
Internet Engineering Task Force H. Wang, Ed.
Internet-Draft Y. Yang
Intended status: Standards Track X. Kang
Expires: September 6, 2019 Huawei International Pte. Ltd.
 March 5, 2019

 Using Identity as Raw Public Key in Transport Layer Security (TLS) and
 Datagram Transport Layer Security (DTLS)
 draft-wang-tls-raw-public-key-with-ibc-08

Abstract

 This document specifies the use of identity as a raw public key in
 Transport Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS). The TLS protocol procedures are kept unchanged, but
 signature algorithms are extended to support Identity-based signature
 (IBS). A typical Identity-based signature algorithm, the ECCSI
 signature algorithm defined in RFC 6507, is supported in the current
 version.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Wang, et al. Expires September 6, 2019 [Page 1]

Internet-Draft TLS-RAW-Public-Key-IBC March 2019

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terms . 4
 3. Extension of RAW Public Key to IBC-based Public Key 4
 4. New Signature Algorithms for IBS 6
 5. TLS Client and Server Handshake Behavior 7
 6. Examples . 9
 6.1. TLS Client and Server Use IBS algorithm 9
 6.2. Combined Usage of Raw Public Keys and X.509 Certificates 10
 7. Security Considerations 12
 8. IANA Considerations . 12
 9. Acknowledgements . 12
 10. References . 12
 10.1. Normative References 12
 10.2. Informative References 13
 Appendix A. Examples . 14
 Authors’ Addresses . 14

1. Introduction

 DISCLAIMER: This is a personal draft and a limited security analysis
 is provided.

 Traditionally, TLS client and server exchange public keys endorsed by
 PKIX [PKIX] certificates. It is considered complicated and may cause
 security weaknesses with the use of PKIX certificates Defeating-SSL
 [Defeating-SSL]. To simplify certificates exchange, using RAW public
 key with TLS/DTLS has been spcified in [RFC 7250] and has been
 included in the TLS 1.3[RFC 8446]. With RAW public key, instead of
 transmitting a full certificate or a certificate chain in the TLS
 messages, only public keys are exchanged between client and server.
 However, using RAW public key requires out-of-band mechanisms to bind
 the public key to the entity presenting the key.

 Recently, 3GPP has adopted the EAP authentication framework for 5G
 and EAP-TLS is considered as one of the candidate authentication
 methods for private networks, especially for networks with a large
 number of IoT devices. For IoT networks, TLS/DTLS with RAW public
 key is particularly attractive, but binding identities with public
 keys might be challenging. The cost to maintain a large table for
 identity and public key mapping at server side incurs additional
 maintenance cost. e.g. devices have to pre-register to the server.

Wang, et al. Expires September 6, 2019 [Page 2]

Internet-Draft TLS-RAW-Public-Key-IBC March 2019

 To simplify the binding between the public key and the entity
 presenting the public key, a better way could be using Identity-Based
 Cryptography(IBC), such as ECCSI public key specified in [RFC 6507],
 for authentication. Different from X.509 certificates and raw public
 keys, a public key in IBC takes the form of the entity’s identity.
 This eliminates the necessity of binding between a public key and the
 entity presenting the public key.

 The concept of IBC was first proposed by Adi Shamir in 1984. As a
 special class of public key cryptography, IBC uses a user’s identity
 as public key, avoiding the hassle of public key certification in
 public key cryptosystems. IBC broadly includes IBE (Identity-based
 Encryption) and IBS (Identity-based Signature). For an IBC system to
 work, there exists a trusted third party, PKG (private key generator)
 responsible for issuing private keys to the users. In particular,
 the PKG has in possession a pair of Master Public Key and Master
 Secret Key; a private key is generated based on the user’s identity
 by using the Master Secret key, while the Master Public key is used
 together with the user’s identities for encryption (in case of IBE)
 and signature verification (in case of IBS). Another name of PKG is
 Key Management System (KMS), which is also used in some IBC system.
 In this document, the terms of PKG and KMS are interchangable.

