
ROHC@IETF53 1

Robust Header Compression
(ROHC)

53rd IETF
Minneapolis, March 2002

Chairs:
Carsten Bormann <cabo@tzi.org>
Lars-Erik Jonsson <lars-erik.jonsson@ericsson.com>

Mailing List:
rohc@ietf.org

ROHC@IETF53 2

53rd IETF: Pre-Agenda

WG chair admonishments
Real agenda

Blue sheets
Scribe

ROHC@IETF53 3

Hello! This is an IETF Working Group

We are here to make the Internet work (Fred Baker)
Together! (Harald Alvestrand)

Rough Consensus and Running Code (Dave Clark)
Working Group is controlled by

IETF Process (RFC2026, RFC2418) – read it!
Area Directors (ADs): Alison Mankin, Scott Bradner
Charter (http://www.ietf.org/html.charters/rohc-charter.html)
Working Group Chairs: Lars-Erik Jonsson, Carsten Bormann
Technical Advisor: Erik Nordmark

Work is done on email list: rohc@ietf.org
And on IETF meetings, interim meetings, informal meetings
Mailing list is official channel, though

ROHC@IETF53 4

RFC 2026: Internet Standards Process

Standards track RFCs:
WG consensus (as judged by WG chairs)
WG last call
IESG approval (based on AD recommendation)

• Quality control!
IETF last call

Informational RFCs
BCP (best current practice) RFCs

ROHC@IETF53 5

RFC 2026: IPR issues (1)

(10.2) No contribution that is subject to any
requirement of confidentiality or any restriction on its
dissemination may be considered […]
Where the IESG knows of rights or claimed rights […]
the IETF Executive Director shall attempt to obtain
from the claimant […] a written assurance that upon
approval by the IESG of the relevant Internet
standards track specification(s), any party will be able
to obtain the right to implement, use and distribute
the technology […] based upon the specific
specification(s) under openly specified, reasonable,
non-discriminatory terms.

ROHC@IETF53 6

RFC 2026: IPR issues (2)

Contributions (10.3.1(6)):
“The contributor represents that he has disclosed the
existence of any proprietary or intellectual property
rights in the contribution that are reasonably and
personally known to the contributor.”

I.e., if you know of a patent
application for a technology you are
contributing, you have to tell.
Or just shut up entirely!

ROHC@IETF53 7

53rd IETF: Agenda (09:00-11:30)

0900 - Chair admonishments and agenda Bormann (10)

0910 - WG and document status update Jonsson (15)

0925 - Signaling compression
0925 - Architectural overview Bormann (15)
0940 - UDVM, state Price (25)
1005 - Extended operations Hannu (15)
1020 - Security considerations Bormann (20)
1040 - Open issues (30)
1110 - Implementation status Bormann (10)
1120 - Standardization status, what now? Jonsson (10)

ROHC@IETF53 8

53rd IETF: Agenda (15:45-17:00)

1545 - Role of EPIC Lite in the ROHC work
1545 - Architectural role Jonsson (10)
1555 - Simple RTP profile example West (10)
1605 - EPIC-Lite notation, open issues West (10)
1615 - Way forward Jonsson (5)

1620 - TCP Profile
1620 - Requirements and field behavior West (15)
1635 - TCP profile issues Qian (25)

ROHC@IETF53 9

53rd IETF: Agenda (17:00-18:00)

1700 - SCTP profile
1700 - Requirements document Schmidt (5)
1705 - Profile design issues West (10)

1715 - RTP issues
1715 - Implementation & impl. guide Jonsson (10)
1720 - MIB Quittek (15)
1735 - LLA implementation examples Pelletier (5)
1740 - UDP Lite profiles, initial discussions Pelletier (15)

ROHC@IETF53 10

WG Status, Goals and Milestones 1(3)

I-D on Requirements for IP/UDP/RTP header compression.
I-D of layer-2 design guidelines.
I-D(s) proposing IP/UDP/RTP header compression schemes.
I-D of Requirements for IP/TCP header compression.
Requirements for IP/UDP/RTP header compression
submitted to IESG for publication as Informational.
Requirements for IP/TCP header compression
submitted to IESG for publication as Informational.
Resolve possibly multiple IP/UDP/RTP compression
schemes into a single scheme.
Submit I-D on IP/TCP header compression scheme.
IP/UDP/RTP header compression scheme submitted
to IESG for publication as Proposed Standard.
Possible recharter of WG to develop additional compression schemes

DONE
LATE

ONGOING
TO DO

ROHC@IETF53 11

WG Status, Goals and Milestones 2(3)

Jan 02 - Requirements and assumptions for signaling compression
Jan 02 - Initial draft on general signaling compression security analysis.
Jan 02 - Signaling compression scheme submitted to IESG for
publication as Proposed Standard, including security approach for SIP
compression usage.
Jan 02 - Layer-2 design guidelines submitted
to IESG for publication as Informational.
Apr 02 - LLA mapping examples submitted to
IESG for publication as Informational.
Apr 02 - I-Ds of ROHC IP/UDP/RTP bis,
framework and profiles separated.
May 02 - General signaling compression security
analysis submitted to IESG for publication as Informational.
May 02 - ROHC MIB submitted to IESG for publication as Proposed
Standard.

DONE
LATE

ONGOING
TO DO

ROHC@IETF53 12

WG Status, Goals and Milestones 3(3)

Aug 02 - ROHC UDP Lite schemes submitted to IESG for publication as
Proposed Standard.
Sep 02 - ROHC IP/UDP/RTP schemes submitted to IESG for publication
as Draft Standard.
Sep 02 - Requirements for IP/TCP compression
submitted to IESG for publication as Informational.
Sep 02 - ROHC framework submitted to IESG for
publication as Draft Standard.
Sep 02 - IP/TCP compression scheme submitted
to IESG for publication as Proposed Standard.
Dec 02 - Requirements for IP/SCTP compression
submitted to IESG for publication as Informational.
Dec 02 - IP/SCTP compression scheme submitted to IESG for
publication as Proposed Standard.
Dec 02 - Possible recharter of WG to develop additional compression
schemes.

DONE
LATE

ONGOING
TO DO

ROHC@IETF53 13

Document status update

Published:
RFC3095: Framework and four profiles
(was: draft-ietf-rohc-rtp-09.txt)
RFC3096: RTP requirements
(was: draft-ietf-rohc-rtp-requirements-05.txt)

Approved (in RFC editor queue):
draft-ietf-rohc-over-ppp-04.txt
draft-ietf-rohc-rtp-0-byte-requirements-02.txt
draft-ietf-rohc-rtp-lla-03.txt

Submitted to IESG (passed IESG last-call):
draft-ietf-rohc-rtp-lower-layer-guidelines-03.txt
draft-ietf-rohc-rtp-lla-r-mode-02.txt

ROHC@IETF53 14

New ROHC mail list

rohc@cdt.luth.se has been closed
New ROHC list, rohc@ietf.org
All old subscribers were subscribed to the new list
New archive at:
http://www1.ietf.org/mail-archive/working-groups/rohc/
Old archive will stay at:
http://www.cdt.luth.se/rohc
The new list is “subscriber-post”, with manual
moderation of other postings
Addresses can be subscribed with disabled delivery

Digitale Medien und Netze
1

Signaling Compression:
Overview

Carsten Bormann cabo@tzi.org

based on slides from:

Richard Price Richard.Price@roke.co.uk

Hans Hannu Hans.Hannu@epl.ericsson.se

Digitale Medien und Netze
2

Why?

Minimize connection setup
delay in complex 3GPP SIP
interactions
Minimize bandwidth stealing
for in-call usage of SIP
The point is not saving raw
bandwidth (although it does
help the network!)
draft-ietf-rohc-signaling-req-
assump-04.txt

1. INVITE

36. 180 Ringing

UE#1 P-CSCF S-CSCF

14. 183 Session
Progress

18. PRACK

19. 200 OK

37. PRACK

49. 200 OK

24. COMET

28. 200 OK

50. ACK

10. 183 Session
Progress

8. INVITE

32. 180 Ringing

45. 200 OK

7. Service Control

Visited Network Home Network

13. Authorize QoS Resources

I-CSCF
(Firewall)

3. INVITE
4. INVITE

11. 183 Session
Progress12. 183 Session

Progress

34. 180 Ringing
35. 180 Ringing

47. 200 OK
48. 200 OK

46. Service Control

2. 100 Trying

6. 100 Trying
5. 100 Trying

9. 100 Trying

15. PRACK

22. 200 OK

27. COMET

31. 200 OK

40. PRACK

41. 200 OK

44. 200 OK

53. ACK

23. Resource
Reservation

16. PRACK
17. PRACK

20. 200 OK
21. 200 OK

25. COMET
26. COMET

29. 200 OK
30. 200 OK

38. PRACK
39. PRACK

42. 200 OK
43. 200 OK

51. ACK
52. ACK

33. Service Control

49. Approval of QoS Commit

Digitale Medien und Netze
3

What are the messages to be compressed?

