm e tommmmmm e tommmmmm e tommm e tommmm e
|00100010| Length |Feature#| Value or Values ...

Fommmmmm e Fommmm e tommm e tommmmm o tommm e tommmm e
Type=34

* Confirm: “OK, | am using this value”

Femm - Femm - e e e ——- e ——-
|00100011| Length |Feature#| Value ...

Femm - Femm - e e e ———- e ——-
Type=35

47

Retransmit Change until you get a response

Response = Prefer, Confirm, or Ignored

Retransmit Prefer until you get a response

Response = Change, or Ignored

Piggyback feature negotiation on existing traffic, or use additional
Acks as allowed by CCID

State diagrams in draft
Need more specification of retransmission algorithm

Only for non-reordered packets

48

DCCP A &
Assumed Value

KNOWN 4

CHANGING
KNOWN

-~

N
!
x

CHANGING

CHANGING

CHANGING
KNOWN

(I

CHANGING 4

CHANGING 4
KNOWN 2

1T
T

J

>
>

X

(X
n

(Initial State)

Change(CC, 2)
Confirm(CC, 2)

Change(CC, 2)
Prefer(CC, 1, 3)
Change(CC, 3)
Confirm(CC, 3)

Change(CC, 2)
Confirm(CC, 2)
Change(CC, 2)
Confirm(CC, 2)

49

(i
\/‘\/ ‘\/

(AR

(AR
T

DCCP B &
Actual Value

KNOWN

KNOWN
KNOWN

CONFIRMING
CONFIRMING
KNOWN
KNOWN

KNOWN
KNOWN
KNOWN
KNOWN

CCID-specific features

e Features 128 ...255 are reserved for CCIDs
128 ...191: feature located at HC-Sender
192 ...255: feature located at HC-Receiver

* Examples

Say A —= B using CCID 2,B —— A using CCID 3

A —— Change(128, Foo) — B refersto CCID 3's feature 128 @ B
A —— Change(192, Foo) — B refersto CCID 2's feature 192 @ B
A —— Prefer(128, Foo) ——= B refers to CCID 2's feature 128 @ A
A —— Prefer(192, Foo) —= B refers to CCID 3's feature 192 @ A
A ——= Confirm(128, Foo) —= B refersto CCID 2's feature 128 @ A
A — Confirm(192, Foo) — B refersto CCID 3's feature 192 @ A

50

* Init Cookie
Like a large SYN Cookie: DoS protection
Server sends on Response
Packages up connection state
Client must echo on its Ack

Server can forget connection until the Ack arrives

Femm - Femme e e e ——- e ——-
|00100100| Length | Init Cookie Value

Femm - Femme e e e ———- e ——-
Type=36

 Timestamp, Elapsed Time, Timestamp Echo
See draft

51

« Each congestion control mechanism corresponds toa CCID

 Each half-connection has a CC feature: that half-connection’'s CCID

Feature number 1

« Assigned CCIDs:
0 Reserved
1 Unspecified Sender-Based Congestion Control
2 TCP-like Congestion Control
3 TFRC Congestion Control

52

Negotiated at connection startup

Renegotiation may not work

Change(CC), Prefer(CC) options take a prioritized list

“Change(CC 2, 3)": | would rather you use CCID 2, but CCID 3 is
also acceptable.

2 is default

If not appropriate, don’t send data, negotiate first thing

1, 2 suggested for interoperability

53

* CCID says when its HC-Sender can send data

Like a function ccid-allows-data: Packet — bool

« CCIDs will refer to IETF-approved congestion control mechanisms
Currently all TCP-friendly

54

CCID1

* Forward compatibility for sender-based mechanisms

Server can implement new CC mechanism without waiting for
ubiquitous deployment

Not intended for production deployment of proprietary or
experimental protocols; production uses MUST have been
approved by the IETF

Proposing CCID 1 only (with no backup) is outlawed

 Depends on receiver being abe to provide the relevant feedback
Probably Ack Vector

55

Acknowledgement Number is GSR
Cumulative ack meaningless in an unreliable protocol

Additional ack information required to detect losses
Different CCIDs require different acknowledgement formats

Generic ack option: Ack Vector

Run-length-encoded vector: exactly which packets have been
received

TFRC ack options: Receive Rate, Loss Event Rate, Loss Intervals

Acknowledgements must be reliable

Retransmit until received

56

* Acknowledgement information represents state
Consider Ack Vector

 Must occasionally free the state

...once the sender has received the information

* Thus, sender must ack the receiver’s acks
Data flowing on both HCs: no problem

Data flowing on only one HC: ... ?