 A number of IBE and IBS algorithms have been standardized by
 different standardization bodies, such as IETF, IEEE, ISO/IEC, etc.
 For example, IETF has spcified several RFCs such as [RFC 5091], [RFC
 6507] and [RFC6508] for both IBE and IBS algorithms. ISO/JTC and
 IEEE also have a few standards on IBC algorithms.

 RFC 7250 has specified the use of raw public key with TLS/DTLS
 handshake. However, supporting of IBS algorithms has not been
 included therein. Since IBS algorithms are efficient in public key
 transmission and also eliminate the binding between public keys and
 identities, in this document, an amendment is added for supporting
 IBS algorithms as raw public key.

 IBS algorithm exempts client and server from public key certification
 and identity binding by checking an entity’s signatures and its
 identity against the master public key of its PKG. With an IBS
 algorithm, a PKG generates private keys for entities based on their
 identities. Global parameters such as PKG’s Master Public Key (MPK)
 need be provisioned to both client and server. These parameters are
 not user specific, but PKG specific.

 For a client, PKG specific parameters can be provisioned at the time
 PKG provisions the private key to the client. For the server, how to
 get the PKG specific parameters provisioned is out of the scope of
 this document, and it is deployment dependent.

Wang, et al. Expires September 6, 2019 [Page 3]

Internet-Draft TLS-RAW-Public-Key-IBC March 2019

 The document is organized as follows: Section 3 defines the data
 structure required when identity is used as raw public key.
 Section 4 defines the cipher suites required to support IBS algorithm
 over TLS/DTLS. Section 5 explains how client and server authenticate
 each other when using identity as raw public key. Section 6 gives
 examples for using identity as raw public key over TLS/DTLS handshake
 procedure. Section 7 discusses the security considerations.

2. Terms

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals.

3. Extension of RAW Public Key to IBC-based Public Key

 To support the negotiation of using raw public between client and
 server, a new Certificate structure is defined in RFC 7250. It is
 used by the client and server in the hello messages to indicate the
 types of certificates supported by each side.

 When RawPublicKey type is selected for authentication, a data
 structure, subjectPublicKeyInfo, is used to carry the raw public key
 and its cryptographic algorithm. Within the subjectPublicKeyInfo
 structure, two fields, algorithm and subjectPublicKey, are defined.
 The algorithm is a data structure specifies the cryptographic
 algorithm used with raw public key, which is represented by an object
 Identifiers (OID); and the parameters field provides necessary
 parameters associated with the algorithm. The subjectPublicKey field
 within the subjectPublicKeyInfo carry the raw public itself.

 subjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING
 }

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL
 }

 Figure 1: SubjectPublicKeyInfo ASN.1 Structure

 With IBS algorithm, an identity is used as the raw public key, which
 can be converted to an BIT string and put into the subjectPublicKey
 field. The algorithm field in AlgorithmIdentifier structure is the

Wang, et al. Expires September 6, 2019 [Page 4]

Internet-Draft TLS-RAW-Public-Key-IBC March 2019

 object identifier of the IBS algorithm used. Specifically, for the
 ECCSI signature algorithm supported in this draft, the OBJECT
 IDENTIFIER is described with following data structure:

 sa-eccsiWithSHA256 SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-alg-eccsi-with-sha256
 VALUE ECCSI-Sig-Value PARAMS TYPE NULL ARE absent
 HASHES { mda-sha256 }
 SMIME-CAPS { IDENTIFIED BY id-alg-eccsi-with-sha256 }
 }

 Figure 2: ECCSI Signature Algorithm ANSI.1 Structure

 Note, in a real implementation, only OID part will be transmitted
 over the TLS negotiation protoocols.

 Beside OID, it is necessary to tell the peer the set of global
 parameters used by the signer. The information can be carried in the
 payload of the parameters field in AlgorithmIdentifier. In the
 following, a data structure for carrying ECCSI-based parameters are
 defined. For other IBS algorithm, it can be defined in the future.
 If client and server are sure that each of them knows the global
 parameters, this data structure can be omitted from transmission.