SIP:
Largely a lock-step protocol
Essentially RFC822 (Text)
Can carry MIME payload

SDP:
v=2 m=audio etc. (Text)
Other MIME payloads are possible (SDPng!)

Either could be encrypted, possibly partially

RTSP (for streaming), also carrying SDP
DNS, RSVP, … ???

Digitale Medien und Netze
4

But which compression algorithm?

Hard to decide on a standard default algorithm
Why not have the compressor tell the decompressor?

Quite usual approach in the compression industry
Example: DEFLATE can download Huffman tables

Universal Decompressor
Virtual machine optimized for decompression
Gets executable decompressor spec from compressor
No compression schemes in standards
Full interoperability with any compressor

Digitale Medien und Netze
5

Universal Decompressor Virtual Machine

UDVM can be visualized in two ways
Highly adaptive variant of DEFLATE
Like a Java Virtual Machine, but highly optimized for
decompression

Compressed data is bytecode for the UDVM
Algorithm is implementation decision at compressor

Instruction set selected to minimize code size
Typical decompressor code requires 50 – 200 bytes

Compressor UDVM

Data DataUDVM bytecode

Digitale Medien und Netze
6

SigComp Architecture

Offered as a shim layer between
application and transport

Supports arbitrary transports
(TCP, UDP, SCTP, TLS)

Local Application

SigComp Layer

Transport

Remote Application

SigComp Layer

Transport

Remote Application

SigComp Layer

Transport

Digitale Medien und Netze
7

Minimal Protocol

UDP: per-packet, TCP: per-stream compression
Can start out from scratch or with state reference

Decompressor spec
Initial dictionary

Can use application knowledge to know that state is
there

Loading dictionary with INVITE is likely good enough

Extended versions can use ACKs and compressor-
decompressor state sharing

IETF has been notified about IPR claims in this area

Digitale Medien und Netze
8

State Handler

SigComp can save state after decompressing a message
Two types of state information are available

Item of state created at the local endpoint
Announcement information for a remote endpoint

State can be used over an unsecure transport
State is saved with permission from the application
State identifiers are hashes over the state information

Local Endpoint Remote Endpoint

State creation request

Announcement (opt.)

Message accessing state

Digitale Medien und Netze
9

UDVM vs Algorithm Negotiation

Sigcomp: Negotiation not needed (just tell)
Further optimize based on previous knowledge

Preload an endpoint with well-known algorithms
Announce the corresponding state identifiers

Merits of algorithm announcement are questionable
Downloading bytecode is efficient (66 bytes for LZW)
Additional RTT needed for announcements to arrive
Announcement costs more bandwidth than it saves

However defining mandatory state can be useful
E.g., predefined static dictionary for SIP/SDP
Similar to the pre-defined Huffman codes of DEFLATE
Good for short-lived flows and for stateless endpoints
Only problem is choosing the state!

Digitale Medien und Netze
9

UDVM vs Algorithm Negotiation

Sigcomp: Negotiation not needed (just tell)
Further optimize based on previous knowledge

Preload an endpoint with well-known algorithms
Announce the corresponding state identifiers

Merits of algorithm announcement are questionable
Downloading bytecode is efficient (66 bytes for LZW)
Additional RTT needed for announcements to arrive
Announcement costs more bandwidth than it saves

However defining mandatory state can be useful
E.g., predefined static dictionary for SIP/SDP
Similar to the pre-defined Huffman codes of DEFLATE
Good for short-lived flows and for stateless endpoints
Only problem is choosing the state!

Define this in the application!

Digitale Medien und Netze
10

SigComp Draft Structure and Concept
SigComp IETF draft structure comprises two different documents:

SigComp itself is the baseline solution, normative
Signaling Compression (SigComp), draft-ietf-rohc-sigcomp-05.txt
Explains the service of the underlying transport plus per-message
compression.

SigComp Extended Operations shows how to provide features
significantly improving the compression efficiency

SigComp-Extended Operations,
draft-ietf-rohc-sigcomp-extended-02.txt
Explains acknowledgements, shared and dynamic compression;
significantly increasing the compression ratio.
Informative, as implementation is in compressor and UDVM code
(but important as a proof-of-concept!)

Later: UDVM user guide
E.g., bytecode for common algorithms
Explains implicit acknowledgements (may have fewer IPR issues)

Digitale Medien und Netze
10

SigComp Draft Structure and Concept
SigComp IETF draft structure comprises two different documents:

SigComp itself is the baseline solution, normative
Signaling Compression (SigComp), draft-ietf-rohc-sigcomp-05.txt
Explains the service of the underlying transport plus per-message
compression.

SigComp Extended Operations shows how to provide features
significantly improving the compression efficiency

SigComp-Extended Operations,
draft-ietf-rohc-sigcomp-extended-02.txt
Explains acknowledgements, shared and dynamic compression;
significantly increasing the compression ratio.
Informative, as implementation is in compressor and UDVM code
(but important as a proof-of-concept!)

Later: UDVM user guide
E.g., bytecode for common algorithms
Explains implicit acknowledgements (may have fewer IPR issues)

The code is in the compressor/UDVM!

Digitale Medien und Netze
13

UDVM user guide: plan

Define assembly language
Not needed for interoperability, but good for talking about UDVM
Point to resources (example code for an assembler)

Provide example decompressors
LZ77 simple, DEFLATE, LZW; more coming
Assembly code and example input
More “bag-o-tricks” stuff

Explain how to put sigcomp into new environments
I.e., what needs to be defined for sigcomp to be usable
UDVM usage modes (e.g., flexible vs. pre-loaded)

Hints for UDVM implementers
How to get a fast/cheap UDVM implementation
Point to resources (example code for a UDVM)

Digitale Medien und Netze
14

Sigcomp Architecture Issues

Discovery vs. Sigcomp
How do you find out whether to use Sigcomp in the first place

Multiplexing (compressed vs. uncompressed)
How do you distinguish sigcomp from original app packets

Integration into app protocol
What is needed to marry app protocol and sigcomp

Application interface
What is needed in a system between app and sigcomp impl

Editorial/Timeline
When are we done?

… Richard: UDVM, state; Hans: -extended

Digitale Medien und Netze
15

Discovery vs. Sigcomp

How to find out whether to use Sigcomp in the first place?
General Internet Discovery Issue: Hard

Need to interface to existing application discovery architecture
Can’t just overload URI schemes (sips:) and ports ad infinitum

Combinatorial explosion: Security, compression, what next…
New architecture needed! (Says IESG.)

For 3GPP UE P-CSCF usage, non-issue
Network can define Sigcomp as mandatory

Don’t solve it in Sigcomp now!
(but keep issue active)

Digitale Medien und Netze
16

Multiplexing (compressed vs. uncompressed)

How to distinguish sigcomp from original app packets?
Can use different ports (as section 3.1 says)

Even if the compressed port is not a well-known port
finding the port is a discovery issue

For text-based signaling, can use first byte
11111xxx for sigcomp, 0xxxxxxx for ASCII
Distinguishable even with UTF-8-based protocols
[Help for RTP/UDP ROHC: Distinguishable from RTP (10xxxxxx)]

Sigcomp should
be open to a number of ways to do the multiplexing
not prescribe any of these (linked to discovery, anyway)

Digitale Medien und Netze
17

Integration into app protocol

What is needed to marry app protocol and sigcomp
Discovery/multiplexing… not now
App-specific static dictionary is extremely useful

But don’t change that every week
Will define this for SIP now
(could go into appendix for –06 or in separate document)

Default values for sigcomp application parameters
Will reduce number of these parameters (–06)
“Good” values might become quite obvious then

Digitale Medien und Netze
18

Application interface

What is needed in a system between app and sigcomp?

