Reordering Metric for IPPM using Non-Reversing Sequence

*

Al Morton Len Ciavattone Gomathi Ramachandran March 18, 2002

http://www.ietf.org/internet-drafts/draft-morton-ippm-nonrev-reordering-00.txt

Summary

Problem Statement - 2 parts

- 1. Determine whether or not packet sequence is maintained.
- 2. Quantify the extent of sequence change (this will have many useful solutions).

Motivation - Sequence is often assumed

- Some technologies assume circuits, DKA Encapsulation
- Restoring order requires detection/operations, finite ability
- ➔ Multiple paths, processors, queues can cause it
- Applicability (nonrev)
 - Both Passive and Active
 - In/Out of Sequence declaration "on the fly"
 - → Can be a Single Point Measurement

Sampling frequency and method influences results

Definition Type-P-Sequence

• Src applies a Message Number, Payload Number, or Time Stamp as the basis for determining sequence.

• Dst knows the "Next Expected" = Reference Number

An out-of-sequence (OOS) packet outcome occurs when :

The packet has a Src sequence number lower than the Reference Number, and therefore the packet is late. The Reference Number does not change on the arrival of this packet.

On successful arrival of a packet with sequence number n:

if n >= RefNum, then /* packet in-sequence */
 RefNum = n + payload_size + 1;
else /* when n < RefNum */
 designate packet n as OOS;</pre>

Non-Reversing Sequence

Sample Metrics and Quantification (prob#2)

Type-P-Sequence-Poisson/Periodic-Stream

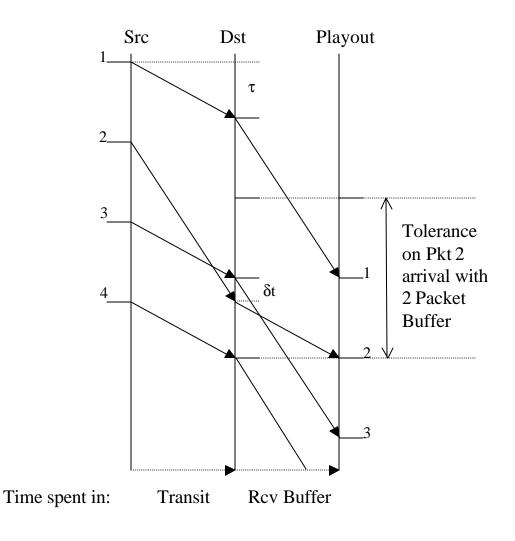
•Report count of OOS packets or ratio to total packets sent

•Sequence Discontinuities *may* be identified when n>RefNum, count them as sequence gaps/events

Quantification of sequence change

Associate OOS (or Late) Packets with a specific sequence discon.
(the arrival that skipped over their sequence number)

•Late Offset = DstOrder(OOS pkt) - DstOrder(pkt at discontinuity)

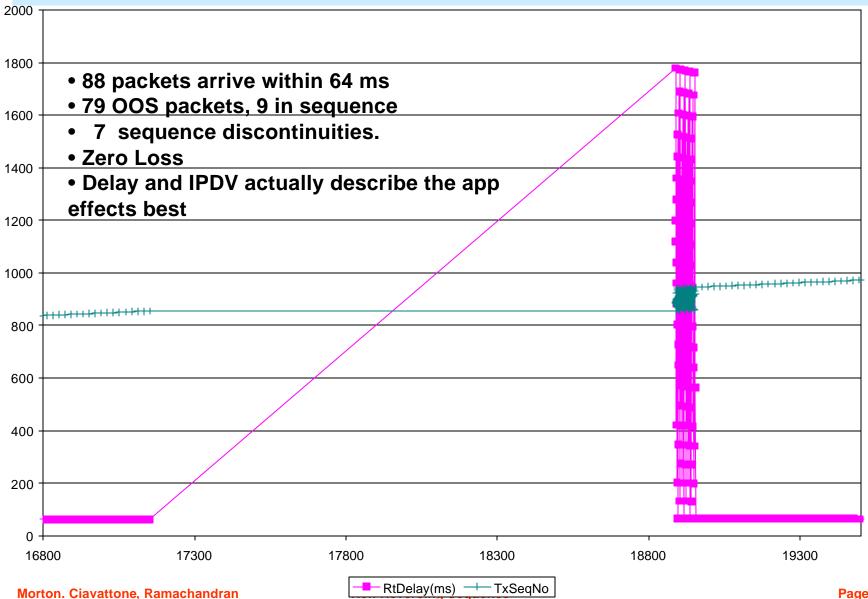

•Late Time = DstTime(OOS pkt) - DstTime(pkt at discontinuity)