 The structure to carry the ECCSI-based global parameters is specified
 in followng Figure :

 ECCSIPublicParameters ::= SEQUENCE {
 version INTEGER { v2(2) },
 curve OBJECT IDENTIFIER,
 hashfcn OBJECT IDENTIFIER,
 pointP POINT,
 pointPpub POINT
 }

 Figure 3: ECCSI Global Parameters ANSI.1 Structure

 With above data structure, pointP shall be G in RFC 6507 and
 pointPpub shall be KPAK in RFC 6507. The POINT structure specifies a
 point on an elleptic curve and is defined as follows:

 POINT ::= SEQUENCE {
 x INTEGER,
 y INTEGER
 }

 Figure 4: POINT Structure ANSI.1 Structure

Wang, et al. Expires September 6, 2019 [Page 5]

Internet-Draft TLS-RAW-Public-Key-IBC March 2019

 To support IBS algorithm over TLS protocol, a data structure for
 signature value need to be defined. A data structure for ECCSI is
 defined as follows(based RFC 6507):

 ECCSI-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER,
 PVT OCTET STRING
 }

 Figure 5: ECCSI Signature Value ANSI.1 Structure

 where PVT (as defined in RFC 6507) is encoded as 0x04 || x-coordinate
 of [v]G || y-coordinate of [v]G.

 To use a signature algorithm with TLS, OID for the signature
 algorithm need be provided. For ECCSI algorithm, an OID has been
 assigned by IANA recently. The following table shows the basic
 information needed for the ECCSI signature algorithm to be used for
 TLS.

 +------------------------------+---------------+--------------------+
 | Key Type | Document | OID |
 +------------------------------+---------------+--------------------+
Elliptic Curve-Based	Section 5.2	1.3.6.1.5.5.7.6.29
Signatureless For Identitiy-	in RFC 6507	
based Encryption (ECCSI)		
 +------------------------------+---------------+--------------------+

 Table 1: Algorithm Object Identifiers

4. New Signature Algorithms for IBS

 To using identity as raw public key, new signature algorithms
 corresponding to the IBS need to be defined. With TLS 1.3, the value
 for signature algorithm is defined in the SignatureScheme. This
 document specifies how to support ECCSI algorithm. As a reult, the
 SignatureScheme data structure has to be amended by including the
 ECCSI algorithm.

Wang, et al. Expires September 6, 2019 [Page 6]

Internet-Draft TLS-RAW-Public-Key-IBC March 2019

 enum {
 ...

 /* IBS ECCSI signature algorithm */
 eccsi_sha256 (TBD),

 /* Reserved Code Points */
 private_use (0xFE00..0xFFFF),
 (0xFFFF)
 } SignatureScheme;

 Figure 6: Include ecdhe_eccsi in KeyExchangeAlgorithm

 Note: The signature algorithm of eccsi_sha256 is defined in RFC6507.

 Note: Other IBS signature algorithms can be added in the future.

5. TLS Client and Server Handshake Behavior

 When IBS is used as RAW public for TLS, signature and hash algorithms
 are negotiated during the handshake.

 The handshake between the TLS client and server follows the
 procedures defined in [RFC 8446], but with the support of the new
 signature algorithms specific to the IBS algorithms. The high-level
 message exchange in the following figure shows TLS handshake using
 raw public keys, where the client_certificate_type and
 server_certificate_type extensions added to the client and server
 hello messages (see Section 4 of [RFC 7250]).

Wang, et al. Expires September 6, 2019 [Page 7]

Internet-Draft TLS-RAW-Public-Key-IBC March 2019

 client_hello,
 +key_share
 +signature_algorithms
 client_certificate_type,
 server_certificate_type ->

 <- server_hello,
 + key_share
 {EncryptyedExtensions}
 {client_certificate_type}
 {server_certificate_type}
 {Certificate}
 {CertificateVerify}
 {CertificateRequest}
 {Finished}
 [Applicaiton Data]
 {Certificate}
 {CertificateVerify}
 {Finished} -------->
 [Application Data} <-------> [Application Data]

 Figure 7: Basic Raw Public Key TLS Exchange

 The client hello messages tells the server the types of certificate
 or raw public key supported by the client, and also the certificate
 types that client expects to receive from server. When raw public
 with IBS algorithm from server is supported by the client, the client
 includes desired IBS signature algorithm in the client hello message
 based on the order of client preference.

