TCP Mai nt enance and M nor Extensions (tcpm A. Zi mrer mann

Internet-Draft R Schef f enegger
I ntended status: Standards Track Net App, Inc.
Expires: January 21, 2016 July 20, 2015

Using the TCP Echo Option for Spurious Retransm ssion Detection
draft-zi mermann-tcpm spurious-rxnit-00

Abst ract

The Spurious Retransmi ssion Detection (SRD) algorithmallows a TCP
sender to always detect if it has entered | oss recovery
unnecessarily. It requires that both the TCP Echo option defined in
[1-D. zi mernmann-tcpm echo-option], and the SACK option [RFC2018] be
enabl ed for a connection. The SRD al gorithm makes use of the fact
that the TCP Echo option, used in conjunction with the SACK feedback
can be used to conpletely elimnate the retransm ssion anbiguity in
TCP. Based on the reflected data contained in the first acceptable
ACK that arrives during |oss recovery, it decides whether |oss
recovery was entered unnecessarily. The SRD nechani sm further
enabl es inprovenents in | oss recovery. This includes a TCP
enhancenent to detect and quickly resend | ost retransm ssions.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (1ETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."
This Internet-Draft will expire on January 21, 2016

Copyright Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Documents

Zi mrer mann & Schef f eneggExpi res January 21, 2016 [Page 1]

I nternet-Draft Spurious Retransni ssion Detection July 2015

(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction
2. Terminology
3. The Spurious Retransm ssion Detection A gorithm.
3.1. Mdtivation
3.2. Basic ldea . .
3.3. The Algorithm.
Exanples
| ANA Consi derations .
Security Considerations
Acknowl edgenent s
. References o
8.1. Nornative References
8.2. Informative References
Aut hors’ Addresses

©No G
PRRPRRRRRE
DRWWWWNNNOUDNWWN

1. Introduction

Using only the sequence nunber, a TCP sender is not able to

di stingui sh whether the first ACK, acknow edgi ng new data, that
arrives after a retransmt, was sent in response to the origina
transmt or the retransm ssion. This effect is known as the
retransm ssion anbiguity problem[Zh86], [KP87]. Spurious

retransm ssions, where a segnent is sent nultiple tinmes, can be
caused by packet reordering, packet duplication, or a sudden del ay
increase in the data or the ACK path. All these cases are preceded
by either a fast retransmit or a timeout-based retransmt.

The Eifel Detection Al gorithm|[RFC3522] ains to address these
occurrences, but falls short to conpletely solve the anbiguity
problem due to linitations in how the TCP Ti mestanps option is
processed by the receiver.

The TCP Ti nmestanps option al ready provides a neans of marking
retransmtted segnents differently. However, the nethod used by a
TCP receiver when a Tinmestanp option is reflected precludes the use
of this option in nost cases. The notable exception is the recovery
of lost segnents, when none of the retransmissions is lost or
reordered in turn. Simlarly, spurious retransm ssions can also only

Zi mrer mann & Schef f eneggExpi res January 21, 2016 [Page 2]

I nternet-Draft Spurious Retransni ssion Detection July 2015

3.

be detected and recovered from when all of the retransmtted packets
are delivered in-order and without |eaving any gaps in the receive-
buffer. Elsew se, the Tinestanp option does not allow a solid

di scrimnation between original or retransmitted segnents, that
triggered subsequent duplicate ACKs.

The semantics of the TCP Echo option, and their treatnment by a
receiver are different fromthose of the TCP Ti nestanps option. That
all ows a conplete solution to di sanbi guate between al

retransm ssions, including nultiple retransm ssions of the sane
segment, packet duplication, and reordering events.

Enhancenents in the area of TCP | oss recovery and spurious

retransm ssion detection are allowed by using synergistic signaling
bet ween the TCP Echo option and the sel ective acknow edgnent (SACK)
option. This allows to conpletely address any retransm ssion
ambi gui ty.