Example using Non-Reversing Sequence

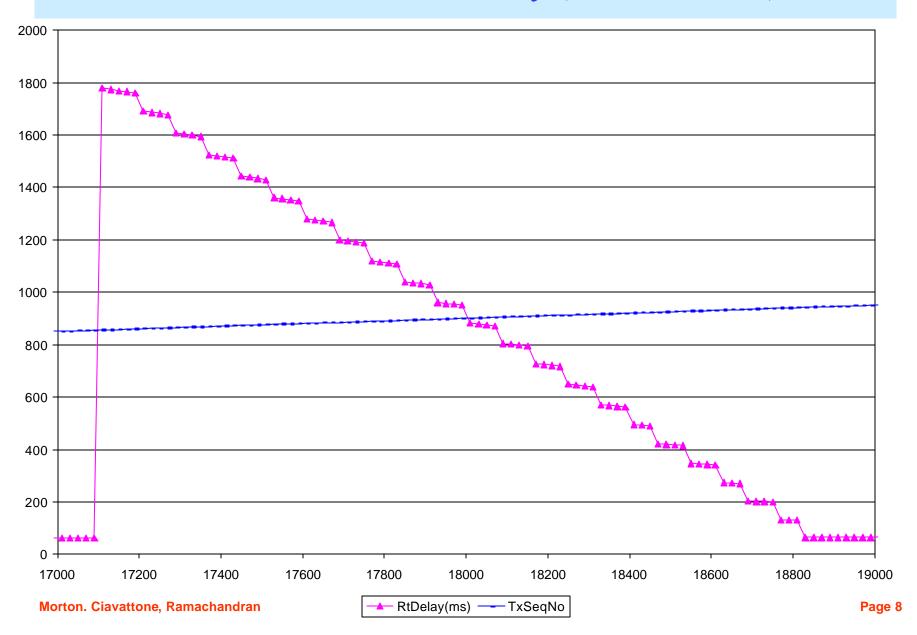
Arriving Packets are compared with the "next expected" RefNum.

Packet 2 arrives Out-of-Sequence, since Packet 3 has arrived and the "next expected" packet in Packet 4.

Packet 2 is Offset by 1 packet, or Late by the arrival time of Packet 2 - Packet $3 = \delta t$



Example showing Late Offset and Time


			Late 4, Arrival order 1,2,3,5,6,7,8,4,9,10,11							
SrcNum		Time	Src	Dst				Dst	Late	Late
@Dst	RefNum	RefNum	Time	Time	Dela	У	IPDV	Order	Offset	Time
1	1	0	0	68		68		1		
2	2	1	20	88		68	0	2		
3	3	21	40	108		68	0	3		
5	4	41	80	148		68	-82	4		
6	6	81	100	168	Z	68	0	5		
7	7	101	120	188		68	0	6		
8	8	121	140	208		68	0	7		
4	9	141	60	210		150	82	8	4	62
9	9	141	160	228		68	0	9		
10	10	181	180	248		68	0	10		

^^ when the ^^
packet arrives

Blender - Dst Time vs. Round Trip Delay

Blender - Src Time vs. RT Delay (SrcTime sort)

Comparison of Reordering Metrics

	nonrev	N-reordering (?)	MLAS (?)
Process to	Pkt-by-pkt,	Need entire	Need
determine	singleton	sequence to	complete
In/Out Seq.	definition	current Pkt	sequence
Sequence &	Message,	Message	Message
Quantificat.	Time,	(position	(position
Dimensions	Byte Stream	only)	only)
Relation to	Yes, buffer	Yes, buffer	Yes, steps to restore order
App Perform	analysis	analysis	
Handles Packet Loss	Yes	Yes	Need complete sequence

Conclusions (ours)

- nonrev is a simple singleton metric for In/Out-of-Sequence, can use time/message/byte numbering.
- Late Offset and Late Time complement existing IPPM metrics (One-way Delay and IPDV) when describing the extent of sequence change
- N-reordering and MLAS quantify reordering in additional ways, some assessment efforts may find these useful
- All three drafts offer different ways to characterize sequence change - combine them on that basis