App needs to decide whether state is authorized
Yes/no

If yes, app needs to provide endpoint ID
Maybe wrong term (context ID?)
Used as the unit of granularity in apportioning state memory
Used as a compartment ID for state FIFOing
Used as a compartment ID with STATE-FREE (–06)

Digitale Medien und Netze
19

Editorial/Timeline

When are we done?
Really: what are the document dependencies?
-extended planned to be available in time
Refer to UDVM user guide in general terms

Planned for later…

Timeline: Apr 05 for –06, -extended–03
Decide then whether to last-call or do –07

1

Roke
Manor
Research

Compression for Signaling Applications

Richard Price
(richard.price@roke.co.uk)

SigComp

2

Roke
Manor
ResearchArchitecture for a SigComp Endpoint

Local Application

Compressor
Dispatcher State Handler Decompressor

Dispatcher

Compressor 2
(LZW)

Decompressor
(UDVM)

State 1

State 2

Compressor 1
(DEFLATE)

Transport

Application message Endpoint identity Endpoint identity Decompressed message

SigComp message SigComp message

State
request

3

Roke
Manor
ResearchSupported Algorithms (UDVM)

Arbitrary algorithms can be run on the UDVM
Given enough processing and memory

Simple algorithms can be programmed directly

More complex algorithms require a compiler such as EPIC
Fast creation of “application-aware” bytecode

LZ77 LZSS LZW DEFLATE LZJH

Application-aware
bytecode

Description of
application behavior

EPIC

4

Roke
Manor
ResearchChanges in SigComp-05 (UDVM)

Added variable-length encoding for operands

Compressed and uncompressed data is now buffered
externally to the UDVM
Added UDVM instructions to create and access state
Added some further general-purpose instructions

Bit manipulation (AND, OR, NOT)
Initialization (LOAD, MULTILOAD)

LZ77: 96 bytes 47 bytes

LZW: 132 bytes 66 bytes

5

Roke
Manor
ResearchProposed Changes (UDVM)

Updated SigComp header

Header should also be decompressed by the UDVM
Currently done by the dispatcher
Not compatible with SigComp architecture
UDVM bytecode cannot access header information

1 1 1 1 1 Length

State Identifier

1 1 1 1 1 0

End Addr.
Code Size

Code Size

6

Roke
Manor
ResearchProposed Changes (UDVM)

Fix values for several application-defined parameters
No need to change on a per-application basis

maximum_expansion_size
maximum_compressed_size
maximum_uncompressed_size
minimum_hash_size
cycles_per_message

Change some fields in the announcement data
maximum_state_size should be announced
cycles_per_message should not announced

byte_copy_right should point to first byte after buffer

7

Roke
Manor
ResearchOpen Issues (UDVM)

Are there any missing instructions (SHIFT, MODULO)?
Should INPUT-BYTECODE be able to retrieve the entire
compressed message?
Should there be separate LSB and MSB instructions to
cope with different bit orders within a byte?
STATE-REFERENCE vs. STATE-EXECUTE – can these
(should these) be unified?
Are more CRCs required?
How many values should there be for UDVM parameters
(e.g. fix six or seven values for UDVM_memory_size)?

8

Roke
Manor
ResearchChanges in SigComp-05 (State Handler)

Added secure state reference mechanism

State can be used over an unsecure transport
State is saved with permission from the application
State identifiers are hashes over the state information

State Handler
Compressor for

Endpoint 2

Decompressor
(UDVM)

State 1

State 2

Compressor for
Endpoint 1

State creation/access
request

Local Application

Endpoint
identity

9

Roke
Manor
ResearchProposed Changes (State Handler)

Flexible state identifiers
All state identifiers should be saved as 16-byte hashes
Minimum reference length chosen when creating state

State identifier hash should be calculated over entire state
item (not just over state_value)

10

Roke
Manor
ResearchOpen Issues (State Handler)

State can be acknowledged implicitly or explicitly
Schemes are currently invoked at different endpoints

Should the local endpoint be able to request explicit acks?

Local Endpoint Remote Endpoint
Request to save state

Announcement of saved state

Decision to use
implicit acks

Decision to use
explicit acks

11

Roke
Manor
ResearchOpen Issues (State Handler)

Should the compressor be able to choose the hash
function when creating state?
Is a STATE-CREATE instruction needed?
Should there be a “state-class” operand in END-
MESSAGE for state management/(rollback)?
STATE-FREE – is it needed, can it be made secure?

SigComp – Extended Operations, IETF-53 1 19th of March 2002

SigComp – Extended operations

Hans Hannu
Ericsson

Hans.Hannu@epl.ericsson.se

SigComp – Extended Operations, IETF-53 2 19th of March 2002

SigComp – Extended Operations
<draft-ietf-rohc-sigcomp-extended-02.txt>

• Progress since IETF-52 Salt Lake City
– Before draft-submission (-> March 1st 2002)
– After draft-submission (-> March 19th 2002)

• Overview
– Explicit acknowledgements
– Shared compression
– State management/(Rollback)

SigComp – Extended Operations, IETF-53 3 19th of March 2002

The authors believe that there might be IPR issues related
to the extended operation mechanisms. For more
information refer to:

http://www.ietf.org/ipr.html

SigComp – Extended Operations, IETF-53 4 19th of March 2002

Progress since IETF-52 Salt Lake City
• Before draft-submission (-> March 1st 2002)

– The defined SigComp message format is now used for both
SigComp-basic and SigComp-extended

– Architectural view for explicit acknowledgements is introduced
– “New” mechanisms/concepts added e.g.:

• User-specific dictionary
• State management/(Rollback)

• After draft-submission (-> March 19th 2002)
– No change to the announcement information is needed to provide

for explicit acknowledgements and shared compression.
– Code for providing the above mechanisms are in the

compressor/UDVM,
• i.e. UDVM instructions can be combined to provide support for

explicit acknowledgements and shared compression.

SigComp – Extended Operations, IETF-53 5 19th of March 2002

SigComp Extended – Explicit acknowledgements

• Explicit acknowledgements
– Endpoint B may decide to acknowledge established states, created

by messages received from endpoint A.
– The acknowledgements are passed to endpoint A through

endpoint A’s UDVM using the END-MESSAGE instruction with the
announcement location pointer referencing the explicit
acknowledgement feedback.

SigComp – Extended Operations, IETF-53 6 19th of March 2002

Compressed MESSAGE-M

ACK(state 1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

SigComp – Extended Operations, IETF-53 6 19th of March 2002

Compressed MESSAGE-M

ACK(state 1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state 1

SigComp – Extended Operations, IETF-53 6 19th of March 2002

Compressed MESSAGE-M

ACK(state 1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state 1

UDVM code to initiate
a state save

SigComp – Extended Operations, IETF-53 6 19th of March 2002

Compressed MESSAGE-M

ACK(state 1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state 1
2) Save: state 1

SigComp – Extended Operations, IETF-53 6 19th of March 2002

Compressed MESSAGE-M

ACK(state 1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state 1
2) Save: state 1END-MESSAGE

SigComp – Extended Operations, IETF-53 6 19th of March 2002

Compressed MESSAGE-M

ACK(state 1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state 1
2) Save: state 1END-MESSAGE

3) Explicit ack.
state 1

SigComp – Extended Operations, IETF-53 6 19th of March 2002

Compressed MESSAGE-M

ACK(state 1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state 1
2) Save: state 1END-MESSAGE

3) Explicit ack.
state 1

UDVM code to initiate
an explicit ack.

SigComp – Extended Operations, IETF-53 6 19th of March 2002

Compressed MESSAGE-M

ACK(state 1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state 1
2) Save: state 1END-MESSAGE

3) Explicit ack.
state 1

4) Explicit ack: state 1

SigComp – Extended Operations, IETF-53 6 19th of March 2002

Compressed MESSAGE-M

ACK(state 1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state 1
2) Save: state 1END-MESSAGE

3) Explicit ack.
state 1

4) Explicit ack: state 1

SigComp – Extended Operations, IETF-53 7 19th of March 2002

SigComp Extended – Shared compression

• Shared compression
– Endpoint A indicates to endpoint B that a state corresponding to

the uncompressed version of the message is saved and can be
accessed by the local UDVM.