Ter m nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119]. These
words only have such normative significance when in ALL CAPS, not
when in | ower case

Acceptabl e ACK: is an ACK that acknow edges previously unacknow edged
data. See [RFC0793].

Forward Acknowl edgenment (FACK): is the the highest sequence nunber
known to have reached the receiver, plus one, using SACK information
See [MVB6] .

Lost Retransmi ssion Detection (LRD): is a nechanismto tinely detect
| ost retransm ssions during | oss recovery, and quickly send the | ost
segment anew instead of waiting for a retransmi ssion tinmeout. A
simple and limted variant, that is not formally specified, is
currently in use by the Linux TCP stack

Recover: Wen in fast recovery, this variable records the send
sequence nunber that nust be acknow edged before the fast recovery
procedure is declared to be over. See [RFC6582].

The Spurious Retransni ssion Detection Al gorithm

Zi mrer mann & Schef f eneggExpi res January 21, 2016 [Page 3]

I nternet-Draft Spurious Retransni ssion Detection July 2015

3. 1. Moti vati on

In order to detect spurious retransnissions, the sender requires
information to uniquely identify each retransni ssion of every segnent
sent. TCP Eifel [RFC3522] uses additional information fromthe TCP
Ti mest anps option [RFC7323] for this purpose. This can renbve somne

anbiguity, but only under limted circunmstances - it only works in
the absence of additional inpedinents |ike ACK reordering or nultiple
| oss.

However, the semantics used by the receiver when reflecting back a
received tinmestanp is such that this approach only works for the
first retransm ssion in a w ndow, every subsequent retransm ssion
cannot be di sanbiguated froma received original transm ssion using
ti mestanps in nost cases.

When a segnent is retransmitted without the timestanp clock
increasing, Eifel detection also has no signal to differentiate if a
spurious retransm ssion had occurred. This is of particular concern
at high data rates and when the RTT is | ow

Ret ransmi ssi on anbiguity detection during | oss recovery (as opposed
to the first retransmission in a window) allows an additional |eve

of loss recovery control without reverting to tiner-based methods.

As with the depl oyment of SACK, separating "what" to send from "when"
to send it, is driven one step further. |In particular, less
conservative | oss recovery schenes, which do not trade the principle
of packet conservation against tinmeliness, require a reliable way of
pronpt and best possible feedback fromthe receiver about any
delivered segnment and the ordering in which they got delivered

SACK signaling [RFC2018] goes quite a |ong way, but does not suffice
in all circunstances, e.g. when retransnissions are lost. Further
DSACK [RFC2883] does indicate if spurious retransm ssions occured,
but that signal is delayed by one RTT [RFC3708]. However, | oss
recovery is likely to have ended at that time. Furthernore, the
DSACK option by itself will not yield the information, if the late
arrived segnent was the original or retransmtted segnent.

Using the facility provided by the TCP Echo option a TCP sender is
able to differentiate between original and retransnmitted segnments,
even within the same TCP Ti nestanps options clock tick (i.e. when RTT

is shorter than the TCP timestanp clock interval). 1In addition, as
the TCP Echo option is reflected back with the nost recently observed
val ue by the receiver, all instances where Eifel detection [RFC3522]

is not able to detect reliably can be addressed. Furthernore, as the
sender is imediately notified which segnent triggered the ACK, no
delay is induced when deducting if a retransm ssion was spuri ous.

Zi mrer mann & Schef f eneggExpi res January 21, 2016 [Page 4]

I nternet-Draft Spurious Retransni ssion Detection July 2015

3. 2. Basi c | dea

Using the TCP Echo option, which has different semantics fromthe TCP
Ti mestanps option, it is possible to uniquely identify and

di sanbi guat e each segnent, including every retransm ssion. However,
the value carried with the TCP Echo option does not need to be unique
by itself (e.g. every segnent having a different TCP Echo option

val ue), as other information contained in the TCP Header and TCP
options, nanely the acknow edgnent nunber and the SACK bl ocks,
differentiate already between segnents in the TCP stream space.

