'he 54th IETF Meeting - MAGMA Working Group

Measuring the performance of multicast services

July 2002

Emile STEPHAN

France Telecom R&D

mile Stéphan

 $draft-stephan-ippm-multicast-metrics-00.txt-54^{th}\ IETF$

What are the requirements ?

• Multicast performance metrics are needed for several reasons:

+ for designing and engineering the multicast trees of the networks;

+ for accounting multicast services;

+ for controlling the quality of the multicast services;

+ for controlling the performance of the inter domain multicast services.

mile Stéphan

 $draft-stephan-ippm-multicast-metrics-00.txt-54^{th}\ IETF$

Spatial metrics

H0 ----- H1 ----- H2 ... ----- Rcv1

- Type-P-spatial-hop-one-way-delay (§4) The one way delay value between 2 sequential nodes of a path digest.
- Type-P-spatial-one-way-delay-stream (§5)
 The sequence of the spatial one way delay values of a path digest.
- Type-P-spatial-one-way-delay (§6) The sum of the spatial one way delay values of a path digest.

mile Stéphan

draft-stephan-ippm-multicast-metrics-00.txt - 54th IETF

Multicast network metrics

```
/ ----- Recv1
/----- x
/----- x ...
Src -> x ----- x ...
\----- x ---- Recvn
```

- Type-P-Multicast-Instantaneous-One-way-Delay-Stream (§7) The set of the one way delay values between the source and each receiver.
- Type-P-Multicast-Instantaneous-Packet-Loss-Stream (§9) The set of the packet loss results between the source and each receiver.
- Type-P-Multicast-Instantaneous-Connectivity (§11) the number of time the measurement packet is repeated by a node (*).

```
* For routers or equivalent
```

Indicators of multicast QOS (1/2)

- Statistics for Multicast instantaneous One-way Delay:
 - Type-P-Multicast-Instantaneous-Hop-One-way-Delay (§ 8.1)
 The average of all the delay per hop values of a Type-P-Multicast-Instantaneous-Hop-One-way-Delay (*).
 - Type-P-Multicast-Instantaneous-One-way-Delay-Percentile (§ 8.2),

Type-P-Multicast-Instantaneous-One-way-Delay-Median (§8.3),

& Type-P-Multicast-Instantaneous-One-way-Delay-Inverse (§8.4):

The percentile, median, inverse percentile of all the **end to end** delay values of a Type-P-Multicast-Instantaneous-One-way-Delay-Stream.

* For routers or equivalent

mile Stéphan

Indicators of multicast QOS (2/2)

- Statistics for Multicast instantaneous Packet Loss
 - Type-P-Multicast-Instantaneous-Packet-Loss-Percentile (§ 10.1), Type-P-Multicast-Instantaneous-Packet-Loss-Median (§ 10.2), Type-P-Multicast-Instantaneous-Packet-Loss-Inverse Percentile (§10.3):

The percentile, median, inverse percentile of all the **end to end** packet loss values of a Type-P-Multicast-Instantaneous-Packet-Loss-Stream

mile Stéphan

draft-stephan-ippm-multicast-metrics-00.txt - 54th IETF

Measurement system using SNMP Traps and InformPDUs

• A basic system:

On the fly setup, measure and reporting

- Inband stateless Setup using a SNMP Trap that acts as the test packet;
- Acknowledged outband reporting using SNMP InformPDUs

/ ----- Rx /----- x ≪ NMS Source /----- x ``---- Rx Info & Test -> x ----- x ----- MP1 ≪ NMS Packets `----- x ----- Rx `----- x ----- Rx

ippmMulticastInstantaneousMeasureSetup (1/3)

tup of an instantaneous multicast measure sent by the broadcasting application in the multicast channel.

pmMulticastInstantaneousMeasureSetup NOTIFICATION-TYPE

ıe

OBJECTS {	
ippmMeasureOwner,	measure setup
ippmMeasureIndex,	
ippmSystemTime,	time the setup is sent (to be added in the release 01)
ippmNetworkMeasureSrcTypeP,	Network measure setup
ippmNetworkMeasureSrc,	
ippmNetworkMeasureDstTypeP,	
ippmNetworkMeasureDst,	
ippmNetworkMeasureTimeoutDelay,	
ippmReportSetupNMS,	report setup
other parameters of the measure is defined in the description field of the ippmMulticastInstantaneousMeasureSetup	
**	•

ippmMulticastInstantaneousMeasureSetup (2/3)

In reception of the ippmMulticastInstantaneousMeasureSetup

setup the receiver or the router:

+ timestamp the arrival time of the setup;

+ considers the following defaults values;

+ prepare the ippmMulticastInstantaneousMeasureReport notification;

+ send the report using a SNMP Inform PDU.

Defaults values:

IppmMeasureEntry default values:

ippmMeasureName: ippmMulticastInstantaneousMeasure;

ippmMeasureMetrics: {
 Type-P-One-way-Delay,
 Type-P-One-way-Packet-Loss,
 Type-P-Multicast-Instantaneous-Connectivity, (*)
 Type-P-spatial-hop-one-way-delay (*)

}

ippmMeasureStatus: createAndGo

*) only considered by routers.

ippmMulticastInstantaneousMeasureSetup (3/3)

pmMulticastInstantaneousMeasureReport default values:

IppmReportSetupDefinition: {
 onSingleton,
 inInformRequestPDU,
 clearHistory

}

ippmReportSetupMetricThreshold: 0 ippmReportSetupEventsDurationThreshold: 0

mile Stéphan

 $draft-stephan-ippm-multicast-metrics-00.txt-54^{th}\ IETF$

ippmMulticastInstantaneousMeasureReport

pmMulticastInstantaneousMeasureReport NOTIFICATION-TYPE)BJECTS {

-- measure setup ippmMeasureOwner, ippmMeasureIndex,

-- Network measure setup ippmNetworkMeasureSrcTypeP, ippmNetworkMeasureDstTypeP, ippmNetworkMeasureDst,

-- report of the measure ippmHistoryTimeMark, ippmHistoryValue, ippmHistoryValue, -- value of the Type-P-One-way-Packet-Loss ippmHistoryValue, -- value of the Type-P-Multicast-Instantaneous-Connectivity (*) ippmHistoryValue -- value of the Type-P-spatial-hop-one-way-delay (*)

mile Stéphan

draft-stephan-ippm-multicast-metrics-00.txt – 54th IETF

Discussion

- Pro:
 - NOTIFICATION-TYPE available and adaptable
 - Inter domain, Measurement packet interoperability
 - Scalable
 - Snap shot of the performance
 - Low control bandwidth
 - Stateless (or not).
- Con:
 - Security: Are the regular info packets trustable ?
 - ...
- Evolution
 - Interdomain peering management ?
 - ...

mile Stéphan draft-stephan-ippm-multicast-metrics- $00.txt - 54^{th}$ IETF