
Multicast Source Filter API
draft-ietf-magma-msf-api-*.txt

Dave Thaler
dthaler@microsoft.com

Recap of API

• Spec defines socket API to enable (but not depend
upon) SSM, IGMPv3, MLDv2

• Basic (delta-based) API:
– Adds IPv4-specific socket options to make it easy for existing

applications to use (primary issue is interface identification)
• ASM: IP_{BLOCK,UNBLOCK}_SOURCE
• SSM: IP_{ADD,DROP}_SOURCE_MEMBERSHIP

– Defines protocol-independent options which are recommended
for new apps

• ASM: MCAST_{JOIN,LEAVE}_GROUP,
MCAST_{BLOCK,UNBLOCK}_SOURCE

• SSM: MCAST_{JOIN,LEAVE}_SOURCE_GROUP
– No open issues on this part of the draft

Advanced (full-state) API

• Get and set filter mode and source list
• Get requires both input and output buffers
• Drafts 00-03 defined ioctl’s for advanced

(full-state) API
– On many platforms getsockopt cannot take an

input buffer
• Open Issue: Some recent suggestions to

use getsockopt or even new functions
instead of ioctl

Austin Group (POSIX) discussion

• General POSIX API principles:
– "lack of type-safety in interfaces is a bad thing which

should be avoided when possible“
– "avoid namespace pollution
– "standardize existing practice"

• General recommendation was that neither ioctl
nor getsockopt was appropriate
– Type-safety
– Avoid getsockopt issues
– A new function could easily wrap an ioctl or

getsockopt if needed on some platform

Tentative Resolution for draft -04

• Move old ioctl api to Appendix as historical
information

• Define new type-safe functions (described later)
• Add comment on implementation freedom:

“A new function can be written as a wrapper over an ioctl,
getsockopt, or setsockopt call, if necessary. Hence, it
provides more freedom as to how the functionality is
implemented in an operating system.

For example, a new function might be implemented as an inline
function in an include file, or a function exported from a user-
mode library which internally uses some mechanism to
exchange information with the kernel, or be implemented
directly in the kernel.”

Open Issue

• From requirements list in section 2:
“Applications should be able to detect when the new

source filter APIs are unavailable (e.g., calls fail with
the ENOTSUPP error) and react gracefully (e.g.,
revert to old non-source-filter API or display a
meaningful error message to the user).”

• Is this still a requirement?
• Can this be met on all platforms?
• Should we limit the degree of implementation

freedom?

Proposed IPv4-specific functions

int setipv4sourcefilter(s, struct in_addr interface, struct
in_addr group, uint32_t fmode, uint32_t numsrc,
struct in_addr *slist)

int getipv4sourcefilter(s, struct in_addr interface, struct
in_addr group, uint32_t *fmode, uint32_t *numsrc,
struct in_addr *slist)

• Semantics unchanged from previous ioctls

Proposed generic functions
int setsourcefilter(s, uint32_t interface, struct sockaddr

*group, uint32_t fmode, uint_t numsrc, struct
sockaddr_storage *slist)

int getsourcefilter(s, uint32_t interface, struct sockaddr
*group, uint32_t fmode, uint_t *numsrc, struct
sockaddr_storage *slist)

• sockaddr_storage vs sockaddr rationale:
– slist is an array
– Ioctl api used it for group too but now that’s a pointer

Questions

• Implementors: is this API acceptable?
• Any other issues?
• When target WG last call?

An operational problem with
IGMP snooping switches

(mailing list thread)

Dave Thaler
dthaler@microsoft.com

IGMPv3 Deployment Status

• The good news:
– IGMPv3 hosts are being used by real

customers
– IGMPv3 routers are being used by real

customers

• The bad news:
– Since start of ’03, three unrelated

organizations using different switches have
reported a similar problem…

Summary of problem

• Router sends IGMPv3 query, which tells hosts to use
IGMPv3

• Hosts send IGMPv3 reports
• Switch mishandles unrecognized messages somehow

– Doesn’t forward reports
– Forwards report but doesn’t forward data
– Forwards report and data but not queries, data then times out

(no periodic refreshes)
• Net result: Multicast breaks when you upgrade a router

or host (whichever comes last) from IGMPv2 to IGMPv3

IGMPv3-
capable

host

IGMPv3
router

IGMPv2
snooping

switch

Operational Workarounds
• Best solution is to ensure router is configured correctly

– Only configure IGMPv3 on an interface without IGMPv2-only
snooping switches

– Harder if routers and switches owned by separate organizations
– Impossible(?) if router requires IGMPv3 to support one customer

and thereby breaks another customer that has an IGMPv2 switch

• Customers have asked that hosts be configurable to
force IGMPv2 even though RFC behavior would use
IGMPv3
– Note that SSM won’t work with these broken switches anyway
– This requires manual configuration on every host

Snooping draft impact

• Currently only solves part of the problem
– Flood unrecognized IGMP (covers IGMPv3 queries

and reports)
– If no reports for a group, flood data to router ports (or

all ports if configured to do so)
– Doesn’t cover case where a report was received

IGMPv3
receiver

IGMPv3
router

IGMPv2
snooping

switch

IGMPv2
receiver

What should IETF do?

• At least document the problem
– MAGMA or MBoneD?

• Any other solutions?

