Digital Signature Authentication for ESP/AH

<draft-bew-ipsec-signatures-00.txt>

Brian Weis

ESP/AH Authentication Overview

- RFC 2406 (ESP) and 2402 (AH) don't specify any particular authentication mechanisms
- RFC 2403 and RFC 2404 define HMAC authentication transforms
 - A key is hashed with the packet
 - The first 12 bytes of the hash are placed in the Authentication Data field

ESP (tunnel mode)

AH (tunnel mode)

Adding Digital Signatures to ESP/AH

- Replacing HMAC with a digital signature is straightforward
 - Take a hash over the ESP or AH authenticated area
 - Encrypt the hash with a private key
 - Put the ciphertext in the Authentication
 Data field

RSA Algorithm

- Widely implemented
 - Algorithm is freely available
 - RFC 2437
- Relatively fast verification
 - Useful in minimizing processing for a group
- RSA Parameters chosen:
 - RSAES-OAEP raw RSA scheme with default parameters
 - SHA-1 hash algorithm

RSA Modulus Size

- Variable sized modulus
 - Passed by key management
- Minimum size: 496 bits
 - Function of the size of the data (160 bits) and OAEP padding
 - Sounds small, but attacker can only use the key to inject/modify packets. The attacker must find the private key before the session terminates.
- The actual size depends on the application
 - Public keys used for a long period of time should be larger.

RSA Exponent

- The draft does not currently specify the size of the exponent. Does it need to be?
 - The exponent must be passed to receivers along with the modulus. This is a key management issue.
 - Performance issues with a larger exponent?

Key Management support

- Authentication type for ESP/AH
 - The draft proposes a new Authentication Algorithm called SIG-RSA
- Modulus size
 - The draft proposes a new "authentication key size"
 RFC 2407 attribute

GDOI support

- No changes to ESP SA_TEK
 - Specify the new authentication type in the ESP SA_TEK
 - Send the modulus size sent in the ESP SA_TEK
- The KD payload must pass a TEK_ALGORITHM_KEY attribute with the public key (modulus, exponent)
 - The format of the key will be PKCS#1

SA Lookup Logic

- Each SA must be a single sender SA
- Group Controller (e.g., GDOI)
 coordinates the SPIs for the SAs.
- SA Lookup still conforms to RFC 2401: (Destination address, protocol, SPI)

Issues

- Size of the Authentication Data
 - 61 to 256 bytes of ciphertext
 - Packet fragmentation more likely
- Performance
 - Need to set expectations properly
 - Need some implementation experience with various h/w and s/w implementations

Issues (cont.)

DoS vulnerability

- RSA verification is relatively slow in comparison
- MESP solves the problem by wrapping with an HMAC but that adds complexity and may not always be feasible
- For example, consider the AH transform used to protect neighbor discovery messages. A longterm public key may be provisioned to the device, and no pairwise session key is possible.

Comparison to MESP

- ESP/AH Signatures is simpler than MESP
 - Protocols which specify use of AH or ESP to protect their protocols can take advantage of digital signatures, if appropriate
- ESP/AH Signatures cannot provide all of the features of MESP, and may be more vulnerable to a DoS attack.

Questions?