– The indication to endpoint B is done by placing the state reference
at the location of the announcement information

SigComp – Extended Operations, IETF-53 8 19th of March 2002

“I was remembered” +

Compressed MESSAGE-M

Shared_id(state M) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

SigComp – Extended Operations, IETF-53 8 19th of March 2002

“I was remembered” +

Compressed MESSAGE-M

Shared_id(state M) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state M

SigComp – Extended Operations, IETF-53 8 19th of March 2002

“I was remembered” +

Compressed MESSAGE-M

Shared_id(state M) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state M

UDVM code to do the
Indication for shared state.

SigComp – Extended Operations, IETF-53 8 19th of March 2002

“I was remembered” +

Compressed MESSAGE-M

Shared_id(state M) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state M
2) MD5:
Ref. state M

SigComp – Extended Operations, IETF-53 8 19th of March 2002

“I was remembered” +

Compressed MESSAGE-M

Shared_id(state M) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state M
2) MD5:
Ref. state M 3) Indication:

state M

SigComp – Extended Operations, IETF-53 8 19th of March 2002

“I was remembered” +

Compressed MESSAGE-M

Shared_id(state M) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state M
2) MD5:
Ref. state M 3) Indication:

state MEND-MESSAGE

SigComp – Extended Operations, IETF-53 8 19th of March 2002

“I was remembered” +

Compressed MESSAGE-M

Shared_id(state M) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state M
2) MD5:
Ref. state M 3) Indication:

state MEND-MESSAGE

4) Use state M for
compression

SigComp – Extended Operations, IETF-53 8 19th of March 2002

“I was remembered” +

Compressed MESSAGE-M

Shared_id(state M) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

1) Save: state M
2) MD5:
Ref. state M 3) Indication:

state MEND-MESSAGE

4) Use state M for
compression

UDVM code to use the shared_id
in the decomp. process

SigComp – Extended Operations, IETF-53 9 19th of March 2002

SigComp Extended – State management/(Rollback)

• State management/(Rollback)
– Endpoint A indicates to endpoint B that this state should not be

deleted until it is explicitly instructed by endpoint A to do so.
• See open issue…

– Endpoint A uses the STATE-FREE instruction to indicate to
endpoint B that the state will no longer be used by endpoint A.

• See open issue…

SigComp – Extended Operations, IETF-53 10 19th of March 2002

state *C1

“State class” +

Compressed MESSAGE-M

Free(state *C1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

* : “Checkpoint state class”

SigComp – Extended Operations, IETF-53 10 19th of March 2002

state *C1

“State class” +

Compressed MESSAGE-M

Free(state *C1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

* : “Checkpoint state class”

1) Save: state *1

SigComp – Extended Operations, IETF-53 10 19th of March 2002

state *C1

“State class” +

Compressed MESSAGE-M

Free(state *C1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

* : “Checkpoint state class”

1) Save: state *1

UDVM code to do the
indication of state class

SigComp – Extended Operations, IETF-53 10 19th of March 2002

state *C1

“State class” +

Compressed MESSAGE-M

Free(state *C1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

* : “Checkpoint state class”

1) Save: state *1
2) Save: state *1

SigComp – Extended Operations, IETF-53 10 19th of March 2002

state *C1

“State class” +

Compressed MESSAGE-M

Free(state *C1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

* : “Checkpoint state class”

1) Save: state *1
2) Save: state *1END-MESSAGE

SigComp – Extended Operations, IETF-53 10 19th of March 2002

state *C1

“State class” +

Compressed MESSAGE-M

Free(state *C1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

* : “Checkpoint state class”

1) Save: state *1
2) Save: state *1END-MESSAGE

3) Free: state *C1

SigComp – Extended Operations, IETF-53 10 19th of March 2002

state *C1

“State class” +

Compressed MESSAGE-M

Free(state *C1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

* : “Checkpoint state class”

1) Save: state *1
2) Save: state *1END-MESSAGE

3) Free: state *C1

UDVM code to free states

SigComp – Extended Operations, IETF-53 10 19th of March 2002

state *C1

“State class” +

Compressed MESSAGE-M

Free(state *C1) +
Compressed MESSAGE-N

MESSAGE
-M

MESSAGE
-M

MESSAGE
-N

Compressor A

Decompressor A

UDVM

State
handler

Compressor B

Decompressor B

UDVM

State
handler

MESSAGE
-N

Endpoint A Endpoint B

* : “Checkpoint state class”

1) Save: state *1
2) Save: state *1END-MESSAGE

3) Free: state *C1

4) STATE-FREE:
state *C1

SigComp – Extended Operations, IETF-53 11 19th of March 2002

Open issues
• As SigComp is defined now it is the remote endpoint that

decides whether explicit acknowledgements is to be
provided or not.
– Opinions?

• Any new instructions or changes to existing ones to
provide for State management/(Rollback)?
– Operand to the END-MESSAGE instruction that indicates “state

class”

Digitale Medien und Netze
20

Sigcomp Security Goals

Do not create new risks
I.e., risks that are in addition to those already present in the
application protocols.
No intention for SigComp to enhance the security of the
protocols

Attacker could always circumvent by not using compression

do not worsen security of existing application protocol
do not create any new security issues
do not hinder deployment of application security

Digitale Medien und Netze
21

Confidentiality risks

Attacking SigComp by snooping into state of other users
State can only be accessed using a state identifier

(prefix of a) cryptographic hash of the state being referenced
referencing packet already needs knowledge about the state
default reference length of 72 bits (9 bytes)

Can use 48 bits (6 bytes) where birthday issue can be ruled out
Can use up to 96 bits (12 bytes) for additional security

minimizes the probability of an accidental state collision
Snoopin state identifiers (e.g., passive attacks)?

provide knowledge about the state referenced as easily
no new vulnerability results

App needs to handle state ids with the same care it
would handle the state itself

Digitale Medien und Netze
22

Integrity risks

Sigcomp itself is not making any contributions to
integrity protection, but might jeopardize it:

Attacking SigComp by faking state or making unauthorized
changes to state:
State cannot be destroyed* or changed by a malicious
sender – it can only add new state. Faking state is only
possible if the hash allows intentional collision.
*) limited memory could lose information from FIFO

Rely on endpoint identification provided by application!

Digitale Medien und Netze
23

Availability risks (avoid DoS vulnerabilities) (1)

Use of SigComp as a tool in a DoS attack to another target
SigComp as an amplifier in a reflection attack?

SigComp only generates one decompressed message per incoming
compressed message.
This packet is then handed to the application; the utility as a reflection
amplifier is therefore limited by the utility of the application.

However: SigComp can be used to generate larger packets as input
to the application than have to be sent from the malicious sender;

Attacker can send smaller packets (at a lower bandwidth) than are
delivered to the application.
Depending on the reflection characteristics of the application, this can
be considered a mild form of amplification.
The application MUST limit the number of packets reflected to a
potential target – even if SigComp is used to generate a large amount of
information from a small incoming attack packet.

Digitale Medien und Netze
24

Availability risks (avoid DoS vulnerabilities) (2)

Attacking SigComp as the DoS target by filling it with state
Excessive state can only be installed by a malicious
sender (or a set of malicious senders) with the consent
of the application.
SigComp + application are approximately as vulnerable
as the application itself, unless it allows the installation
of state from a message where it would not have
installed state itself (“gratuitous state”)
Might be desirable to increase the compression ratio

mitigate by adding feedback at the application level that
indicates whether the state requested was actually installed
allows system under attack to gracefully degrade by no longer
installing gratuitous state

Digitale Medien und Netze
25

Availability risks (avoid DoS vulnerabilities) (3)

Attacking the UDVM by faking state or making
unauthorized changes to state
(See "Integrity risks" above.)