 After receiving the client hello message, server determines the
 client and server certificate types for handshakes. When the
 selected certificate type is RAW public key and IBS is the chosen
 signature algorithm, server uses the SubjectPublicKeyInfo structure
 to carry the raw public key, OID for IBS algorithm. If ECCSI is
 selected, the ECCSIPublicParameters can be used to carry global
 public parameters. With these information, the client knows the
 signature algorithm and the public parameters that should be used to
 verify the signature. The signature value is in the
 CertificateVerify message and the format of signature value should be
 specified by each IBS algorithm. In this document, an ECCSI-Sig-
 Value data strcuture for ECCSI signature algorithm is defined based
 on the specification of RFC 6507

 When sever specifies that RAW public key should be used by client to
 authenticate with server, the client_certificate_type in the server
 hello is set to RawPublicKey. Besides that, the server also sends
 Certificate Request, indicating that client should use some specific

Wang, et al. Expires September 6, 2019 [Page 8]

Internet-Draft TLS-RAW-Public-Key-IBC March 2019

 signature and hash algorithms. When IBS is chosen as signature
 algorithm, the server need to indicate the required IBS signature
 algorithms in the signature_algorithm extension within the
 CertificateRequest.

 After receiving the server hello, the client checks the
 CertificateRequest for signature algorithms. If client wants to use
 an IBS algorithm for signature, then the signature algorithm it
 intended to use must be in the list of supported signature algorithms
 specified by the server. Assume the IBS algorithm supported by the
 client is in the list, then the client response with the IBS
 signature algorithm and PKG information with SubjectPublicKeyInfo
 structure in the certificate structure and provide signatures in the
 certificate verify message. The format of signature in the
 CertificateVerify message should be sepcified by each individual
 signature algorithm. If ECCSI is chosen, an ECCSI-Sig-Value data
 strcuture is used to carry the signature.

 The server verifies the signature based on the algorithm and PKG
 parameters specified by the messages from client.

6. Examples

 In the following, examples of handshake exchange using IBS algorithm
 under RawPublicKey are illustrated.

6.1. TLS Client and Server Use IBS algorithm

 In this example, both the TLS client and server use ECCSI for
 authentication, and they are restricted in that they can only process
 ECCSI signature algorithm. As a result, the TLS client sets both the
 server_certificate_type and the client_certificate_type extensions to
 be raw public key; in addition, the client sets the signature
 algorithm in the client hello message to be eccsi_sha256.

 When the TLS server receives the client hello, it processes the
 message. Since it has an ECCSI raw public key from the PKG, it
 indicates in (2) that it agrees to use ECCSI and provided an ECCSI
 key by placing the SubjectPublicKeyInfo structure into the
 Certificate payload back to the client (3), including the OID, the
 identity of server, ServerID, which is the public key of server also,
 and PKG public parameters (ECCSIPublicParameters). The
 client_certificate_type in (4) indicates that the TLS server accepts
 raw public key. The TLS server demands client authentication, and
 therefore includes a certificate_request(5), which requires the
 client to use eccsi_sha256 for signature. A signature value based on
 the eccsi_sha256 algorithm is carried in the CertificateVerify (6).
 The client, which has an ECCSI key, returns its ECCSI public key in

Wang, et al. Expires September 6, 2019 [Page 9]

Internet-Draft TLS-RAW-Public-Key-IBC March 2019

 the Certificate payload to the server (7), which includes an OID for
 the ECCSI signature algorithm, the PKGInfo for KMS parameters, and
 identity of client, ClientID, which is the public key of client also.
 The client also includes a signature value, ECCSI-Sig-Value, in the
 CertificateVerify (8) message.