Thus, it is only necessary to differentiate between segnents (of the
same size) covering the same sequence space

One sinple approach woul d be to have a per-segnent counter, which is
set to zero for each new transm ssion, and increnmented whenever that
sane segment is retransnitted anew. However, this approach would
require per-segnent state in the sender. To reduce the conplexity in
the sender, and not require per-segnment state, a sinpler approach is
to use a single global counter, that is increased whenever a segnent
has to be resent. In ECN environnments, an increase of the

retransm ssion counter is expected to typically coincide with CAR-
mar ked segnents.

Apart fromsinplifying the design, this also yields additiona
benefits when the reorder delay is |larger than one RTT, and when
Acknowl edgrments are |lost or reordered. Note that the wire
representation of this counter SHOULD NOT be as sinplistic as
descri bed here (see Section 6).

The retransm ssion counter has to be | arge enough to cater for al
expected RTOs before a TCP sender gives up and term nates a
connection (see [RFC1122], section 4.2.3.5, variable R2), plus all
the fast retransm ssions of that segment that nmay have happened

before triggering the chain of exponential back-off RTGCs. In
general, a single octet is enough to convey the retransm ssion
counter.

The sender has to transmit every segnment with a TCP Echo option
Sendi ng the Echo option only with retransnission has the issue of
addi ng option space, thereby potentially requiring the sender to
segrment the TCP payload differently (and sending an additiona
segrment) than the original segnent. A sender SHOULD t herefore add
the echo option to every sent segment to sinplify the inplenmentation
Sendi ng the TCP Echo option with every segnent has the added benefit
to make the mechanismtol erate ACK | osses

Zi mrer mann & Schef f eneggExpi res January 21, 2016 [Page 5]

I nternet-Draft Spurious Retransni ssion Detection July 2015

3.3. The Algorithm

Spurious Retransni ssion Detection (SRD) utilizes the TCP Echo option
[1-D. zi mrermann-tcpm echo-option], which is used with at |east one
octet of payload. |[|f another al gorithm deployed on the sender also
uses the TCP Echo option on a TCP connection, it is up to the

i npl ementer to conbi ne the necessary signaling of these nechanisns to
fit into a single TCP Echo option (e.g. by mapping the Echo option
codepoints into a translation table, or extending the Iength of the
TCP Echo option and nmatching parts of the data to the different
nmechani sns) .

The TCP sender nmintains a single, connection-global counter. This
retransm ssi on counter MJST be increased by one whenever the sender
enters | oss recovery, experiences a Retransm ssion Tineout (RTO, or
re-sends a previously already retransnitted segnent once nore. Care
nmust be taken to limt a malicious receivers ability make genui ne
retransm ssi ons appear as spurious retransmi ssions to the sender (see
Section 6), when encoding the internal counter value to the wire
representation.

Every transmitted segnment carries a TCP Echo option, where the data
reflects the current value of the sender’s retransmi ssion counter
When the sender receives an ACK, the TCP Echo option data is
extracted and checked agai nst the current value of the retransm ssion
counter, together with a check if the ACK is acceptable. Note that

i nformati on from not acceptable ACKs MJUST be eval uated too.

After a retransnission has been sent, either due to a Fast

Retransm ssion or an RTO, the first acceptable ACK is checked. If
the received retransm ssion counter is equal to the current counter
val ue mai ntai ned by the sender, a valid retransm ssion was sent. |If

the received value is less than the current retransm ssion counter, a
spurious retransm ssion was sent, and if no valid retransni ssions are
detected until the end of the |oss recovery phase, the TCP sender MAY
restore the congestion control state to the state prior to entering

| oss recovery. Even if some of the retransm ssions of this |oss
recovery phase nay have been spurious, the TCP sender MJUST NOT react
by restoring the congestion control state to the state before
entering loss recovery, if any of the retransmi ssions are deduced to
be valid.

