| 2NSF Wor ki ng G oup J. Yang

I nternet-Draft J. Jeong
I ntended status: Standards Track J. Kim
Expires: Septenber 12, 2019 Sungkyunkwan Uni versity

March 11, 2019

Security Policy Translation in Interface to Network Security Functions
draft-yang-i2nsf-security-policy-translation-03

Abstract

Thi s docunent proposes a schenme of security policy translation (i.e.,
Security Policy Translator) in Interface to Network Security
Functions (I2NSF) Framework. Wen | 2NSF User delivers a high-1Ievel
security policy for a security service, Security Policy Translator in
Security Controller translates it into a |lowlevel security policy
for Network Security Functions (NSFs).

Status of This Meno

This Internet-Draft is submtted in full confornmance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I1ETF). Note that other groups nmay al so distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi mum of six nonths
and may be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on Septenber 12, 2019.
Copyright Notice

Copyright (c) 2019 I ETF Trust and the persons identified as the
docurment authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Legal
Provisions Relating to | ETF Docunents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of

Yang, et al. Expi res Septenber 12, 2019 [Page 1]

I nternet-Draft | 2NSF Security Policy Translation March 2019

the Trust Legal Provisions and are provided w thout warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction 2
2. Term nol ogy . Ce e 3
3. Necessity for Policy Transl ator 3
4. Design of Policy Translator 4
4.1. Overall Structure of Policy Translator 4
4.2. DFA-based Data Extractor . . 6
4.2.1. Design of DFA-based Data Extractor 6
4.2.2. Exanple Scenario for Data Extractor 7
4.3. Data Converter .o G e 9
4.3.1. Role of Data Converter C e e e e 9
4.3.2. NSF Database . . . e e 10
4.3.3. Data Conversion in Data Cbnverter . e 10
4.3.4. Policy Provisioning 12
4.4. CFG based Policy Generator 13
4.4.1. Content Production 13
4.4.2. Structure Production 14
4.4.3. GCenerator Construction 14
5. Inplenentation Considerations 18
5.1. Data Model Auto-adaptation 18
5.2. Data Conversion 19
5.3. Policy Provisioning . . e |
6. Features of Policy Translator Design 19
7. Security Considerations 20
8. Acknow edgnents ... 20
9. References . . e e e e oo s .20
9.1. Normative References e e e e oo s .20
9.2. Informative References . . oo 21
Appendi x A. Changes fromdraft- yang |2nsf securlty pollcy-
translation-02 22
Aut hors’ Addresseso .. 22
1. Introduction

Thi s docunent defines a schene of a security policy translation in
Interface to Network Security Functions (12NSF) Framework [RFC8329].

First of all, this docunent explains the necessity of a security
policy translator (shortly called policy translator) in the |2NSF
f ramewor k.

The policy translator resides in Security Controller in the |I2NSF
framewor k and translates a high-level security policy to a | owl evel
security policy for Network Security Functions (NSFs). A high-1level
policy is specified by I2NSF User in the |I2NSF framework and is

Yang, et al. Expi res Septenber 12, 2019 [Page 2]

I nternet-Draft | 2NSF Security Policy Translation March 2019

delivered to Security Controller via Consuner-Facing Interface
[consuner-facing-inf-dnj. It is translated into a |owlevel policy
by Policy Translator in Security Controller and is delivered to NSFs
to execute the rules corresponding to the | owlevel policy via NSF-
Facing Interface [nsf-facing-inf-dnj.

2. Term nol ogy

Thi s docunent uses the term nol ogy specified in [i2nsf-term nol ogy]
[RFC8329] .

3. Necessity for Policy Translator

Security Controller acts as a coordi nator between | 2NSF User and
NSFs. Also, Security Controller has capability information of NSFs
that are registered via Registration Interface [registration-inf-dm
by Devel oper’s Managenent System [RFC8329]. As a coordi nator,
Security Controller needs to generate a lowlevel policy in the form
of security rules intended by the high-level policy, which can be
under stood by the correspondi ng NSFs.

A high-level security policy is specified by RESTCONF/ YANG

[RFC8040] [RFC6020], and a |l ow | evel security policy is specified by
NETCONF/ YANG [RFC6241] [RFC6020]. The translation from a high-1evel
security policy to the corresponding | owlevel security policy wll
be able to rapidly elevate 12NSF in real-world deploynent. A rule in
a high-level policy can include a broad target object, such as

enpl oyees in a conpany for a security service (e.g., firewall and web
filter). Such enployees may be from human resource (HR) departnent,
sof tware engi neering departnent, and advertisenent departnent. A
keyword of enpl oyee needs to be mapped to these enpl oyees from

vari ous departnents. This mapping needs to be handl ed by a policy
translator in a flexible way while understanding the intention of a
policy specification. Let us consider the follow ng two policies:

o Block nmy son’s conmputers from malicious websites.

o Drop packets fromthe IP address 10.0.0.1 and 10.0.0.3 to harm com
and illegal.com

The above two sentences are exanples of policies for blocking
mal i ci ous websites. Both policies are for the sane operation.
However, NSF cannot understand the first policy, because the policy
does not have any specified information for NSF. To set up the
policy at an NSF, the NSF MJST receive at |east the source |P address
and website address for an operation. It neans that the first
sentence is NOT conpatible for an NSF policy. Conversely, when | 2NSF
Users request a security policy to the system they never nmake a

Yang, et al. Expi res Septenber 12, 2019 [Page 3]

I nternet-Draft | 2NSF Security Policy Translation March 2019

4.