57

Unidirectional connections and quiescence

* Must free ack information even if data flowing on only one HC
Complex ack data, such as Ack Vector, probably not required

Just send an Acknowledgement Number every now and then

* Must detect quiescence
When an HC falls silent
CCID-specific, but usually no data sent within max(0.2s,2 RTT)

 When one CCID is quiescent, the other CCID says how to handle
acks-of-acks

CCID 2: send at least one Acknowledgement Number per cwnd
CCID 3: if Ack Vector, same as CCID 2; if not, do nothing

58

Acknowledgement congestion control

Acks take up sequence number space
So we can detect their loss

And perform congestion control

CCID says when its HC-Receiver can send acks
Another function ccid-allows-ack: Packet — bool

TCP-friendliness not necessary
Intended to be “better than TCP's acks”

Ack Ratio feature
Send one ack per R data packets
R defaults to 2
Delayed Acks OK
Some CCIDs may do ack CC in another way

59

* Run-length encoded history of data packets received
Steroidal SACK

S e tommm - S S S S Codes (SS)

|1001001??| Length |SSLLLLLL|SSLLLLLL|SSLLLLLL| ... 0 received non-marked
LCE T LT LCE LT LCEEEE T LCEEEE T LCEEE R LCEEE R R 1 received ECN marked
Type=37/38 \ Vector ... 3 not yet received

Start at Acknowledgement Number, move backwards

Up to 16192 data packets acknowledged per option
* Includes ECN Nonce Echo (Type 37 = Nonce 0, 38 = Nonce 1)

Nonce Echo = XOR of all Nonces on Code 0 packets in Vector

Probabilistic verification that receiver is reporting ECN CE
correctly

« Want API to provide Ack Vector information to app

60

Ack Vector code meaning

 CodesOand 1
MUST have been processed by the receiving DCCP
MUST have been header-checksum-valid and sequence-valid
MUST have had their options processed
Data might not have been processed; it may even have been
dropped

« Code 3
MUST NOT have been processed by the receiving DCCP
MUST NOT have had their options processed
Acknowledgement Number MUST NOT correspond to a Code 3
packet

 Summary: “Acknowledgement means header acknowledgement”

61

* Two Ack Vectors might acknowledge a packet differently

Packet arrives between Acks, Acks reordered, only one copy of a
duplicated segment gets ECN marked, ...

 Combine codes according to these tables:

HC-Receiver (Ack generation) HC-Sender (Ack processing)
Received Pkt Received Code
0 1 3 0 1 3

Od 0 0 01 0 Od 0 0 01 0
Ack 1 0/1 1 1 Ack 1 1 1 1
Code 3 O 1 3 Code 3 O 1 3

62

Flow control

« What if the receiver is slower than the available bandwidth?

Explicit receive window, like TCP’s flow control, inappropriate for
unreliable traffic

Besides, the “correct” application response to CPU overload might
be to send more traffic! (Less compression = less CPU)
 DCCP has three flow control mechanisms
Slow Receiver: Don’t increase your rate
Receive buffer drops with Data Dropped: Reduce your rate

False drop/ECN mark reports: Reduce your rate a lot

63

Slow Receiver option

« The HC-Receiver is having trouble keeping up

HC-Sender CC semantics: Do not increase your rate (cwnd,
whatever) for about 1 RTT after seeing Slow Receiver

64

Ack Vector says whether packets’ headers were processed

Data Dropped option does the equivalent for payloads
Precise feedback on which packets were dropped and why

Useful for application
Report receive buffer drops with Data Dropped

Use the same mechanism to report other payload drops

Protocol constraints (for instance, no payloads accepted on
Requests)

Application no longer listening (half-closed socket)

Corruption drop (Payload Checksum failed)

Enables richer responses to non-congestion losses

65

tom———— - e B tom————- o —_———— tom————

|00100111| Length | Block | Block | Block

e ———- e ———- e ———- e Femm - Femm
Type=39 Vector
01234567 01234567 Drop Codes

tototototot—t-t-+

|0] Run Length |
totototot ottt

Normal Block

or

tototototot-t-t-+

|1|Dr St|Run Len|
S S

Drop Block

66

0 dropped, protocol constraints
1 dropped, app not listening

2 dropped, receive buffer

3 dropped, corrupt

/ delivered, corrupt

Data Dropped semantics

« CC mechanisms may respond Data Dropped
Each Data Dropped packet SHOULD be treated as ECN marked
unless otherwise specified

* Particular codes

0 (protocol constraints): Don’t send data until protocol constraint
lifted

1 (app not listening): Send no more data ever
2 (receive buffer drop): Reduce cwnd by 1 (TFRC TBD)

67

ECN

* Protocol ECN capable
All acknowledgement formats support ECN Nonce Echo
Requirement for verifiable Nonce Echo changed several option
designs (for instance, Data Dropped)

« ECN capability not required
Negotiate ECN Capable feature to 0
For instance, HC-Sender doesn’t want to verify Nonce Echo ——>
turn off ECN

* Responding to nonce errors

One kind of aggression: misbehaving receiver wants more than it
deserves

Consistent nonce errors can lead to connection reset (Aggression
Penalty)

68

Protocol supports PMTU discovery
Need to track PMTUD

CCID may also set its own MTU
Connection MTU = min(PMTU, CCID MTU)

User allowed to turn off PMTU discovery (leave DF off)
User cannot avoid CCID MTU

69

Middlebox considerations

» Service Name particularly useful

* Modifying Sequence and Acknowledgement Numbers painful
Must modify Ack Vector—can’t just bump a cumulative ack
CCID-specific options like TFRC's Loss Intervals
Identification includes sequence numbers in cryptographic hash