Attacking the UDVM by sending it looping code
App-defined upper limit to number of "CPU cycles" that
can be used

E.g., 4 cycles per bit; add 1000 bits per compressed message
Damage inflicted by sending packets with looping code
is therefore limited, although this may still be substantial
if a large number of CPU cycles are offered by the UDVM
(This would be true for any decompressor that can
receive packets from anywhere)

Digitale Medien und Netze
26

Sigcomp: Implementation status

Implementations in progress at
dynamicsoft
Roke Manor
TZI http://www.dmn.tzi.org/ietf/rohc/udvm/

Assembler: 250 lines,
UDVM: 520 lines (~ 750 est. when complete)

Interoperable code exchanged for
Simple LZ77, DEFLATE, LZW
More in progress

Need to do interop testing on state management
Exercise –extended code

Need to do testing in real setting (e.g., TCP record mark)

ROHC@IETF53 1

SigComp – What now? 1(2)

SigComp discovery
1. SigComp messages can be distinguished from

uncompressed messages
2. Apart from that, this is a non-SigComp issue
3. In 3GPP, mandated SigComp support together with 1.)

above makes the problem avoidable in that environment
Static dictionary

Not a SigComp, but a “SigComp for SIP” standardization
issue
Must be done now for 3GPP SIP compression
ROHC/SIPPING cooperation

ROHC@IETF53 2

SigComp – What now? 2(2)

Additional instructions? Remove instructions?
No major decisions left, most cosmetics!

The security issues have been addressed
We have RUNNING CODE!!
All issues that have been clearly (by [name-NN], e.g.
[cabo-15]) raised on the list will be tracked and
solutions or clarifications to these will be provided

SigComp–06 and Extended-03 on April 5th (submit)
WG last-call these documents on April 8th

ROHC@IETF53 15

Role of EPIC in the ROHC work, 1(2)

Taken from the SLC presentation by Mark West

What EPIC is...
EPIC is about generating packet formats

• Allows the packets between compressor and decompressor to
be described at a higher level

• Automatically generates highly efficient formats

What EPIC is not...
It is not a complete framework for header compression

ROHC@IETF53 16

Role of EPIC in the ROHC work, 2(2)

ROHC Framework

Profile #1

Profile Tools (EPIC)

Profile #2

Profile #3

Profile #N

Profile #M

1

Roke
Manor
Research

s

An RTP Profile for EPIC(-lite)

Mark West
(mark.a.west@roke.co.uk)

2

Roke
Manor
Research

s

Why do an RTP profile?
EPIC-lite profiles have been accused of being obscure!
With a profile such as TCP it is necessary to

Understand the structure of the profile
Understand what is says about TCP

Both of these can be challenging…

RTP compression is well-understood and documented in
depth in RFC 3095
Provide a subset of this functionality as an EPIC profile
Make an easier basis for comparison

3

Roke
Manor
Research

s

What the profile isn’t
It is not a complete RTP compression solution

It only handles IPv4/UDP/RTP
It only describes the equivalent of UO mode packets

It does not attempt to be bit-wise compatible with (any of)
the headers in RFC 3095

Shares the same prefix bits for IR and IR-DYN packets

4

Roke
Manor
Research

s

A quick tour
Are there any particularly interesting bits of the profile?!
What issues are raised by these?

3-bit vs 7-bit CRC selection
IP ID byte-ordering
UDP checksum used / not-used
Offset encoding
CSRC list

5

Roke
Manor
Research

s

CRC length
The profile includes 2 branches for compressed packets,
one with a 3-bit CRC and one with a 7-bit CRC
This is not an exact match for RFC 3095
However, it is a close match
Ensures that packets which update significant amounts of
context use 7-bit CRCs

non-random-ip-id-co3 = STATIC(70.71%) | LSB(5,0,29.29%)

non-random-ip-id-co7 = STATIC(63.1%) | LSB(5,0,26.14%) |
LSB(9,0,10.76%)

6

Roke
Manor
Research

s

IP-ID byte ordering
Mentioned because of much debate on mailing list
NBO processing is (nearly) orthogonal to other
compression issues
(As is scaling)
Therefore, decided to split these functions out
NBO decision (or scaling) must be performed on a field
before it is encoded

ip-id = NBO(16) ; check the byte-order

compress-ip-id

STATIC(99.9%) | IRREGULAR(1,0.1%) ; NBO flag

7

Roke
Manor
Research

s

UDP checksum
This demonstrates a use of the ‘FORMAT’ construct
Flows will either never use the UDP checksum or always
use it
Point of FORMAT is that changes are expected only rarely
The selection of the FORMAT is based on state
information in the context, rather than per-packet indicator

udp-checksum-co = FORMAT(no-checksum,with-checksum)

STATIC(100%) ; FORMAT index

no-checksum = VALUE(16,0,100%)

with-checksum = IRREGULAR(16,100%)

8

Roke
Manor
Research

s

Offset Encoding
There is a slight difference from the way that RFC 3095
describes (for example) IP ID encoding
When offset encoding is used in EPIC, it is applied
consistently

So, with IP ID, it is always the offset from the RTP SN
that is encoded
This does not affect efficiency

9

Roke
Manor
Research

s

CSRC list
Makes use of EPIC LIST-based encoding
LIST has a number of possible entries
Individual entries are sent along with ‘presence’ flags and
‘order’ information
Interesting to compare with RFC 3095 list-based
compression

But we haven’t done this yet!

10

Roke
Manor
Research

s

Performance
We have run this profile through our EPIC interpreter
Run several of the test flows used in interoperability tests
to check that it works
Compression performance is directly comparable with that
offered by RFC 3095 on the same flows
Don’t yet have a compiled version of the code to test
processing load

11

Roke
Manor
Research

s

Average CO packet sizes

1.41.6Call-5
IP TOS change

1.72.0Call-3
As above, but with
IP-ID jitter

1.21.3Call-2
RTP voice call
with talk-spurts

EPIC-liteROHC-RTP

12

Roke
Manor
Research

s

Conclusions
Can write an RTP profile for EPIC
Essentially equivalent to the packets defined in RFC 3095
Useful as a discussion point for EPIC notation /
processing

13

Roke
Manor
Research

s

EPIC-lite Status and Open Issues

Mark West
(mark.a.west@roke.co.uk)

14

Roke
Manor
Research

s

Status – of the draft
Basic definition and pseudo-code is believed to be stable

Some minor clarifications and updates required as a
result of implementation effort…

May benefit from additional clarification of where EPIC fits
in to overall header compression

15

Roke
Manor
Research

s

Status - implementations
We have a functional test-bed implementation of the
pseudo-code
Demonstrates

Tree-building for EPIC-lite packet formats
Compression
Decompression

Have run profiles for test protocols, RTP, TCP and SCTP

16

Roke
Manor
Research

s

Status - Implementations
Alternative implementation

University of Split
Have just (this week!) achieved basic interoperability
Built the same packet formats from a simple profile
Exchanged compressed packets
Verified correct decompression
Moving on now to more complex profiles with greater
variety of encoding methods

17

Roke
Manor
Research

s

Open Issues
Where does EPIC fit in?
Profile complexity
Encoding methods

General
FORMAT
LIST
Stack manipulation

Further interoperability
Performance

18

Roke
Manor
Research

s

Where does it fit?
Need to clarify where EPIC(-lite) fits into header
compression solutions
Think more about structure of the solution and interfaces
to external components

19

Roke
Manor
Research

s

Profile Complexity
Again, topic of discussion on mailing list
Profile structure is actually quite simple

Based on BNF
Just ‘and’ and ‘or’ combinations

Profiles are quite ‘dense’ with respect to information
content, however
Try to mitigate this through clear structure and more
comments in the profiles
Also bear in mind trade-offs between complexity and
efficiency

20

Roke
Manor
Research

s

Encoding Methods
In general, it is designed to be easy to add new
encodings, where necessary
Each encoding has 3 basic methods to support

Tree building
Compression
Decompression

Currently methods are defined in pseudo-code

21

Roke
Manor
Research

s

FORMAT
There have been discussions about the use of FORMAT
FORMAT is designed to capture changes behaviour
based on context rather than per-packet indicators
Need to be sure that use is appropriate
Cost of FORMAT change is sending IR-DYN packets

‘Horizon effect’ – only worth changing if flow will
continue long enough to make it worthwhile
But could defer FORMAT change until an IR-DYN was
going to be sent anyway, for example

This is one example of state-model interaction
Another is where FORMAT triggers a state change

22

Roke
Manor
Research

s

FORMAT
FORMAT is clearly useful for handling cases such as

ECN used
No ECN used

Less clear in cases such as TCP flow behavior
However, still thought to be worthwhile (but with some
clarification)
Stress that choosing to change format is typically a
compressor-local optimisation decision

23

Roke
Manor
Research

s

LIST
Main concerns about LIST encoding is efficiency
Two aspects to this

Information about the presence of LIST entries
Information about the order of LIST entries

Presence information can easily be encoded to take
account of ‘SYN only’ options, for example
Order information is more complex

Previous list encoding aimed for long-term efficiency
LISTs such as used for TCP options and SCTP chunks
may raise slightly different considerations
Most LISTs are ‘sparse’ and order information should
reflect his
More thought required…

24

Roke
Manor
Research

s

Stack Manipulation
Used to process header fields
Allows interactions between fields to be processed
But, drifts into “solution space” rather than just defining
how the stack behaves
So, we may want to think about this notation

25

Roke
Manor
Research

s

Interoperability
Initial interoperability results are encouraging
Have shown that same packet formats and identifiers can
be built from a profile
More tests are obviously needed

Extend coverage of encoding methods
If anyone else wants to join in, we’d be delighted to
accommodate them!