1

security policy like the second exanple. For generating a security
policy |ike the second sentence, the user MJST know that the NSF
needs to receive the specified information, source |IP address and

website address. It nmeans that the user understands the NSF
professionally, but there are not nmany professional users in a snal
size of conmpany or at a residential area. 1In conclusion, the |2NSF

User prefers to issue a security policy in the first sentence, but an
NSF will require the sanme policy as the second sentence with specific
information. Therefore, an advanced translation schene of security
policy is REQU RED i n | 2NSF.

Thi s docunment proposes an approach using Automata theory [Autonata]
for the policy tranlation, such as Determnistic Finite Automaton
(DFA) and Context Free G ammar (CFG. Note that Automata theory is

t he foundation of programm ng | anguage and conpiler. Thus, with this
approach, |2NSF User can easily specify a high-level security policy
that will be enforced into the corresponding NSFs with a conpatibly

| ow- I evel security policy with the help of Policy Translator. Al so,
for easy managenent, a nodul arized translator structure i s proposed.

Desi gn of Policy Transl ator

Commonly used security policies are created as XM.(Extensi bl e Markup
Language) [XM.] files. A popular way to change the format of an XM
file is to use an XSLT (Extensible Styl esheet Language
Transformation) [XSLT] docunment. XSLT is an XM.-based | anguage to
transforman input XML file into another output XM. file. However,
the use of XSLT mekes it difficult to nmanage the policy translator
and to handle the registration of new capabilities of NSFs. Wth the
necessity for a policy translator, this docunent describes a policy
transl ator based on Automata theory.

Overall Structure of Policy Transl ator

Yang, et al. Expi res Septenber 12, 2019 [Page 4]

I nternet-Draft | 2NSF Security Policy Translation March 2019

Hi gh- Level Policy

Security |

Controller V Consuner-Facing Interface
o o m e e e e e e e e e e m +
| Policy | |

| Translator | |

| o e e e oo o e e e a - - + |

| | |

| oo oo + |

|] | DFA- based | |]

[| | Data Extractor | [|

| e oo + |

| | Extracted Data from| |

| V High-Level Policy [

| | +----- +----- + I + | |

|] | Dat a | <->] NSF DB | | |

[| | Converter | e + | |

| R |

|] | Required Data for |

[V Target NSFs |]

| oo doooo o + |

|] | CFG based | |]

[| | Policy Generator | [|

| e oo + |

| | |

| R o e e e e e e e a - - + |

| | |

o o m e e e e e e e e e e m +

| NSF-Facing Interface
Low Level Policy
Figure 1. The Overall Design of Policy Transl ator

Figure 1 shows the overall design for Policy Translator in Security
Controller. There are three main conponents for Policy Translator:
Data Extractor, Data Converter, and Policy Cenerator.

Extractor is a DFA-based nodul e for extracting data froma high-1evel
policy which I2NSF User delivered via Consumer-Facing Interface.

Dat a Converter converts the extracted data to the capabilities of
target NSFs for a lowlevel policy. It refers to NSF Dat abase (DB)
in order to convert an abstract subject or object into the

correspondi ng concrete subject or object (e.g., |IP address and
website URL). Policy CGenerator generates a |ow | evel policy which
will execute the NSF capabilities from Converter

Yang, et al. Expi res Septenber 12, 2019 [Page 5]

I nternet-Draft | 2NSF Security Policy Translation March 2019

4. 2. DFA- based Data Extractor

4.2.1. Design of DFA-based Data Extractor

<tag 1>| |</tag 1>

v
T +
| mddle 1 |
U U U +
| ~ | ~ | ~
<tag 2>| |</tag 2> <tag 3> |</tag 3> <tag n>| |</tag n>
v v v
S + S + S +
| extractor 1 | | extractor 2 | | extractor m|
Fom e e oo + Fom e e oo + Fom e e oo +
data: 1 data: 2 data:m

Figure 2: DFA Architecture of Data Extractor

Figure 2 shows a design for Data Extractor in the policy translator.
If a high-level policy contains data along the hierarchical structure
of the standard Consuner-Facing Interface YANG data nodel

[consuner-facing-inf-dn], data can be easily extracted using the
state transition machi ne, such as DFA. The extracted data can be
processed and used by an NSF to understand it. Extractor can be
constructed by designing a DFA with the same hierarchical structure
as a YANG dat a nodel .

After constructing a DFA, Data Extractor can extract all of data in
the enterred high-level policy by using state transitions. Also, the
DFA can easily detect the grammar errors of the high-1level policy.
The extracting algorithmof Data Extractor is as foll ows:

1. Start fromthe "accepter’ state.

2. Read the next tag fromthe high-1level policy.

3. Transit to the correspondi ng state.

4. |If the current state is in 'extractor’, extract the correspondi ng
data, and then go back to step 2.