Must respond to congestion on introduced packets or risk
Aggression Penalty

But it's a datagram protocol, so many data manipulations easier
thanin TCP

70

DCCP

 TCP-like Congestion Control
Good TCP-friendly available B/W utilization
Abrupt AIMD rate changes

* Congestion control algorithms based on SACK TCP
cwnd, ssthresh, pipe
Round-trip time estimation

Acknowledgements use Ack Vector

» Ack congestion control

Very roughly TCP-friendly manipulations of Ack Ratio

72

CCID 2 congestion control overview: Variables

* cwnd = congestion window

Maximum number of data packets allowed in the network

» ssthresh = slow-start threshold
Controls adjustments to cwnd
* pipe
Sender’s estimate of number of outstanding data packets

MAY send data packets iff pipe < cwnd

Increate pipe by 1 on every newly sent data packet

73

HC-Sender reduces pipe as it infers data packets have left the network
Reduce pipe by 1 for each data packet newly acked as A-V Code 0 or 1

Reduce pipe by 1 for each data packet inferred as lost due to
“dupacks”

P inferred lost when at least NUMDUPACK packets after P have
been acked as A-V Code 0 or 1

The NUMDUPACK packets need not be data packets specifically

“Retransmit’ timeouts, in case a whole window lost
Estimate RTT ala TCP
Set RTO ala TCP (but minimum RTO not necessary)
When RTO occurs, set pipeto 0

74

cwnd manipulation

* Congestion events halve cwnd, set ssthresh = new cwnd
One or more packets lost or marked from a window of data
Marked = A-V Code 1; lost = inferred through NUMDUPACK

* RTOs set ssthresh = cwnd /2, then set cwnd =1

* Congestion window increases

When cwnd < ssthresh, increase cwnd by 1 for every newly
acknowledged data packet, up to some max)

Otherwise, increase by 1 for every window of data acknowledged
without lost or marked packets

75

« Send about one ack per R data packets received
R is the Ack Ratio

* Reasons to send more acks
Delayed ack timerala TCP
Ack piggybacking doesn’t count towards R

* Acks can be sent with ECN Capable Transport since they are
congestion controlled

76

* Rough guidelines
Just try to be somewhat better than TCP

* For each cwnd of data with at least one lost or marked ack, double R
(Ack Ratio)

« For each cwnd/(R? — R) cwnds of data with no lost or marked acks,
decrease R by one

Derivation in draft

77

« HC-Receiver detects that HC-Sender is quiescent when max(0.2 sec,
2 RTT) have passed without receiving data

* When other CCID is quiescent, HC-Sender sends about one ack per
cwnd

78

« Congestion control in terms of packets, not bytes
No consideration of different packet lengths
CCID 2 will specify an MTU of 1500

* Congestion window increases in slow start
In line with ABC

 Ack Ratio

79

CCID 2

CCID 3

« TFRC Congestion Control
TCP-friendly, but avoids abrupt rate changes
Problems utilizing available bandwidth in rapidly changing
environments
 TFRC congestion control algorithms
Equation-based congestion control
Receiver calculates loss event rate, sender adjusts accordingly

Acknowledgements need not use Ack Vector

81

« HC-Sender sends data packets at most at the rate specified by the
TCP throughput equation [PFTK98]

Rate-based congestion control

Data packets include Window Counter (helps receiver distinguish
packets sent in different RTTs); sentin CCval

« HC-Sender updates rate based on the loss event rate specified on
acknowledgement packets

Or it can calculate that rate itself from Ack Vector or Loss Intervals

 Draft refersto TFRC

Perhaps too much

82

Loss events

* A Loss Interval:
Begins with a lost or marked packet

Continues for one round-trip time’s worth of packets (lost, marked,
or not)

Concludes with an arbitrary-length tail of non-lost, non-marked
packets

* The Loss Event Rate:

The inverse of a weighted average of the last 8 Loss Interval lengths

83

Acknowledgements

* Elapsed Time and/or Timestamp Echo options
Aid RTT estimation
Particularly important since feedback packets sent once per RTT,
so Elapsed Time may be large

* Receive Rate option

How fast has the receiver been receiving data?

* One or more options describing the loss event rate
Loss Event Rate: lists rate explicitly
Loss Intervals: the beginning and end of each loss interval

Ack Vector: sender can calculate loss intervals

84

te—————— t-—————— te—————— t-—————— t-—————— t-——————- +

111000000 00000110 | Loss Event Rate
S S Fommm e Fomm o Fomm o Fomm oo +

Type=192 Len=6
 Receiver’s calculation of loss event rate

 But not verifiable

85

Loss Interval

S S S S S S S S S
|11000011| Length | Left Edge |E| Offset |

SN SN Py S —— SN SN
Type=195 3 bytes 3 bytes

* Lists the last 8 loss interval lengths

Left Edge = first sequence number in the loss interval’s loss- and
mark-free tail

Offset = length of loss- and mark-free tail

E =ECN Nonce Echo of loss- and mark-free tail
e Sender can calculate Loss Rate

« Sender can verify ECN Nonce Echo

86