A TCP sender MAY retain the congestion control state for up to two
RTTs since entering the | oss recovery state. {TODO Not after exiting
| oss recovery?} If all retransm ssions that were perforned in this
period are later found to have been spurious - either by evaluating
the retransm ssion counter values of received unacceptable (first
duplicate) ACKs, or a DSACK [RFC3708] indication - the TCP sender NAY

Zi mrer mann & Schef f eneggExpi res January 21, 2016 [Page 6]

I nternet-Draft Spurious Retransni ssion Detection July 2015

revert to the stored congestion control state, e.g. by follow ng the
Ei fel Response algorithm[RFC4015].

4. Exanpl es

This section shows a few exanples, fromsinple to increasingly

compl ex. Sone of these scenarios are addressed by exising nechani sns
like Eifel, and DSACK; in particular, corner cases that are not
adressed with existing nmechani sns are denonstrat ed.

In the foll owi ng exanpl es, each set of three lines starting with
"ack#", "sack:", and "sent:" represent one RTT. It is assunmed that
the sender has sent segnents 1 to 8 in the prior RTT, and for
readability, the nunbers show represent full segnents rather than
sequence nunbers

The two lines follow ng ("ack#" and "sack:") indicate what ACK is
being triggered on the receiver. The ACK nunber is the sequence
nunber of the next expected segnent, followed by a dot and the val ue
of the received TCP Echo option value - again for sinpilicty, the
internal representation of the global retransnission counter val ue
(initially set to zero) is shown, not the wire representation

In the line "sack:" the rel evant SACK bl ocks are depicted, again with
a single nunber representative of an entire segnent. Wen these ACKs
are seen by the sender, it will start sending the segnent depicted in
the line "sent:", again together with the retransni ssion counter

val ue.

Furt her assunptions in these exanples are that the sender is using
proportional rate reduction [RFC6937], limted transmt [RFC3042],
and sel ective acknow edgnents (SACK) [RFC2018] and [RFC2883], is not
application Iimted when sending data and has a congesti on w ndow of
9 segnments.

1. Fast Retransm ssion

ack# X1.0 1.0 1.0 1.0 1.0 1.0 1.0
sack: 2 2-3 2-4 2-5 2-6 2-7 2-8
sent: 9.0 10.0 1.1 11.1 12. 1
ack# 1.0 1.0 11.1 12. 1 13.1
sack: 2-9 -10

detected as valid retransmission, as for the first acceptable ACK
(11.1) after the retransmission the Echo Tag is equal to the
retransm ssi on counter.

Zi mrer mann & Schef f eneggExpi res January 21, 2016 [Page 7]

I nternet-Draft Spurious Retransni ssion Detection

2. Multiple |oss

ack# X 1.0 1.0 1.0 1.0 1.0 1.0 X
sack: 2 2-3 2-4 2-5 2-6 2-7

sent: 9.0 10.0 1.1 11.1

ack# 1.0 1.0 8.1 8.1

sack: 2-7,9 2-7,9-10 9-10 9-11

sent: 12.1 8.1

SRD detectes this as valid retransm ssion, as for the first

July 2015

acceptable ACK (8.1) and every other retransm ssion after the first
retransm ssion the Echo Tag is equal to the retransm ssion counter
Ret ransmi ssion counter is not increased when sending (8.1) as |oss

recovery was not yet exited at the tinme of sending that

retransm ssi on.

3. Ret ransmi ssi on Ti meout (RTO

ack# X X X X X X X X
sack:
sent: = ----- RTO -->

ack#
sack:
sent: ----- RTO --> 1.1

ack# 1.1
sack:

detected as valid retransnission, as the first acceptable ACK (1.1)
after the retransm ssion contains the Echo Tag of the retransm ssion.

4. Retransm ssion | oss

ack# X1.0 1.0 1.0 1.0 1.0 1.0 1.0

sack: 2 2-3 2-4 2-5 2-6 2-7 2-8

sent: 9.0 10.0 1.1 11.1 12. 1
X

ack# 1.0 1.0 1.1 1.1

sack: 2-9 -10 2-11 12

no acceptable ack, but a junp on the counter tag to the current
counter. (see {TODO LRD docunent}), also FACK is larger than
Recovery Point (The condition of FACK > RP will trigger linux LRD).