Yang, et al. Expi res Septenber 12, 2019 [Page 6]

I nternet-Draft | 2NSF Security Policy Translation March 2019

5. If the current state is in 'mddle , go back to step 2.

6. If there is no possible transition and arrived at ’'accepter
state, the policy has no grammar error. Qherwise, there is a
grammar error, so stop the process with failure.

4.2.2. Exanple Scenario for Data Extractor

<| 2NSF>
<name>bl ock_web</ name>
<cond>
<src>Son’ s_PC</src>
<dest >mal i ci ous_websi t es</ dest >
</ cond>
<act i on>bl ock<acti on>
</ | 2NSF>

Figure 3: The Exanple of Hi gh-level Policy

Fomm e m oo o +
| accepter |
R +
|l\
<I 2NSF>| | </ | 2NSF>
v
ot o e o ememeaon +
| mddle 1 |
U +
|l\ N |l\
<nane>| | </nanme> <cond>| | </cond> <action>| |</action>
v v v
Fom e o + o e e e e e e e e e e oo + Fom e e +
| extractor 1 | | m ddle 2 | | extractor 4
o e + o + o e +
bl ock_web | ~ | ~ bl ock
<src>| |</src> <dest>| |</dest>
v v
Fom e o S IS +
| extractor 2 | | extractor 3 |
o e + e e e e e o - +
Son’s_PC mal i ci ous
_websites

Figure 4. The Exanple of Data Extractor

To explain the Data Extractor process by referring to an exanpl e
scenari o, assunme that Security Controller received a high-Ievel

Yang, et al. Expi res Septenber 12, 2019 [Page 7]

I nternet-Draft | 2NSF Security Policy Translation March 2019

policy for a web-filtering as shown in Figure 3. Then we can
construct DFA-based Data Extractor by using the design as shown in
Figure 2. Figure 4 shows the architecture of Data Extractor that is
based on the architection in Figure 2 along with the input high-Ievel
policy in Figure 3. Data Extractor can automatically extract all of
data in the high-level policy according to the follow ng process:

1. Start fromthe 'accepter’ state.

2. Read the first opening tag called '<I2NSF>', and transit to the
"mddle 1' state.

3. Read the second opening tag called ’<nane>, and transit to the
"extractor 1’ state.

4. The current state is an 'extractor’ state. Extract the data of
"nane’ field called ’block web'.

5. Read the second closing tag called "</ nanme>, and go back to the
"mddle 1" state.

6. Read the third opening tag called '<cond>, and transit to the
"mddle 2° state.

7. Read the fourth opening tag called "<src>, and transit to the
"extractor 2’ state.

8. The current state is an 'extractor’ state. Extract the data of
"src’ field called "Son’s_PC .

9. Read the fourth closing tag called *</src>, and go back to the
"mddle 2° state.

10. Read the fifth opening tag called ’'<dest>', and transit to the
"extractor 3’ state.

11. The current state is an 'extractor’ state. Extract the data of
"dest’ field called 'nalicious websites’.

12. Read the fifth closing tag called ’'</dest>, and go back to the
"mddle 2° state.

13. Read the third closing tag called ’'</cond>, and go back to the
"mddle 1' state.

14. Read the sixth opening tag called ’'<action>, and transit to the
"extractor 4’ state.

Yang, et al. Expi res Septenber 12, 2019 [Page 8]

I nternet-Draft | 2NSF Security Policy Translation March 2019

15. The current state is an 'extractor’ state. Extract the data of
"action’ field called ’'block’.

16. Read the sixth closing tag called ’'</action>, and go back to
the "mddle 1' state.

17. Read the first closing tag called '</I2NSF>", and go back to the
"accepter’ state.

18. There is no further possible transition, and the state is
finally on "accepter’ state. There is no grammar error in
Figure 3 so the scanning for data extraction is finished.

The above process is constructed by an extracting algorithm After
finishing all the steps of the above process, Data Extractor can
extract all of data in Figure 3, 'block web’', 'Son's PC,
"mal i cious’, and ’block’.

Since the translator is nodularized into a DFA structure, a visua
understanding is feasible. Also, The performance of Data Extractor
is excellent conpared to one-to-one searching of data for a
particular field. |In addition, the managenent is efficient because
the DFA conpletely follows the hierarchy of Consuner-Faci ng
Interface. |If I12NSF User wants to nodify the data nodel of a high-
| evel policy, it only needs to change the connection of the rel evant
DFA node.

4. 3. Dat a Converter
4. 3. 1. Rol e of Data Converter

Every NSF has its own unique capabilities. The capabilities of an
NSF are registered into Security Controller by a Devel oper’s
Managenent System which manages the NSF, via Registration Interface.
Therefore, Security Controller already has all information about the
capabilities of NSFs. This neans that Security Controller can find
target NSFs with only the data (e.g., subject and object for a
security policy) of the high-level policy by conparing the extracted
data with all capabilities of each NSF. This search process for
appropriate NSFs is called by policy provisioning, and it elimnates
the need for |I2NSF User to specify the target NSFs explicitly in a
hi gh-1evel security policy.

Dat a Converter selects target NSFs and converts the extracted data
into the capabilities of selected NSFs. |If Security Controller uses
this data convertor, it can provide the policy provisioning function
to | 2NSF User automatically. Thus, the translator design provides
bi g benefits to the | 2NSF Fr anmewor k.

