

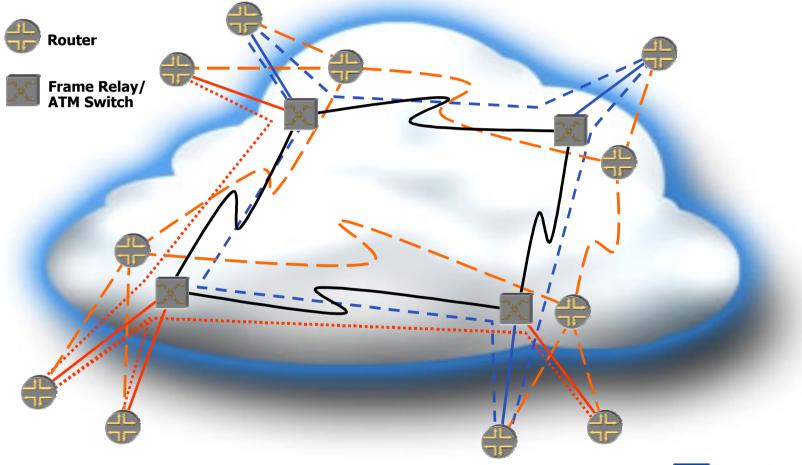
MPLS-based Layer 2 VPNs

Kireeti Kompella Juniper Networks

Agenda

- Introduction
 - Traditional Layer 2 VPNs
 - MPLS-based Layer 2 VPNs
 - Layer 3 VPNs
- Details
 - Provisioning
 - Transport
 - Carrying "non-address" information

Co-Authors

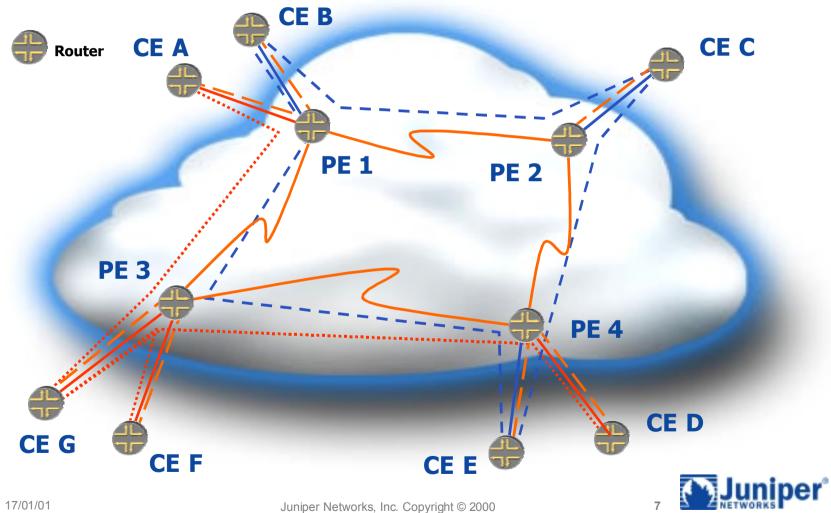

- Service Providers
 - Javier Achirica
 - *** Ronald Bonica**
 - Chris Liljenstolpe
 - Eduard Metz

- Vendors
 - Manoj Leelanivas
 - ChandramouliSargor
 - Vijay Srinivasan
 - Quaizar Vohra

Traditional (Layer 2) VPNs

Traditional (Layer 2) VPNs

- Provider network technology dictated by VPN services
 - Frame switches? ATM switches?
- Provisioning complex for provider
- Topology dictated by cost rather than traffic patterns
- Multiple networks adds to provider's administrative burden


MPLS-Based Layer 2 VPNs

- Traditional Layer 2 VPN from customer's point-of-view
 - Layer 3 independent
 - Provider not responsible for routing
- MPLS transport in provider network
 - Isolation between edge and core technologies
- Auto-provisioning VPN
- Single network architecture for both
 Internet traffic and VPN traffic

MPLS-Based Layer 2 VPNs

Privacy ≠ **Security**

- Encryption is a must if you want security
- Where's the weak point?
- ◆ CE-to-CE
 - * Use IPSec!
 - Not "PP" VPN
- ◆ PE-to-PE
 - Per VPN
 - Per PE-to-PE session

Layer 3 VPNs

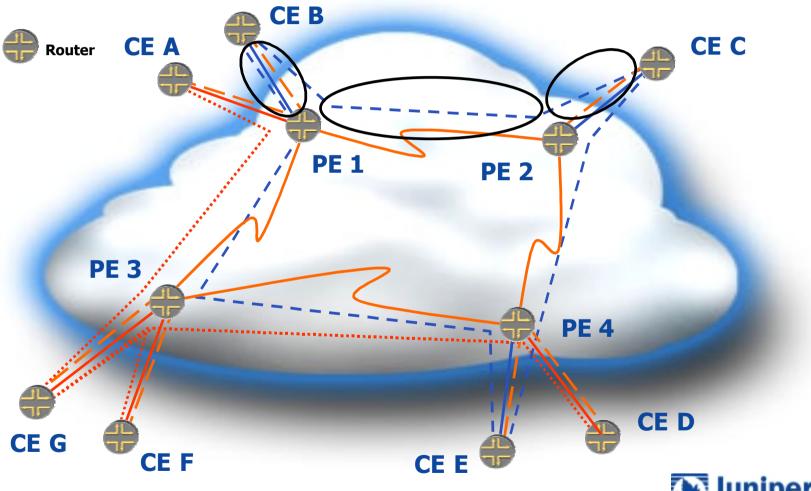
- ◆ SP participates in customers' routing
 - Out-sourced routing
 - Added SP responsibilities
 - ❖ Value-added service ~ cost structure
- BGP MPLS VPNs
 - QoS/CoS, Carrier of Carriers, inter-SP VPNs
- Virtual routers
- Migration may take some work