Zi mrer mann & Schef f eneggExpi res January 21, 2016

[Page 8]

I nternet-Draft Spurious Retransni ssion Detection July 2015

Note: without LRD, the |ost retransm ssion will NOT be retried before
an RTO. Can not be detected by Eifel due to TCP Ti mest anps
semanti cs.

5. Multiple loss, first retransm ssion | ost
ack# X X 1.0 1.0 1.0 1.0 1.0 1.0
sack: 3 3-4 3-5 3-6 3-7 3-8
sent: 9.0 1.1 2.1 10. 1
X

ack# 1.0 1.1 1.1
sack: 3-9 2-9 2-10
sent: 11.1 1.2 12.2

no acceptable ack, but a junp on the counter tag to the current
counter. see {TODO LRD docunent}. Linux LRD woul d del ay the sending
of 1.2 until after FACK passes RP (in this exanple, the last two sent
segnments was be swapped). Not detectable by Eifel

6. RTT > Reordering delay > DupThresh

r
6.0 7.0 8.0

ack# R1.0 1.0 1.0 1.0

sack: 2 2-3 2-4 2-5

sent: 8.0 9.0 1.1 10.1 11.1 12.1
ack# 9.0 10.0 10.1 11.1 12.1 13.1
sack: 1

detected as spurious retransm ssion, as the first acceptable ACK
(6.0) after the retransnission is received with the Echo Tag unequa
the current retransnission counter; DSACK detects this 1 RTT later
Eifel detects this at the sane time using tinestanps

7. Reordering delay > RTT

ack# R1.0 1.0 1.0 1.0 1.0 1.0 1.0

sack: 2 2-3 2-4 2-5 2-6 2-7 2-8

sent: 9.0 10.0 1.1 11.1 12.1
r

ack# 1.0 1.0 11.1 12.1 12.0 13.1

sack: 2-9 2-10 1

detected as valid retransmi ssion, as the first acceptable ACK (11.1)
after the retransnission contains the Echo Tag of the retransm ssion.

Zi mrer mann & Schef f eneggExpi res January 21, 2016 [Page 9]

I nternet-Draft Spurious Retransni ssion Detection July 2015

Note that at (12.0), with the retransm ssion counter always counting
up, this detection becones possible, by seeing 2nd ACK with | ower
retransm ssion counter (SRD) one RTT later: DSACK and SRD bot h detect
at the same tine

8. Packet duplication

SACK is mandatory for SRD, and SACK detects this as duplication
event, with no further action

9. Reordering and | oss

r
ack# R X 1.0 1.0 1.0 2.0 2.0 2.0
sack: 3 3-4 3-5 3-5 3-6 3-7
sent: 80 9.0 1.1 2.1
ack#: 2.0 2.0 2.1 10.1
sack 3-8 3-9 1,3-9

detected as spurious retransmnission, as the first acceptable ACK
(2.0) after the retransmission is received with the Echo Tag unequa
the current retransnission counter; no undo at that point, since
still in recovery. DSACK detects this 1 RIT later; Eifel detects
this at the sane tine using tinestanps.

Detected as valid retransmi ssion, as for the second acceptabl e ACK
(10.1) after the retransmission the Echo Tag is equal to the
retransm ssion counter, prior to | eaving | oss recovery

10. Loss and reordering (reordered retransm ssion)

ack# X1.0 1.0 1.0 1.0 1.0 1.0 1.0
sack: 2 2-3 2-4 2-5 2-6 2-7 2-8
sent: 9.0 10.0 1.1 11.1 12.1
R
r

ack# 1.0 1.0 1.1 12.1 13.1
sack: 2-9 2-10 2-11

sent: 13.1 1.2 14.2 15.2
ack# 14.1 14.2 15.2 16.2
sack: 1

reordered retransm ssi on

Zi mrer mann & Schef f eneggExpi res January 21, 2016 [Page 10]