Yang, et al. Expi res Septenber 12, 2019 [Page 9]

I nternet-Draft | 2NSF Security Policy Translation March 2019

4. 3.

4.

3.

2. NSF Dat abase

The NSF Dat abase contains all the information needed to convert high-
| evel policy data to lowlevel policy data. The contents of NSF

Dat abase are classified as the followng two: "endpoint information”
and "NSF capability information".

The first is "endpoint information”. Endpoint information is
necessary to convert an abstract high-level policy data such as

Son’s PC, malicious to a specific lowlevel policy data such as
10.0.0.1, illegal.com In the high-level policy, the range of
endpoints for applying security policy MJST be provided abstractly.
Thus, endpoint information is needed to specify the abstracted high-

| evel policy data. Endpoint information is provided by |I2NSF User as
t he high-1evel policy through Consuner-Facing Interface, and Security
Control l er builds NSF Database based on received information.

The second is "NSF capability information". Since capability is
information that allows NSF to know what features it can support, NSF
capability information is used in policy provisioning process to
search the appropriate NSFs through the security policy. NSF
capability information is provided by Devel oper’s Managenent System
(DVB) through Registration Interface, and Security Controller builds
NSF Dat abase based on received information. 1In addition, if the NSF
sends nonitoring information such as initiating information to
Security Controller through NSF-Facing Interface, Security Controller
can nodi fy NSF Dat abase accordingly.

3. Dat a Conversion in Data Converter

Yang, et al. Expi res Septenber 12, 2019 [Page 10]

I nternet-Draft | 2NSF Security Policy Translation March 2019

Hi gh- 1 evel Low- | evel
Policy Data Policy Data

S + o m e e e e e e e e e e e m +
| Rul e Nane | | Rule Name |
| +----------- + | The Sane val ue I R +
| | block_ web |-]------------------- >| ->| bl ock_web | |
| +----------- + | I e + |
I I I I
Sour ce	Conversion into	Source	Pv4			
+-------a-- +	User’s IP address	+--------mmmmmmmmmnaaa +				
	Son"s PC	-	-------------=----- >	- >	[10.0.0.1, 10.0.0.3]	
+----------- +	I R +					
I I I I						
Destination	Conversion into	URL Category				
+----------- +	malicious websites	+------------mmimiiao o +				
	malicious	-	--------=-----=----- >	- >	[harm com	
	_websites				illegal.con]
+----------- +	I R +					
I I I I						
Action	Conversion into	Log Action Drop Action				

+----------- +	NSF Capability	+ + R +				
	bl ock [-]------------------- >	- >	True		True	
+----------- +		+---------- + Femmm e +				
o e + g +

Figure 5. Exanple of Data Conversion

Figure 5 shows an exanple for describing a data conversion in Data
Converter. High-level policy data MJUST be converted into | ow 1| evel
policy data which are conpatible with NSFs. If a ystem adm ni strator
attaches a database to Data Converter, it can convert contents by
referring to the database with SQL queries. Data conversion in
Figure 5 is based on the following |ist:

0 'Rule Nane’' field does NOT need the conversi on.

o ’'Source’ field SHOULD be converted into a list of target |Pv4
addr esses.

o ’'Destination’ field SHOULD be converted into a URL category |i st
of malicious websites.

o ’'Action’ field SHOULD be converted into the correspondi ng
action(s) in NSF capabilities.

Yang, et al. Expi res Septenber 12, 2019 [Page 11]

I nternet-Draft | 2NSF Security Policy Translation March 2019

4.3.4. Policy Provisioning

Log- keeper Low | evel Web-filter
NSF Pol i cy Data NSF
e S S R +
Rul e Nane Rul e Nane Rul e Nane
S U + S U + S U +
| bl ock_web | <-]<-]<-| bl ock_web |->|->|->] bl ock_web |
o e a o - + o e a o - + o e a o - +
Source | Pv4 Source | Pv4 Source | Pv4
R . + R . + R . +
| [210.0.0.1, |<-|<-|<-] 1[10.0.0.1, |->->-> [10.0.0.1, |
| 10.0.0.3] | | 10.0.0.3] | | 10.0.0.3] |
o e a o - + o e a o - + o e a o - +

I || I
I || I
I | ->] I
I | | I
I || I
I | I
I || I
I | ->] I
I | I
I | | I
I || I
I | I
I || I
| | [harmcom |->]|->-> [harmcom | |
I | I
I | | I
I || I
I | I
I || I
I || I
I | I
I | | I
I || I
I | I
I | ->] I
I | I

U + U +
I
| i1llegal.conl | | 1llegal.conl |
o e a o - + o e a o - +
Log Action Log Action
U + U +
| True | <-]<-]<-| True |
Fomm e e m e m oo o + Fomm e e m e m oo o +
o e e e +
Drop Action Drop Action
S + S +
| True | ->|->| ->| True |
U + U +
Fom e e e e e o e oo RS PSS +

Figure 6: Exanple of Policy Provisioning

Cenerator searches for proper NSFs which can cover all of
capabilities in the high-level policy. Generator searches for target
NSFs by conparing only NSF capabilities which is registered by Vendor
Managenent System This process is called by "policy provisioning”
because Cenerator finds proper NSFs by using only the policy. |If
target NSFs are found by using other data which is not included in a
user’s policy, it neans that the user already knows the specific
know edge of an NSF in the | 2NSF Franmework. Figure 6 shows an
exanpl e of policy provisioning. In this exanple, |og-keeper NSF and
web-filter NSF are selected for covering capabilities in the security
policy. Al of capabilities can be covered by two sel ected NSFs.

