Group key management architecture

<draft-ietf-msec-gkmarch-03.txt>

Mark Baugher, Cisco Ran Canetti, I BM Lakshminath Dondeti, Nortel Fredrik Lindholm, Ericsson

Overview of this talk

- Introduction to GKMArch
 - Relative positioning in MSEC I -Ds
- Focus of this talk
 - Reliable transport of rekey messages
 - SA synchronization
 - Results from Sanjeev Setia et. al (GMU)
- Conclusion

GKMArch as part of MSEC I Ds

GKM entities and protocols

Outstanding issues in rekeying

- Reliable transport of rekey messages
 - feedback implosion
- GSA Synchronization
- Incorporating GKMAs into rekey msgs
 - Stateful and stateless rekeying
 - Different reliability requirements
- Interoperability of GKMA
 - e.g. Different LKH implementations

Reliable transport of rekey messages

- In periodic (batched) rekeying, number of rekey packets can be large.
 - e.g.: Group Size = 64 K, No. of leaves = 512 (0.7%)
 - 170 packets in rekey payload (assuming 40 keys fit in one packet)
- Scalable reliable multicast protocols
 - require infrastructure support
 - introduce new security problems

Previous work on reliable key delivery

- Transmit rekey message multiple times
- proactive FEC with NACKs
 - Key packets + parity packets multicast to group
- Perrig et. al. proposed ELK
 - "Hints" embedded in data stream that allow receivers to recover keys
- Weighted key assignment (WKA)

Weighted key assignment

- Customized for LKH
 - Should work for OFT, SDR etc.
- Proactive redundancy
 - Based on KEKs' positions in the key tree
- Feedback-based
 - NACKs determine weight of keys in next rekey message
 - Only keys that a receiver needs

Results: Latency

What next?

- Still would like to see what we can achieve without NACKs?
- NACKs require O(n) secure channels at GCKS
 - There may be a way to use the GSA
- WKA may not need changes to rekey protocol (FEC-based scheme might)

Many-to-one secure transport of NACKs

- Two layers of integrity protection
 - Outer using group authentication key
 - Inner using one-to-one authentication key
 - Processing is no more complex than at receivers
 - Scalability issues: implosion of NACKs
- Replay protection using SEQ numbers
 - No new per-member state required

Conclusion

- Rekey protocol: outstanding issues
 - GSA synchronization
 - Reliable transport and sync req implosion
 - Method to securely send NACKs
 - Interoperability of GKMAs
 - Standardize LKH, OFT, Subset difference etc.