I nternet-Draft Spurious Retransni ssion Detection July 2015

LRD triggered (no acceptabl e ack, when retransm ssion count increases
- {TODO LRD docunent}), also FACK > Recovery Point (Linux LRD)

Det ected as spurious retransm ssion, as the first acceptable ACK
(12.1) after the 2nd retransmission is received with the Echo Tag
unequal the current retransm ssion counter; undo at that point, since
recovery is exited at the sane tine. DSACK detects this 1 RTT later;
Eifel detects this at the sane tinme using tinestanps

11. ACK reordering after |oss

ack# X1.0 1.0 1.0 1.0 1.0 1.0 1.0
sack: 2 2-3 2-4 2-5 2-6 2-7 2-8
sent : 9.0 10.0 1.1 11.1 12. 1
R
r
ack# 1.0 1.0 1.1 11.1 13.1
sack: 2-9 2-10 2-11
sent : 13.1 1.2 14.2 15.2

valid retransm ssion, as first acceptable ack (11.1) after
retransm ssion has same retransni ssion counter as the current val ue.
Reordered ACK has still sanme (not lower!) retransm ssion counter

12. ACK reordering after reordering

rR
ack# R1.0 1.0 1.0 1.0 7.0 6.0 8.0
sack: 2 2-3 2-4 2-5
sent: 8.0 9.0 1.1 10.1 11.1
ack# 9.0 10.0 10.1 11.1 12.1
sack: 1

detected as spurious retransm ssion, as the first acceptable ACK
(7.0) after the retransmission is received with the Echo Tag unequa
the current retransmi ssion counter; DSACK detects this 1 RTT later
Ei fel detects this at the sane tinme using tinestanps

13. ACK | oss after reordering

Zi mrer mann & Schef f eneggExpi res January 21, 2016 [Page 11]

I nternet-Draft Spurious Retransni ssion Detection July 2015

r

ack# R1.0 1.0 1.0 1.0 (6.0) 7.0 8.0
sack: 2 2-3 2-4 2-5

sent: 8.0 9.0 1.1 10.1 11.1
ack# 9.0 10.0 10.1 11.1 12.1
sack: 1

detected as spurious retransm ssion, as the first acceptable ACK
(7.0) after the retransmission is received with the Echo Tag unequa
the current retransnission counter; DSACK detects this 1 RTT later
Eifel detects this at the sanme time using tinestanps

Note that retransm ssion counter only increasing helps this case to
work both with reordering (spurious retransnission) and

retransm ssion ACK loss - the relevant information is conveyed for
about 1RTT thus single ACK | oss does not inpact the detection

14. TODO delay ACK
Todo: Exanpl e necessary?
5. |1 ANA Consi derations

Thi s docunment contains no requests to | ANA, as only a new conbi ned
use of TCP options is described.

6. Security Considerations

Thi s docunment describes a new use for the TCP Echo option
Transporting the retransm ssion counter in the clear may pose a
security problem when the TCP sender uses SRD to restore the TCP
state. A malicious receiver could gane the sender to always restore
the congestion control state to the one preceding the | ost recovery
epi sode, thereby naking the sender not back off its transm ssion
rate.

As the sender can put any data into the TCP Echo option, the

transm ssion counter value can be masked in various ways. A TCP
sender can map the sane counter value to nultiple TCP Echo option
data val ues, and track which of these data val ues woul d be expected
for a given acknow edgenment. Alternatively, the TCP Echo option data
could be a (secure) hash of the sequence nunber of the sent segnent,
a random per-connection secret, and the retransm ssion counter. The
TCP Echo data woul d | ook rather as random sequence of octets in both
cases, nmaking it very hard for a nmalicious receiver to obtain an
unfair share of bandw dth by maski ng genuine retransni ssions as

spuri ous.

Zi mrer mann & Schef f eneggExpi res January 21, 2016 [Page 12]

I nternet-Draft Spurious Retransni ssion Detection July 2015

7. Acknow edgenent s

The authors |ike to thank Bob Briscoe and Brian Trammel for their
i nval uabl e i nput.