Yang, et al. Expi res Septenber 12, 2019 [Page 12]

I nternet-Draft | 2NSF Security Policy Translation March 2019

4.4. CFG based Policy Generator

CGenerator nmakes | ow 1l evel security policies for each target NSF with
the extracted data. W constructed Generator by using Context Free
Gamar (CFG. CFGis a set of production rules which can describe
all possible strings in a given fornmal |anguage(e.g., progranm ng

| anguage). The low | evel policy also has its own | anguage based on a
YANG dat a nodel of NSF-Facing Interface. Thus, we can construct the
productions based on the YANG data nodel. The productions that nakes
up the lowlevel security policy are categorized into two types,
"Content Production’ and ' Structure Production’.

4.4.1. Content Production

Content Production is for injecting data into |l owlevel policies to
be generated. A security manager(i.e., a person (or software) to
make productions for security policies) can construct Content
Productions in the formof an expression as the foll ow ng

producti ons:

o [cont_prod] -> [cont_prod][cont_prod] (Were duplication is
al | oned.)

0 |[cont_prod] -> <cont_tag>[cont_data]</cont_tag>
o [cont_data] -> data_1l | data 2 | ... | data_n

Square brackets nean non-termnal state. |If there are no non-
termnal states, it neans that the string is conpletely generated.
When the duplication of content tag is allowed, the security nmanager
adds the first production for a rule. |If there is no need to all ow
duplication, the first production can be skipped because it is an
opti onal production.

The second production is the main production for Content Production
because it generates the tag which contains data for |owl evel
policy. Last, the third production is for injecting data into a tag
which is generated by the second production. |[|f data is changed for
an NSF, the security manager needs to change "only the third
production"” for data mapping in each NSF.

For exanple, if the security manager wants to express a |l ow| evel
policy for source |IP address, Content Production can be constructed
in the follow ng productions:

o [cont _ipv4] -> [cont _ipv4][cont _ipv4] (Al ow duplication.)

o |[cont_ipv4] -> <ipv4d>[cont_ipv4 _data]</ipvi>

Yang, et al. Expi res Septenber 12, 2019 [Page 13]

I nternet-Draft | 2NSF Security Policy Translation March 2019

o [cont_ipv4_data] -> 10.0.0.1 | 10.0.0.3
4.4.2. Structure Production

Structure Production is for grouping other tags into a hierarchy.
The security manager can construct Structure Production in the form
of an expression as the follow ng production:

0O [struct_prod] -> <struct_tag>prod_1]...[prod_n]</struct_tag>

Structure Production can be expressed as a single production. The
above production neans to group other tags by the nane of a tag which
is called by "struct_tag’. [prod x] is a state for generating a tag
whi ch wants to be grouped by Structure Production. [prod _x] can be
bot h Content Production and Structure Production. For exanple, if
the security manager wants to express the lowlevel policy for the

| 2NSF tag, which is grouping 'nane’ and 'rules’, Structure Production
can be constructed as the foll ow ng production where [cont_nane] is
the state for Content Production and [struct_rule] is the state for
Structure Production.

0 [struct_i2nsf] -> <I2NSF>[cont _nane][struct rul es] </ 2NSF>

4.4.3. GCenerator Construction
The security manager can build a generator by conbining the two
productions which are described in Section 4.4.1 and Section 4.4. 2.
Figure 7 shows the CFG based CGenerator construction of the web-filter
NSF. It is constructed based on the NSF-Facing Interface Data Mdel
in [nsf-facing-inf-dnj. According to Figure 7, the security manager
can express productions for each clause as in follow ng CFG
1. [cont _name] -> <rul e-nane>[cont _nane_dat a] </ rul e- nane>
2. [cont _nanme_data] -> bl ock web
3. [cont _ipv4] -> [cont_ipv4][cont_ipv4] (Al ow duplication)
4. [cont i pv4] -> <ipv4>[cont _ipv4 data]</ipva>

5. [cont ipv4 data] -> 10.0.0.1 | 10.0.0.3

6. [cont _url] -> [cont_url][cont_url] (Al ow duplication)
7. [cont _url] -> <url>[cont _url _data]</url>
8. [cont _url _data] -> harmcom| illegal.com

Yang, et al. Expi res Septenber 12, 2019 [Page 14]

I nternet-Draft | 2NSF Security Policy Translation March 2019

10.
11.
12.

13.

14.
15.