 When client/server receive PKG public parameters from peer, it should
 decide whether these parameters are acceptable or not. An exmaple
 way to make decision is that a whitelist of acceptable PKG public
 parameters are stored locally at client/server. They can simply make
 a decision based on the white list stored locally.

 client_hello,
 +key_share // (1)
 signature_algorithm = (eccsi_sha256) // (1)
 client_certificate_type=(RawPublicKey) // (1)
 server_certificate_type=(RawPublicKey) // (1)
 ->
 <- server_hello,
 + key_share
 { server_certificate_type = RawPublicKey} // (2)
 {certificate=((1.3.6.1.5.5.7.6.29,
 ECCSIPublicParameters), serverID)} //(3)
 {client_certificate_type = RawPublicKey // (4)
 {certificate_request = (eccsi_sha256)} //(5)
 {CertificateVerify = {ECCSI-Sig-Value} // (6)
 {Finishaed}

 {Certificate=(
 (1.3.6.1.5.5.7.6.29,
 ECCSIPublicParameters),
 ClientID)} // (7)
 {CertificatVerify = (ECCSI-Sig-Value)} //(8)
 {Finished }
 [Applicateion Data] ---->
 [Application Data] <---> [Application Data]

 Figure 8: Basic Raw Public Key TLS Exchange

6.2. Combined Usage of Raw Public Keys and X.509 Certificates

 This example combines the uses of an ECCSI key and an X.509
 certificate. The TLS client uses an ECCSI key for client
 authentication, and the TLS server provides an X.509 certificate for
 server authentication.

 The exchange starts with the client indicating its ability to process
 a raw public key, or an X.509 certificate, if provided by the server.

Wang, et al. Expires September 6, 2019 [Page 10]

Internet-Draft TLS-RAW-Public-Key-IBC March 2019

 It prefers a raw public key, since eccsi_sha256 proceeds
 ecdsa_secp256r1_sha256 in the signature_algorithm payload, and the
 RawPublicKey value precedes the other value in the
 server_certificate_type payload. Furthermore, the client indicates
 that it has a ECCSI-based raw public key for client-side
 authentication. Client also indicate it supports server using either
 ECCSI or ecdsa for the certificate signature. This further indicates
 that server can also use ecdsa_secp256r1_sha256 to sign the message.

 With the received client_hello, the server chooses to provide its
 X.509 certificate in (3) and indicates that choice in (2). For
 client authentication, the server indicates in (4) that it has
 selected the raw public key format and requests an ECCSI certificate
 from the client in (4) and (5). The TLS client provides an ECSSI
 certificate in (6) and signature value after receiving and processing
 the TLS server hello message.

 client_hello,
 +key_share
 signature_algorithms =(eccsi_sha256) // (1)
 signature_algorithms_cert =(eccsi_sha256,
 ecdsa_secp256r1_sha256) // (1)
 {client_certificate_type=
 (RawPublicKey)} // (1)
 {server_certificate_type=
 (RawPublicKey, X.509) // (1)
 ->
 <- server_hello,
 +key_share
 {server_certificate_type=X.509} // (2)
 {Certificate = (x.509 certificate)} // (3)
 {client_certificate_type = (RawPublicKey)} // (4)
 {CertificateRequest} = (eccsi_sha256)} // (5)
 {CertificateVerify}
 {Finished}
 certificate=(
 (1.3.6.1.5.5.7.6.29,
 ECCSIPublicParameters),
 ClientID), // (6)
 {CertificatVerify =
 (ECCSI-Sig-Value)} //(7)
 { Finished }
 [Applicateion Data] ---->
 [Application Data] <---> [Application Data]

 Figure 9: Basic Raw Public Key TLS Exchange

Wang, et al. Expires September 6, 2019 [Page 11]

Internet-Draft TLS-RAW-Public-Key-IBC March 2019

7. Security Considerations

 Using ECCSI-based raw public key in TLS/DTLS does not change the
 message flows of TLS, hence, for the most part, the security
 considerations involved in using the Transport Layer Security
 protocol with raw public key also apply here. The additional
 security of the resulting protocol rests on the security of the used
 ECCSI algorithms.