Provisioning the Network

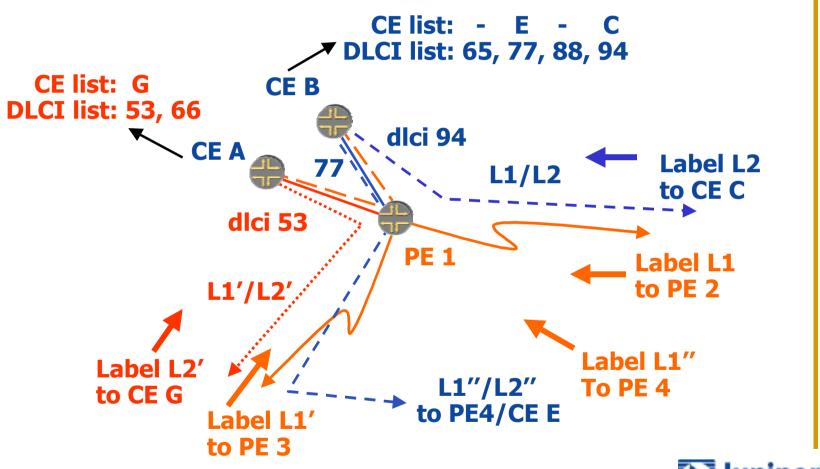
- PE-to-PE MPLS LSPs
 - Key: signaling
 - *** LDP LSPs**
 - *** RSVP-TE LSPs**
 - LDP over RSVP tunneling
 - **◆** Fully-meshed Traffic Engineered core
 - ◆ Edge-to-edge LDP LSPs
- ◆ Used for all services IP, L2 VPNs, L3 VPNs, differentiated services
- Provisioned independent of Layer 2 VPNs!

Provisioning a VPN

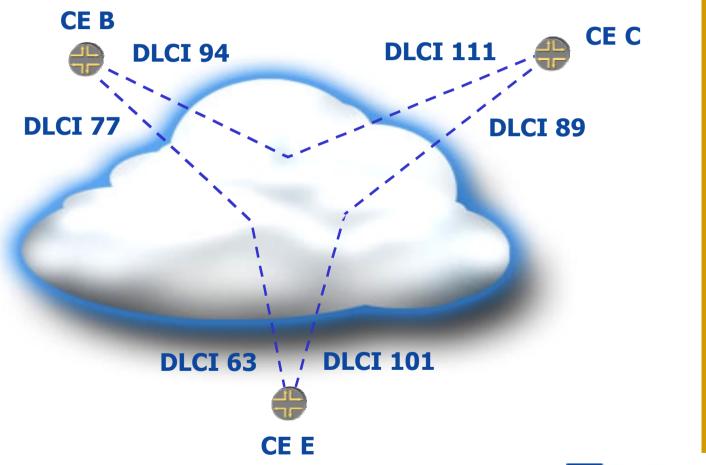
- Key: signaling
 - Auto-discovery of members, auto-assignment of inter-member circuits
 - Flexible VPN topology
 - Signaling using LDP or BGP
- O(N) configuration for the whole VPN
 - Could be more for complex topologies
- ◆ O(1) configuration to add a site
 - "Overprovision" DLCIs at customer sites


Provisioning Customer Sites

- List of DLCIs, one for each other site, some spare (over-provisioning)
- DLCIs independently numbered at each site
- ◆ LMI, inverse ARP and/or routing protocols for auto-discovery and learning addresses
- No changes as VPN membership changes (until over-provisioning runs out)



VPN Transport



VPN Transport

Virtual Network

Signaling

- Compact representation of mapping of layer 2 address to inner label
- Signaling through either BGP or LDP
- Arbitrary topologies possible; common ones such as full mesh and hub-and-spoke easy to configure

Packet Format (1)

```
Packet format from customer:
    <<u>dlci</u>><UI><proto><layer 3 packet>
Remove DLCI; add two labels
Packet format in network:
    <<u>MPLS encap><outer label><inner label></u>
    <UI><proto><layer 3 packet>
In the example, outer label = L1, inner = L2
```


Packet Format (2)

At destination PE: remove MPLS encap and label(s), add new DLCI to get:

<<u>dlci'</u>><UI><proto><layer 3 packet>

Effectively, the SP network acts as a big
 Frame Relay switch for this VPN

"Non-address" Information

- ◆ What about F/B ECN, DE, C/R, …?
 - Use experimental bits to carry this info
 - Can't squeeze 4 bits into 3, so use twice the number of labels if needed
- Not for preferential treatment in the core!
 - For this, use MPLS with Diff-Serv
 - Different DLCIs mapped to different PE-to-PE LSPs (L-LSPs) or different EXP bits (E-LSPs)
 - DE/not DE mapped to different EXP bits

Summary

- MPLS-based Layer 2 VPNs identical to Layer 2 VPNs from customers' perspective
 - Familiar paradigm
 - Easy to migrate
- Benefits
 - Single network infrastructure
 - Auto-provisioning
 - Layer 3 and routing independent
- Drawbacks
 - Layer 2 dependent

Future Work

- ◆ MPLS as layer 2 to CE
 - CE needs to be MPLS-aware
- "Secure" MPLS
- ◆ VLANs as layer 2 to CE
- Carrier of carriers model, inter-SP VPNs
- CoS support

Thank you!

http://www.juniper.net