Then,
The |

[cont _action] -> <action>cont_action_data]</action>
[cont _action_data] -> drop

[struct _packet] -> <packet>[cont _i pv4] </ packet>
[struct _payl oad] -> <payl oad>[cont _url]</payl oad>

[struct _cond] ->
<condi ti on>[struct _packet][struct_payl oad] </ condi ti on>

[struct rules] -> <rules>struct_cond][cont_action]</rul es>
[struct _i2nsf] -> <I2NSF>[cont_nane][struct _rul es] </ 2NSF>

CGenerator generates a | owlevel policy by using the above CFG
ow |l evel policy is generated by the foll ow ng process:

Start: [struct_i2nsf]
Production 15: <I2NSF>[cont_nane] [struct _rul es] </ | 2NSF>

Production 1: <I2NSF><rul e-nane>[cont _nane_dat a] </ rul e-
name>[struct _rul es] </ 1 2NSF>

Production 2: <I2NSF><rul e- nanme>bl ock_web</rul e-
name>[struct _rul es] </ | 2NSF>

Production 14: <l 2NSF><rul e- nane>bl ock_web</rul e-
name><r ul es>[struct _cond] [cont _action] </ rul es></ | 2NSF>

Production 13: <l 2NSF><rul e- nane>bl ock_web</ rul e- nane><r ul es><co
ndi ti on>[struct _packet][struct payl oad] </ condition>[cont_acti on]
</ rul es></ | 2NSF>

Production 11: <I2NSF><rul e- nane>bl ock_web</rul e- nane><r ul es><co
ndi ti on><packet >[cont _i pv4] </ packet >[struct _payl oad] </ condi ti on>
[cont _action] </rul es></| 2NSF>

Production 3: <I2NSF><rul e- name>bl ock_web</ rul e- nane><r ul es><con
di ti on><packet >[cont _i pv4] [cont _i pv4] </ packet >[struct _payl oad] </
condi tion>[cont _action] </rul es></12NSF>

Production 4: <I2NSF><rul e-name>bl ock_web</rul e- nane><r ul es><con
di ti on><packet ><i pv4>[cont _i pv4_dat a] </ i pv4><i pv4>[cont _i pv4_dat
a] </ i pv4></ packet >[struct _payl oad] </ condi ti on>[cont _action]</ru
es></ | 2NSF>

Yang, et al. Expi res Septenber 12, 2019 [Page 15]

I nternet-Draft | 2NSF Security Policy Translation March 2019

10.

11.

12.

13.

14.

15.

16.

The |

Production 5: <I2NSF><rul e- name>bl ock_web</ rul e- nanme><r ul es><con
di ti on><packet ><i pv4>10. 0. 0. 1</i pv4><i pv4>10. 0. 0. 3</i pv4></ packe
t >[struct payl oad] </ condi tion>[cont _action] </rul es></ 1 2NSF>

Producti on 12: <I| 2NSF><rul e- name>bl ock_web</ r ul e- name><r ul es><co
ndi ti on><packet ><i pv4>10. 0. 0. 1</ i pv4><i pv4>10. 0. 0. 3</i pv4></ pack
et ><payl oad>[cont _url] </ payl oad></ condi ti on>[cont _action] </rul es
></ | 2NSF>

Production 6: <I2NSF><rul e-name>bl ock_web</rul e- nane><r ul es><con
di ti on><packet ><i pv4>10. 0. 0. 1</i pv4><i pv4>10. 0. 0. 3</i pv4></ packe
t ><payl oad>[cont _url][cont url]</payl oad></condi ti on> cont_actio
n] </ rul es></1 2NSF>

Production 7: <I2NSF><rul e- name>bl ock_web</ rul e- name><r ul es><con
di ti on><packet ><i pv4>10. 0. 0. 1</ i pv4><i pv4>10. 0. 0. 3</i pv4></ packe
t ><payl oad><ur| >[cont _url data] </url><url>[cont _url data]</url><
/ payl oad></ condi ti on>[cont _acti on] </ rul es></ | 2NSF>

Production 8: <I2NSF><rul e- nanme>bl ock_web</ rul e- name><r ul es><con
di ti on><packet ><i pv4>10. 0. 0. 1</ i pv4><i pv4>10. 0. 0. 3</i pv4></ packe
t ><payl oad><ur | >harm conx/ ur | ><url >i | | egal . conx/ ur | ></ payl oad></
condi tion>[cont _action] </rul es></12NSF>

Production 9: <I2NSF><rul e- name>bl ock_web</ rul e- nanme><r ul es><con
di ti on><packet ><i pv4>10. 0. 0. 1</i pv4><i pv4>10. 0. 0. 3</i pv4></ packe
t ><payl oad><ur | >harm conx/ ur| ><url >i | | egal . conk/ ur | ></ payl oad></
condi ti on><acti on>[cont _acti on_dat a] </ acti on></rul es></| 2NSF>

Production 10: <l 2NSF><rul e- nane>bl ock_web</ r ul e- nane><r ul es><co
ndi ti on><packet ><i pv4>10. 0. 0. 1</ i pv4><i pv4>10. 0. 0. 3</i pv4></ pack
et ><payl oad><ur| >harm conx/ ur| ><ur| >i | | egal . conx/ ur | ></ payl oad><
/ condi ti on><acti on>drop</action></rul es></| 2NSF>

ast production has no non-termnal state, and the |owl evel

policy is conpletely generated. Figure 8 shows the generated | ow

| evel

policy where tab characters and new i ne characters are added.