26

Roke
Manor
Research

s

Performance
We can’t easily get CPU performance metrics from our
implementation
(we’re running it in Python and it works ok!)
We’re starting to run profiles to get compression figures

U-mode only at the moment
Hopefully compiled implementations (e.g. from Univ. Split)
will give useful results

ROHC@IETF53 17

Generic Notation - Way forward, 1(2)

1. Create a new WG document:
“ROHC: Generic Compressed Header Notation”
Based on the notation part of the EPIC-Lite document

2. Evolve the notation language by applying it in the
development of TCP and SCTP profiles

3. Develop one or several compressed header encoding
mechanisms that use the generic notation as input

ROHC@IETF53 18

ROHC
Profile
Toolbox

Generic Notation - Way forward, 2(2)

New profiles could then be defined with the generic
header notation instead of written header formats,
each referring to one specific encoding method

GENERIC
HEADER

NOTATION

BASIC
HUFFMAN
ENCODING

ADVANCED
HUFFMAN
ENCODING

RFC YYYY, ROHC Profile 0xMMMM Standard

RFC XXXX, ROHC Profile 0xNNNN Standard COMPRESSED
HEADER FORMATS

“CLASSIC”
ROHC PROFILE

NOTATION-BASED
ROHC PROFILE

27

Roke
Manor
Research

s

TCP Requirements and Field Behavior

Mark West
(mark.a.west@roke.co.uk)

28

Roke
Manor
Research

s

Requirements
Requirements are stable
Most important issues now under consideration
Main missing element from profile

IPv6 encoding
Tunnel headers

29

Roke
Manor
Research

s

Behavior Draft
Included many comments, suggestions and corrections to
–00

Thanks!
May still be some more points to capture

Not clear how useful it is to go much further
How slavishly should this map to a profile?

Some recent discussion suggests that this might
become counter-productive

Excessive profile complexity
May not increase compression efficiency

30

Roke
Manor
Research

s

Issues
Short-lived connections
Degree of robustness
Implicit acknowledgements
Use of master sequence number
Re-ordering Channels

31

Roke
Manor
Research

s

Short-Lived Connections
Context replication is the obvious way to exploit inter-flow
redundancy
However, still issues to resolve

What degree of granularity is appropriate?
What happens if the base-context (to be copied) is not
available (or is corrupt) at the decompressor?

Should short-lived connection efficiency be achieved at
the expense of long-lived connection efficiency?

32

Roke
Manor
Research

s

Degree of Robustness
We have broadly agreed on a sensible level of robustness
However, ‘packet-centric’ view is hard to quantify for TCP
Will see more clearly when we start running some tests

33

Roke
Manor
Research

s

Implicit Acknowledgements
One commonly considered implicit ack is the first packet
following a SYN

Since this implies that the SYN has been received
This is a good hint
However, it can only be considered ‘safe’ as an ack if
there is no other path for the SYN to have been
retransmitted…
Need to think carefully about where it is sensible to use
this

34

Roke
Manor
Research

s

Use of MSN
In TCP this is clearly only needed for acknowledging
packets
We probably only need to acknowledge certain packets
Thus the MSN will only be used on some packets
Considered in more detail in the TCP compression
solution

35

Roke
Manor
Research

s

Re-Ordering Channels
Is this part of the header compression framework?
Essential requirement is for an external sequence number
(from the ‘link’ layer)

Cannot use MSN (since this is not available until after
successful decompression!)

Decompressor need to maintain a context history
Sequence number determines which historical context at
decompressor is used as base
This appears to be a decompressor-local decision (in
conjunction with the link)

36

Roke
Manor
Research

s

Re-ordering example

11 11 11 38 38 38Original Flow

11 11 S 38 38 SCompressed

37

Roke
Manor
Research

s

Re-ordering example

11 11 11 38 38 38Original Flow

11 11 S 38 38 SCompressed

11 11 38 S 38 SReceived

38

Roke
Manor
Research

s

Re-ordering example

11 11 11 38 38 38Original Flow

11 11 S 38 38 SCompressed

11 11 38 S 38 SReceived

11 11 38 38 38 38Uncompressed

39

Roke
Manor
Research

s

Re-ordering example

11 11 11 38 38 38Original Flow

11 11 S 38 38 SCompressed

11 11 38 S 38 SReceived

11 11 38 11 38 38Uncompressed

1 2 3 4 5 6

1 2 4 3 5 6

1 2 4 3 5 6

40

Roke
Manor
Research

s

Overall
Think we have a good handle on TCP behavior
TCP requirements are stable
Need to work more on mapping the behavior into a profile
Need to ensure that we have a solution that meets the
requirements

ROHC-TCP: TCP/IP
Header Compression for

ROHC

Qian Zhang
Microsoft Research

draft-ietf-rohc-tcp-00a.txt
draft-ietf-rohc-tcp-00.txt

ROHC-TCP
Robustness/ Efficiency

Refine states, modes, operations in different modes
Support for TCP options

MSS, WSopt, SACK-permitted (SYN packet)
Timestamp, SACK

Short-lived TCP transfers
Context replication/updating

Packet format generation
Further analysis for TCP behavior
Some issues (correlation and option support) in EPIC-LITE

Framework for ROHC-TCP (1)
Guideline for compressor’s state transition

Variation in packet headers
Positive feedback from decompressor (ACK)
Negative feedback from decompressor (NACK)
Robustness confidence level

Operation modes
U-mode and B-mode (O-mode)
No need to send feedback in per-packet base
Header formats are almost the same for U and B modes

MSN (master sequence number) support in some packets in B
mode

Framework for ROHC-TCP (2)
Verification on the decompressor

Packet loss may occur, residual BER is quite
small
Cons for TCP checksum

E2E rather for hop-by-hop
Computation complexity

CRC for different types of packets
3~7 bits CRC for compressed packet

RTP case: 3 for smallest packet (?)
8bit for IR/IR-DYN/IR-UPDATE

Protocol for ROHC-TCP (1)
Robustness and Efficiency maintenance

Error avoidance (key for ROHC)
W-LSB for most TCP/IP fields
Context window, the number of context value, indicates the
robustness

Error detection and recovery
TCP protocol itself

Control context window to achieve the balance of
robustness and efficiency

Feedback in B-mode provide a way to control
TCP congestion window provide implicit feedback in U/B-
mode
How to estimation TCP congestion window is an
implementation option (optimization)

Protocol of ROHC-TCP (2)
Operation in U-mode

Upwards transitions (Optimistic / F-optimistic)
Robustness confidence level

Downward transitions (Update / F-update)
Robustness confidence level

Optional enhanced operations
Speed up IR to FO transition if SYN packet pass through
the compressor
Optional operation in IR state

Full (partial) packets pattern: slow start
Optional operation in all the states

Use estimated TCP congestion window to control context window
for transition more efficiently

Protocol for ROHC-TCP (3)
Operation in B-mode

Upwards transition (Optimistic/ACK, F-optimistic/ACK)
Robustness confidence level + ACK

Downward transition (NACK / Update, F-update)
Robustness confidence level + NACK

MSN for feedback
Add MSN as an additional field for packets in B-mode

Optional enhanced operations
Optional operation in all the states

TCP Congestion window to control context window for transition
Optional operation for MSN