 ECCSI signature algorithm has been standardized for ten years and has
 been adopted in real application. However, we would like to point
 out the difference between ECCSI and existing raw public key: the
 private key of ECCSI used for signature generation is generated by
 the Key Management System (KMS), while the private key for the
 existing raw public key is generated locally. Therefore, ECCSI
 mechanism may face a security risk of private key disclosure due to
 improper management of KMS system. The user of ECCSI shall be aware
 the above risk and a stronger key management system shall be adopted
 by KMS system when using ECCSI.

8. IANA Considerations

 Existing IANA references have not been updated yet to point to this
 document.

 IANA is asked to assign an OID for ECCSI signature algorithm
 specified in the [RFC6507], which is used by this document. The
 required OID should be assigned under the registry of SMI Security
 for PKIX Algorithms (1.3.6.1.5.5.7.6) with following name:

 - id-alg-eccsi-with-sha256.

 - an OID has been assigned by IANA to ECCSI as 1.3.6.1.5.5.7.6.29.

 The following TLS registries shall be updated also:

 - Signature Scheme Registry: signature algorithm for ECCSI,
 eccsi_with_sha256, are required to be reserved.

9. Acknowledgements

10. References

10.1. Normative References

 [PKIX] "Internet X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List(CRL) Profile", June 2008.

Wang, et al. Expires September 6, 2019 [Page 12]

Internet-Draft TLS-RAW-Public-Key-IBC March 2019

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2434] "Guidelines for Writing an IANA Consideration Section in
 RFCs", October 1998.

 [RFC5091] Boyen, X. and L. Martin, "Identity-Based Cryptography
 Standard (IBCS) #1: Supersingular Curve Implementations of
 the BF and BB1 Cryptosystems", RFC 5091,
 DOI 10.17487/RFC5091, December 2007,
 <https://www.rfc-editor.org/info/rfc5091>.

 [RFC6507] Groves, M., "Elliptic Curve-Based Certificateless
 Signatures for Identity-Based Encryption (ECCSI)",
 RFC 6507, DOI 10.17487/RFC6507, February 2012,
 <https://www.rfc-editor.org/info/rfc6507>.

 [RFC6508] Groves, M., "Sakai-Kasahara Key Encryption (SAKKE)",
 RFC 6508, DOI 10.17487/RFC6508, February 2012,
 <https://www.rfc-editor.org/info/rfc6508>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/info/rfc7250>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8216] Pantos, R., Ed. and W. May, "HTTP Live Streaming",
 RFC 8216, DOI 10.17487/RFC8216, August 2017,
 <https://www.rfc-editor.org/info/rfc8216>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

10.2. Informative References

 [Defeating-SSL]
 "New Tricks for Defeating SSL in Practice", Feb 2009,
 <http://www.blackhat.com/presentations/bh-dc-
 09/Marlinspike/
 BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf>.

Wang, et al. Expires September 6, 2019 [Page 13]

Internet-Draft TLS-RAW-Public-Key-IBC March 2019

Appendix A. Examples

Authors’ Addresses

 Haiguang Wang (editor)
 Huawei International Pte. Ltd.
 11 North Buona Vista Dr, #17-08
 Singapore 138589
 SG

 Phone: +65 6825 4200
 Email: wang.haiguang1@huawei.com

 Yanjiang Yang
 Huawei International Pte. Ltd.
 11 North Buona Vista Dr, #17-08
 Singapore 138589
 SG

 Phone: +65 6825 4200
 Email: yang.yanjiang@huawei.com

 Xin Kang
 Huawei International Pte. Ltd.
 11 North Buona Vista Dr, #17-08
 Singapore 138589
 SG

 Phone: +65 6825 4200
 Email: xin.kang@huawei.com

Wang, et al. Expires September 6, 2019 [Page 14]

