Abilene NetFlow Deployment

Mark Fullmer – OARnet / Ohio ITEC maf@splintered.net

Abilene Network Backbone - February 2002

Deployment Motivations

- Traffic Engineering.
- Applications in use (port/protocol counts).
- DoS Detection.
- Monitoring deployment of emerging technologies (Multicast, QoS).
- Support of network traffic research efforts.

- Four independent data analysis efforts.
- Routers (exporter) supports one data feed.
- Replicate the exports to multiple collectors.
- · Post processed, anonymized data feed.
- Public web based access to select summarized reports.

- Fanout server supports multicast. Most implementation of NetFlow do not support multicast. Fanout data rate turned out to not be an issue.
- flow-fanout decodes and replicates exports. Decoding is required to instrument packet loss and data rates.

- Collectors require SNMP access and BGP tables.
- SNMP is used to gather ifNames, and ifDescr. IfDescr has topology information encoded. Ie, what is an internal interface.
- BGP communities communicate policy used for some reports. Flows have tag field added.
- No need to duplicate this (type of) information in IPFIX...

Network wide daily report

```
(percent totals)
#
# port
               flows
                       octets
                                packets
                                        duration
#
                                        4.203
               1.874
                        15.596
                                7.204
nntp
FastTrack
               16.226
                       7.545
                                10.854
                                        11.194
                                        15.187
Gnutella
               9.685
                       4.822
                                9.205
                                        0.009
commplex-link
               0.006
                       2.794
                                1.167
Neomodus-Direct
               0.285
                                0.873
                                        0.972
                       1.569
                       1.301
                                1.675
                                        1.024
ftp-data
               0.589
                                0.639
5020
               0.091
                       0.898
                                        0.292
ssh
               0.326
                       0.460
                                0.373
                                        0.180
               0.616
                                0.398
                                        0.292
                       0.325
ftp
eDonkey-2000
               0.506
                       0.316
                                0.393
                                        0.582
0
               0.054
                       0.315
                                0.147
                                        0.061
               3.959
                       0.312
                                1.652
                                        0.833
http
Gnutella
               0.803
                       0.238
                                0.481
                                        0.615
```

Network wide daily report

# src AS #	dst AS	flows	octets	packets
UONET	0	0.124	1.673	0.923
CIT	NCSA-AS	0.001	1.214	0.553
SLAC	DFN-WIN-AS	0.082	1.197	0.582
SLAC	ITALY-AS	0.098	0.897	0.414
GEORGIA-TECH	FSU-AS	0.007	0.681	0.307
ITALY-AS	UPENN-CIS	0.021	0.607	0.255
CIT	ARGONNE-AS	0.001	0.600	0.321
BCNET-AS	MIT-GATEWAYS	0.034	0.558	0.283
UCLA	UTK	0.020	0.534	0.268
UCLA	NSFNETTEST14-AS	0.078	0.507	0.244
MIT-GATEWAYS	GEORGIA-TECH	0.013	0.476	0.245
GEORGIA-TECH	PENN-STATE	0.014	0.437	0.198
UONET	UW-MILWAUKEE-AS1	0.031	0.412	0.178
UONET	CONCERT	0.103	0.396	0.315
UONET	NSFNETTEST14-AS	0.043	0.391	0.184
COLORADOSTATEUNI	SLAC	0.005	0.356	0.147

Collector Placement

- Ideal place for collector is directly connected to the router or exporter.
- Not always practical or economical.
 Router now requires LAN interface.
- Colo facility issues (space, access, rack cost, etc).
- When collector is not directly connected DoS and spoofing issues arise.

Remote Collector Security

- Packet flood the collector.
- Send spoofed flows. NetFlow authentication is based on source IP. Some collectors can be configured to ignore it (user convenience).
- Spoofed flows can be detected by sequence numbers, but difficult to know it's an attack.
 Could be packet loss, router/linecard reload.
- Encrypted and/or authenticated tunnels can help but high CPU overhead.
- Middle ground add authenticator to exports.

Remote Collector Spoofing

Router exporting flows.

Attacker knows router source IP and collector IP and port. (not obvious to router operator that addressing information is only security)

References

- •flow-tools:
- http://www.splintered.net/sw/flow-tools
- Abilene NetFlow page http://www.itec.oar.net/abilene-netflow
- •Flow-tools mailing list: flow-tools@splintered.net
- Cisco NetFlow: http://www.cisco.com/warp/public/732/Tec h/netflow/