Yang, et al. Expi res Septenber 12, 2019 [Page 16]

I nternet-Draft | 2NSF Security Policy Translation March 2019

O U U e +
| +---------- + - m e e - - + - m e e - - + - mm e e - - + |
Content | | Rul e | | Source | | URL | | Dr op | |
Production | | Nane | | | Pv4 | | Category | | Action | |
| +----- IR . I I R + - - - - + |
| | | | | |
U U SRS oo i meeoeiiiaoaiaaas +

I I I I

Vv Vv Vv Vv
B Fom e e o o e e e o - Fom e e o +o e e - - +
	\ \					
	e O +					
		Packet		Payload		
		Cdause		Cause		
	+----- R L LI iy +					
	\ \					
	oo +					
		Condi tion				
Structure			Cl ause			
Production		oo oo +				
	\ \					
	N LR EREEEEE +o					
		Rul e O ause				
	R R +					
\ \						
Fo e e e eecctcc ettt s e s e s e e +						
		2NSF Cl ause				
o e e e e e e o - o e e e e e e o - +						
o o +

|
Vv

Low Level Policy

Figure 7. Generator Construction for Web-Filter NSF

Yang, et al. Expi res Septenber 12, 2019 [Page 17]

I nternet-Draft | 2NSF Security Policy Translation March 2019

<| 2NSF>
<rul e- nane>bl ock_web</rul e- nane>
<rul es>
<condi ti on>

<packet >
<i pv4>10. 0. 0. 1</ i pv4>
<i pv4>10. 0. 0. 3</i pv4>
</ packet >
<payl oad>
<ur | >har m conx/ ur| >
<url>illegal.conx/url>
</ payl oad>
</condi tion>
<acti on>dr op</action>
</rul es>
</ | 2NSF>

Figure 8. Exanple of Low Level Policy
5. Inplenmentation Considerations

The inpl ementation considerations in this docunent include the
follow ng three: "data nodel auto-adaptation", "data conversion", and
"policy provisioning".

5.1. Data Model Auto-adaptation

Security Controller which acts as the internediary MJST process the
data according to the data nodel of the connected interfaces.
However, the data nodel can be changed fl exibly depending on the
situation, and Security Controller may adapt to the change.
Therefore, Security Controller can be inplenented for conveni ence so
that the security policy translator can easily adapt to the change of
t he data nodel

The transl ator constructs and uses the DFA to adapt to Consuner-
Facing Interface Data Model. |In addition, the CFGis constructed and
used to adapt to NSF-Facing Interface Data Mbdel. Both the DFA and
the CFG foll ow the sane tree structure of YANG Data Mdel

The DFA starts at the a node and expands operations by changi ng the
state according to the input. Based on the YANG Data Mdel, a
container node is defined as a mddle state and a | eaf node is
defined as an extractor node. After that, if the nodes are connected
in the sane way as the hierarchical structure of the data nodel,
Security Controller can automatically construct the DFA. The DFA can
be conveniently built by investigating the |link structure using the
stack, starting with the root node.

Yang, et al. Expi res Septenber 12, 2019 [Page 18]

I nternet-Draft | 2NSF Security Policy Translation March 2019

The CFG starts at the | eaf nodes and is grouped into clauses until
all the nodes are nerged into one node. A |leaf node is defined as

t he content production, and a container node is defined as the
structure production. After that, if the nodes are connected in the
sane way as the hierarchy of the data nodel, Security Controller can
automatically construct the CFG The CFG can be conveniently
constructed by investigating the link structure using the priority
gueue data, starting with the |eaf nodes.

5. 2. Dat a Conversi on

Security Controller requires the ability to materialize the abstract
data in the high-level security policy and forward it to NSFs.
Security Controller can receive endpoint information as keywords

t hrough the high-level security policy. At this time, if the
endpoi nt information corresponding to the keyword i s nmapped and the
query is transmtted to the NSF Dat abase, the NSF Dat abase can be
conveniently registered wth necessary information for data
conversion. Wen a policy tries to establish a policy through the
keyword, Security Controller searches the details corresponding to
the keyword registered in the NSF Dat abase and converts the keywords
into the appropriate and specified data.

5.3. Policy Provisioning

Thi s docunent stated that policy provisioning function is necessary
to enabl e users w thout expert security know edge to create policies.
Policy provisioning is determ ned by the capability of the NSF. If
the NSF has information about the capability in the policy, the
probability of selection increases.

Most inportantly, selected NSFs may be able to perforne all
capabilities in the security policy. This docunent recomrends a
study of policy provisioning algorithms that are highly efficient and
can satisfy all capabilities in the security policy.

6. Features of Policy Translator Design

First, by showing a visualized translator structure, the security
manager can handl e various policy changes. Translator can be shown
by visualizing DFA and Context-free G anmar so that the manager can
easily understand the structure of Policy Transl ator.

Second, if 12NSF User only keeps the hierarchy of the data nodel,
| 2NSF User can freely create high-level policies. In the case of
DFA, data extraction can be performed in the same way even if the
order of input is changed. The design of the policy translator is

Yang, et al. Expi res Septenber 12, 2019 [Page 19]

I nternet-Draft | 2NSF Security Policy Translation March 2019

9.
9.

nore flexible than the existing nmethod that works by keeping the tag
'S position and order exactly.