May not necessary to append a MSN for each packet

Protocol for ROHC-TCP (4)
Feedback and MSN related issues

Should ROHC-TCP support feedback in U-mode?
Current version: not necessary, so not supported
No MSN issue involve

MSN for feedback to acknowledge packet
No candidate to offer MSN for TCP/IP case

IP-ID in IPv4
? (combination of seqno and ackno) for IPv6
Provide an additional field for MSN in some packets

Format for feedback?
Prefix “11110” had been reserved in ROHC
No need to use EPIC-LITE to generate the corresponding
feedback packet formats

Protocol for ROHC-TCP (5)
Implementation Options

Tracking-based TCP congestion window estimation
Bi-directional deployment

forward and reverse paths of the same TCP connection
share the same link

C-SN

D-ACK

Host A

D-SN

C-ACK

Host Bseqno

ackno

Shrink the
context

window size
based on
feedback

from D-ACK
to C-SN

TCP Options
May occur in any order
Options may be sent only in SYN segment

Maximum segment size (MSS)
Window Scale Option (WSopt)
SACK-permitted

Option with undetermined pattern and
occurrence (No-operation)
Timestamp
SACK (may have 1-4 sack blocks)

Short-lived TCP Transfers (1)
Three scenarios

Multiple connections between
same source and destination
Multiple mobile terminals
download web from the same
server over cellular links
One mobile terminal send
requests to multiple web
servers over cellular links

Criteria to determine contexts
shareable / replicate-able?

Simple solution: same source-
IP and short time interval

MT1

Comm. Tower

MTn

Server

MT

Server 1

Comm. Tower
Server n

Short-lived TCP Transfers (2)
Shareable analysis for TCP/IP fields

IP-ID, destination address/port, SYN-related options,
Timestamp, TOS, TTL

Context replication to improve performance
Re-initialize a new context from an existing one and
overwrite some of values to create a new context
Possible encoding method for shareable fields

LSB for IP-ID, Timestamp
Delta (to original context) for port

How to make sure the correctness of the context that to be
replicated, especially in U-mode?

A simple solution: send the IR packet when jump to IR state
Format: IR-UPDATE (“11111101”)

Further Discussion on TCP/IP
Behavior

Further discussion on TCP/IP behavior
“Coarse-correlation” among several TCP/IP fields

Seqno/ackno
most TCP connections only have one-way traffic
only Sequence Number changes and Acknowledgement
Number remains constant at most time, or
only Acknowledgement Number changes and Sequence
Number remain constant at most time

Options in SYN packets
May not occur in SYN, but can not occur in other packets

Undetermined order and presence for options

Compressed Format Generator
Issues related to EPIC-LITE

List encoding for TCP options
Padding for No-operation in each option
Call for more efficient representation for order

A default encoding method is provided for Format
Other method is only the enhancement in the compressor

Separate control of state machine with format generator
Decision of Format selection should be take only in IR state

Simplify stack control mechanism to make sure the
consistent of profile
A simple TCP/IP profile should be given first

Conclusion
A refined state machine
Further analysis about TCP behavior

Coarse-correlation
Shareable characteristic

Interact with EPIC-LITE for more efficient supporting
Some issues for MSN, context replication
Plan:

Revise draft
Further discussion on the above issues and TCP/IP profile
in mailing list

53. IET Minneapolis
Reqs for SCTP compression

1 Christian.Schmidt@icn.siemens.de

Requirements for SCTP compression
(Stream Control Transmission Protocol)

Christian Schmidt

53. IETF / RoHC in Minneapolis
19.03.2002

53. IET Minneapolis
Reqs for SCTP compression

2 Christian.Schmidt@icn.siemens.de

History of SCTP compression in RoHC

50. IETF in Mineapolis 03/2001:
Initial EPIC profile for SCTP compression: draft-price-rohc-epic-sctp-00.txt

51. IETF in London 08/2001:
No requirement specification for SCTP compression available.

52. IETF in Salt Lake City 12/2001:
Requirements Spezifikation draft-schmidt-rohc-sctp-requirements-00.txt

53. IETF in Minneapolis 03/2002:
Upgraded Requirement Spec draft-ietf-rohc-sctp-requirements-00.txt

Upgraded EPIC profile draft-west-sctp-epic-00.txt

53. IET Minneapolis
Reqs for SCTP compression

3 Christian.Schmidt@icn.siemens.de

Requirement for SCTP multi-streaming
Requirement: Keep SCTP multi-streaming quality of SCTP, that mean decompression
errors affecting a stream should not influence other streams much.

Error case: SCTP Packet 2 lost and SCTP Packet 3 decompression failed
Different results for chunk with tsn7: with / without compressed link.
Updated Requirement:
„Multi-streaming function of SCTP has to be kept in most of the cases.“

53. IET Minneapolis
Reqs for SCTP compression

3 Christian.Schmidt@icn.siemens.de

Requirement for SCTP multi-streaming
Requirement: Keep SCTP multi-streaming quality of SCTP, that mean decompression
errors affecting a stream should not influence other streams much.

Error case: SCTP Packet 2 lost and SCTP Packet 3 decompression failed
Different results for chunk with tsn7: with / without compressed link.
Updated Requirement:
„Multi-streaming function of SCTP has to be kept in most of the cases.“

tsn1,id1,sn1 tsn2,id2,sn1 tsn3,id3,sn1

tsn4,id1,sn2 tsn5,id1,sn3

tsn6,id1,sn4 tsn7,id2,sn2

Packet 1

Packet 2

Packet 3

53. IET Minneapolis
Reqs for SCTP compression

4 Christian.Schmidt@icn.siemens.de

Further proceeding

• No open issue know today
• Final discussions for SCTP requirements on the mailing

list
• WG last call for SCTP requirement specification.

41

Roke
Manor
Research

s

Attempt at an SCTP Profile for EPIC

Mark West
(again)

42

Roke
Manor
Research

s

Why have we done this?
SCTP is a profile that we are interested in compressing
It is also useful to see how EPIC can cope with this
SCTP is quite a different protocol from RTP or TCP in
many respects
Give an early view as to what can be achieved with SCTP
compression

43

Roke
Manor
Research

s

What have we done?
Assess the basic structure of an SCTP packet
Handle the common header
Handle the overall chunk structure

Note that this requires the addition of a new encoding
method to handle the padding between chunks

IP header
SCTP

Common
Header

Chunk
Header

Chunk
Payload

SCTP Chunk

44

Roke
Manor
Research

s

SCTP Compression
Slightly unusual for header compression
The entire packet is processed
Each chunk has a header, which can be compressed
Chunk payload must be handled in order to get to the next
chunk

Payload is typically not compressible
But perhaps in some cases…

45

Roke
Manor
Research

s

What are the limitations
It is a first attempt, so there are a number of things that
are not captured
Main issues are

Doesn’t exploit the rules on combining of chunks in
SCTP packets
Limitations on the number of times that chunks can
occur in a packet
Doesn’t exploit sharing of information between
different chunk-types for the same flow

46

Roke
Manor
Research

s

Conclusions
We have a starting point for SCTP compression

Currently only from the perspective of an EPIC profile
No thought given to states and modes, for example

Next step is to run the profile on some sample SCTP flows
and assess the performance
Also check requirements and ensure that profile
addresses these points

ROHC@IETF53 19

ROHC RTP Implementation

ROHC RTP Implementer’s guide
draft-ietf-rohc-rtp-impl-guide-00.txt
Optimized mode transitions corrected
Clarification on packet decoding during mode transfer
Clarification on aspects regarding initiation of mode transfer

Note on extension-3 in UO-1* packets: Should go away?

ROHC@IETF53 20

ROHC RTP Implementation

Third ROHC bake-off - “Arctic ROHC”
Where: Luleå, Sweden
When: April 17-23
Host: Ericsson
All implementations are welcome,
especially “new-comers”
http://standards.ericsson.net/rohc
If you have an implementation and wants to participate,
please let us know not later than April 3rd

ROHC-MIB-RTP

<draft-ietf-rohc-mib-rtp-01.txt>

Juergen Quittek <quittek@ccrle.nec.de>
Hannes Hartenstein <hartenst@ccrle.nec.de>

Martin Stiemerling <stiemerling@ccrle.nec.de>
NEC Europe Ltd.