Al exander Zi mrermann the European Union’s Horizon 2020 research and
i nnovati on program 2014-2018 under grant agreenent No. 644866

(SSI CLOPS). This docunent reflects only the authors’ views and the
Eur opean Commission is not responsible for any use that nmay be nade
of the information it contains.

8. References
8.1. Normative References
[I-D. zi mrer mann-tcpm echo- opti on]
Zi nmer mann, A., Scheffenegger, R, and B. Briscoe, "The
TCP Echo and TCP Echo Reply Options", draft-zi mrer mann-
tcpm echo-option-00 (work in progress), June 2015.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

8.2. Informative References
[KP87] Karn, P. and C. Partridge, "Estimating Round-Trip Tines in
Rel i abl e Transport Protocol s", Proc. SIGCOW '87, August
1987.
[MVB6] Mathis, M and J. Mahdavi, "Forward Acknow edgenent:

Refining TCP Congestion Control”, ACM SI GCOW 1996
Proceedi ngs, in ACM Conputer Conmuni cation Review 26 (4),
pp. 281-292, COctober 1996

[RFCO793] Postel, J., "Transmi ssion Control Protocol", STD 7, RFC
793, Septenber 1981

[RFC1122] Braden, R, "Requirenents for Internet Hosts -
Conmruni cati on Layers", STD 3, RFC 1122, Cctober 1989.

[RFC2018] Mathis, M, Mhdavi, J., Floyd, S., and A Romanow, "TCP
Sel ecti ve Acknow edgnent Options", RFC 2018, Cctober 1996.

[RFC2883] Floyd, S., Mahdavi, J., Mathis, M, and M Podol sky, "An

Extension to the Sel ective Acknow edgenent (SACK) Option
for TCP', RFC 2883, July 2000.

Zi mrer mann & Schef f eneggExpi res January 21, 2016 [Page 13]

I nternet-Draft Spurious Retransni ssion Detection July 2015

[RFC3042] A lman, M, Bal akrishnan, H, and S. Floyd, "Enhancing
TCP's Loss Recovery Using Limted Transmit", RFC 3042,
January 2001.

[RFC3522] Ludwig, R and M Meyer, "The Eifel Detection Al gorithm
for TCP', RFC 3522, April 2003.

[RFC3708] Blanton, E. and M Al lnman, "Using TCP Duplicate Selective
Acknowl edgenent (DSACKs) and Stream Control Transm ssion
Protocol (SCTP) Duplicate Transm ssion Sequence Nunbers
(TSNs) to Detect Spurious Retransm ssions", RFC 3708,
February 2004.

[RFC4015] Ludwig, R and A Gurtov, "The Eifel Response Al gorithm
for TCP', RFC 4015, February 2005.

[RFC6582] Henderson, T., Floyd, S., @urtov, A, and Y. N shida, "The
NewReno Modification to TCP's Fast Recovery Al gorithnt,
RFC 6582, April 2012.

[RFC6937] Mathis, M, Dukkipati, N, and Y. Cheng, "Proportiona
Rat e Reduction for TCP', RFC 6937, My 2013.

[RFC7323] Borman, D., Braden, B., Jacobson, V., and R
Schef f enegger, "TCP Extensions for Hi gh Performance", RFC
7323, Septenber 2014.

[Zh86] Zhang, L., "Why TCP tiners don’'t work well", Proc. SIGCOW
' 86, Sep 1986.

Aut hors’ Addr esses

Al exander Zi mrer mann
Net App, I nc.
Sonnenal l ee 1

Ki rchhei m 85551

Ger many

Phone: +49 89 900594712
Enmai | : al exander. zi nmer mann@et app. com

Zi mrer mann & Schef f eneggExpi res January 21, 2016 [Page 14]

I nternet-Draft Spurious Retransni ssion Detection July 2015

Ri chard Schef f enegger
Net App, I nc.

Am Euro Platz 2
Vienna 1120

Austria

Emai | : rs@et app. com

Zi mrer mann & Schef f eneggExpi res January 21, 2016 [Page 15]