Third, the structure of Policy Translator can be updated even while
Policy Translator is operating. Because Policy Translator is
nmodul ari zed, the translator can adapt to changes in the NSF
capability while the I2NSF framework is running. The function of
changing the translator’s structure can be provided through

Regi stration Interface.

Security Considerations

There is no security concern in the proposed security policy
translator as long as the I 2NSF interfaces (i.e., Consuner-Facing
Interface, NSF-Facing Interface, and Registration Interface) are
protected by secure conmuni cati on channel s.

Acknow edgnent s

This work was supported by Institute for Information & conmunications
Technol ogy Pronotion (11 TP) grant funded by the Korea MSIT (Mnistry
of Science and ICT) (R-20160222-002755, C oud based Security
Intelligence Technol ogy Devel opnent for the Custom zed Security

Servi ce Provi sioning).

This work was supported in part by the MSIT under the I TRC
(I'nformati on Technol ogy Research Center) support program (I1TP-
2018-2017-0-01633) supervised by the I1TP.

Ref er ences
1. Nor mati ve Ref erences

[Aut omat a]
Peter, L., "Formal Languages and Automata, 6th Edition"
January 2016.

[RFC6020] Bjorklund, M, "YANG - A Data Mdeling Language for the
Net wor k Configuration Protocol (NETCONF)", RFC 6020,
Oct ober 2010.

[RFC6241] Enns, R, Bjorklund, M, Schoenwael der, J., and A
Bi erman, "Network Configuration Protocol (NETCONF)",
RFC 6241, June 2011.

[RFC8040] Bierman, A, Bjorklund, M, and K Witsen, "RESTCONF
Protocol ", RFC 8040, January 2017.

Yang, et al. Expi res Septenber 12, 2019 [Page 20]

I nternet-Draft | 2NSF Security Policy Translation March 2019

[RFC8329] Lopez, D., Lopez, E., Dunbar, L., Strassner, J., and R
Kumar, "Framework for Interface to Network Security
Functions", RFC 8329, February 2018.

[XM] WBC, "On Views and XM. (Extensible Markup Language)", June
1999.
9.2. Informative References

[consuner - f aci ng-i nf - dnj
Jeong, J., Kim E., Ahn, T., Kumar, R, and S. Hares,
"1 2NSF Consuner - Faci ng Interface YANG Data Model ", draft-
ietf-i2nsf-consuner-facing-interface-dm 03 (work in
progress), March 2019.

[2nsf-term nol ogy]
Hares, S., Strassner, J., Lopez, D., Xia, L., and H
Birkhol z, "Interface to Network Security Functions (1| 2NSF)
Ter m nol ogy", draft-ietf-i2nsf-term nology-07 (work in
progress), July 20109.

[nsf-facing-inf-dni
Kim J., Jeong, J., Park, J., Hares, S., and Q Lin,
"1 2NSF Networ k Security Function-Facing Interface YANG
Data Model ", draft-ietf-i2nsf-nsf-facing-interface-dm 03
(work in progress), Mrch 2019.

[regi stration-inf-dm
Hyun, S., Jeong, J., Roh, T., W, S., and J. Park, "I2NSF
Regi stration Interface YANG Data Mddel ", draft-ietf-i2nsf-
regi stration-interface-dm02 (work in progress), Mrch
2019.

[XSLT] WBC, "Extensible Stylesheet Language Transformations
(XSLT) Version 1.0", Novenber 1999.

Yang, et al. Expi res Septenber 12, 2019 [Page 21]

I nternet-Draft | 2NSF Security Policy Translation March 2019

Appendi x A. Changes fromdraft-yang-i2nsf-security-policy-
transl ati on-02

The foll owi ng changes are made fromdraft-yang-i 2nsf-security-policy-
transl ati on-02:

o Section 4.3.2 is added for describing ' NSF Database’. This
section reinforces the anbi guous description of the NSF Dat abase.

o Section 5 is added for describing 'Inplenentation Considerations’.
This section provides guidelines for a convenient inplenentation
of security policy transl ator.

Aut hor s’ Addresses

Ji nhyuk Yang

Departnent of Conputer Engi neering
Sungkyunkwan Uni versity

2066 Seobu- Ro, Jangan- Gu

Suwon, Gyeonggi-Do 16419
Republ i c of Korea

Phone: +82 10 8520 8039
EMai | : jin. hyuk@kku. edu

Jaehoon Paul Jeong

Depart nent of Software
Sungkyunkwan Uni versity
2066 Seobu- Ro, Jangan- GQu
Suwon, Gyeonggi-Do 16419
Republ i c of Korea

Phone: +82 31 299 4957

Fax: +82 31 290 7996

EMai | : paul j eong@kku. edu

URI : http://iotlab. skku. edu/ peopl e-j aehoon-j eong. php

Jinyong TimKim

Departnent of Conputer Engi neering
Sungkyunkwan Uni versity

2066 Seobu- Ro, Jangan- Gu

Suwon, Gyeonggi-Do 16419
Republ i c of Korea

Phone: +82 10 8273 0930
EMai | : tinki mékku. edu

Yang, et al. Expi res Septenber 12, 2019 [Page 22]