NEC Europe Ltd.
Network Laboratories, Heidelberg 2

Overview

• MIB Structure: Object Groups
– Instance, Channel
– Compressor, Decompressor, Statistics

• Changes from -00 to -01
• Discussion Points

– Architectural assumptions
– Statistics
– Openness (beyond RTP)
– Conformance

NEC Europe Ltd.
Network Laboratories, Heidelberg 3

MIB Structure: 5 Object Groups

• Instance group (rohcInstanceGroup)
– merger of interface group and header group

• Channel group (rohcChannelGroup)
• Compressor group (rohcCompressorGroup)
• Decompressor group (rohcDecompressorGroup)
• Statistics group (rohcStatisticsGroup)

NEC Europe Ltd.
Network Laboratories, Heidelberg 4

Instance Group

• Description of running instances of rohc at
a managed network node

• Instance properties (manufacturer,
version, …)

• Instance parameters (clock resolution)
• Supported headers types
• IP interfaces served by the instance

NEC Europe Ltd.
Network Laboratories, Heidelberg 5

Channel Group

• Table of all channels per IP interface
– Properties of cannels:
– Large CIDs
– FeedbackFor
– MRRU
– Flow counter
– …

• Table of supported profiles per channel

NEC Europe Ltd.
Network Laboratories, Heidelberg 6

Compressor Group

• Table of all compressor contexts per
channel
– CID, state, mode, profile,
– compression ratio,
– packet counters, (N)ACK counters
– ...

• Table of allowed packet sizes per
compressor

• Table of payload sizes per compressor

NEC Europe Ltd.
Network Laboratories, Heidelberg 7

Decompressor Group

• Table of all decompressor contexts per
channel
– CID, state, mode, profile
– depth of reverse compression
– packet counters
– (N)ACK counters
– ...

NEC Europe Ltd.
Network Laboratories, Heidelberg 8

Statistics Group

• Table of outgoing packet counters per
header type and per compressor

• Table of incoming packet counters per
header type and per decompressor

• Table of Error counters per error type and
decompressor

NEC Europe Ltd.
Network Laboratories, Heidelberg 9

Changes from -00 to -01

• Added Section 3 “Architectural Assumptions”
• Split interface table into instance table and

interface table
• Merged interface group and header group

into instance group
• Added CID state for compressors and

decompressors
– unused, active, expired, terminated

NEC Europe Ltd.
Network Laboratories, Heidelberg 10

Architectural Assumptions
Which are reasonable and appropriate?

• Concurrent instances of ROHC
• Single instance per interface
• Multiple interfaces per instance
• Channels may be bi-directional
• Channel used by single instance only
• Feedback Channel at Same Interface

NEC Europe Ltd.
Network Laboratories, Heidelberg 11

Statistics

• Are there suggestions for more concrete error types?
• Better having counters per repair strategy instead of per

error type?

• Should there be more counters per channel?
– … and less per context?
– contexts might be short lived

• Are there ideas for more / less / modified statistics?
– Packet counter per header type supported
– Packet counter per profile not supported yet

NEC Europe Ltd.
Network Laboratories, Heidelberg 12

Openness (beyond RTP)

• How to be extensible concerning ROHC
for TCP, SCTP, … ?
– independent MIB modules for each

transport protocol?
– basic module and individual extension

modules?
– open generic approach probably capable

of integrating foreseeable future
extensions?

NEC Europe Ltd.
Network Laboratories, Heidelberg 13

Conformance

• Which of the groups should be
– mandatory?
– optional?

Is anyone planning
to implement the MIB?

1 Ghyslain Pelletier, Ericsson Erisoft ABRObust Header Compression (ROHC) WG

IETF 53 – RObust Header Compression WGIETF 53 – RObust Header Compression WG

Introducing
<draft-pelletier-rohc-udplite-00.txt>

Ericsson Erisoft AB
Ghyslain.Pelletier@epl.ericsson.se

+46 920 20 24 32

March 19st 2002, Minneapolis
AWAR

Advanced Wireless Algorithm
Research Ericsson

A

A
W

R
E

ROHC: Profiles for UDP LiteROHC: Profiles for UDP Lite

2 Ghyslain Pelletier, Ericsson Erisoft ABRObust Header Compression (ROHC) WG

Classic UDP vs UDP LiteClassic UDP vs UDP Lite

Source Port Destination Port

Length Checksum

Data bytes …

0 3115 16

Classic UDP

Source Port Destination Port

Checksum Coverage Checksum

Data bytes …

0 3115 16

UDP Lite

UDP Lite redefines the semantics of the classic UDP Checksum and Length
fields:

Length field -> Checksum Coverage field (cannot always be inferred)
The Checksum value depends on the Checksum Coverage field, and may
exclude datagram payload
The 16 bits checksum and checksum coverage are applied on a per-packet
basis and minimally covers the UDP Lite header.

Classic UDP and UDP Lite
Do not share protocol identifier (independent protocols)
UDP Lite redefines the semantics for the Length and Checksum fields

3 Ghyslain Pelletier, Ericsson Erisoft ABRObust Header Compression (ROHC) WG

Overview of the draftOverview of the draft

The objectives of draft <draft-pelletier-rohc-udplite-00.txt>

Motivate the work for new profiles for UDP Lite
Offers a possible direction
• Define UDP Lite profiles as modifications to the UDP profiles of RFC-3095
• Suggest specific cases where it may be possible to replace the transport-

layer checksum with a stronger mechanism, without violating the end-to-
end nature of this checksum

Different approaches to header compression are possible when the UDP Lite

checksum is enabled. Specifically:

1) Use RFC-3095 profiles for UDP almost as-is. Checksum field is sent
uncompressed (2 octets). Checksum Coverage field might be compressible or
sent uncompressed (1 - 2octets).

2) Use the semantics and properties of UDP Lite Checksum Coverage and
Checksum to improve efficiency (save up to 3 octets in some cases?)

This draft suggests using the second approach.

4 Ghyslain Pelletier, Ericsson Erisoft ABRObust Header Compression (ROHC) WG

Possible value assignments for the Checksum CoveragePossible value assignments for the Checksum Coverage

The checksum coverage field may be:

a. Set to the UDP datagram length (or to 0)
b. Set to the UDP Lite header size
c. Set to the combined UDP Lite/RTP headers size
d. Set to an unpredictable value, varying between the UDP Lite (or

UDP Lite/RTP) header size and the entire datagram length.

IPv4/v6 Header RTP PayloadUDP Lite Hdr RTP Hdr

b. Only UDP Lite Header covered

ROHC RTP CRC Coverage

d. Varying coverage ???

a. Entire datagram covered by UDP Lite Checksum

c. UDP Lite and RTP headers covered

If these cases can be segregated from each other, additional
compression gains may be possible for cases a-b-c.

5 Ghyslain Pelletier, Ericsson Erisoft ABRObust Header Compression (ROHC) WG

Replacing the transport-layer checksumReplacing the transport-layer checksum

In those cases, it might be acceptable to recalculate the UDP Lite Checksum locally
when decompressing the header and then validate using the transmitted CRC.

Based on the semantics of the UDP Lite Checksum and the ROHC CRC
functionality, can we achieve compression efficiency gains?

When only the UDP Lite header only is covered
Basically, no information needs to be sent other than the checksum.
“It seems rather silly to protect the transmission of information that isn’t being

sent” [RFC-1144]

When the UDP Lite/RTP headers only are covered
Very few information bits are being sent as part of the header
compressed flow. It may be acceptable to replace the transport-layer
checksum with a CRC with the following properties:

- equal or stronger than the transport-layer checksum
- protects all bits covered by the transport-layer checksum
- offers equal or stronger robustness than header compression CRC
- protects the original transport-layer checksum

6 Ghyslain Pelletier, Ericsson Erisoft ABRObust Header Compression (ROHC) WG

Discussion pointsDiscussion points

Open questions:
Which CRC polynomial would qualify? How many bits?
How much of the UDP profiles need to be modified?
???

Questions to the group:

Is replacing the UDP Lite checksum and the ROHC CRC
with a stronger CRC for some well-defined cases
acceptable?

Shall we pursue the approach described in this draft?

