NETCONF Dat a Model i ng Language Wbrki ng G oup (netnod) E. Voit

I nternet-Draft A. Cl emm

| nt ended status: | nformational S. Bansal

Expires: March 29, 2015 A. Tri pathy
P. Yellai

Ci sco Systens
Sept enber 25, 2014

Requi renents for Peer Munting of YANG subtrees from Renote Datastores
draft-voit-netnod- peer-nount-requirenents-00

Abstract

Net work i ntegrated applications want sinple ways to access YANG

obj ects and subtrees which nmight be distributed across network.
Performance requirenments may dictate that it is unaffordable for a
subset of these applications to go through existing centralized
managenent brokers. For such applications, devel opnent conplexity
nmust be mnimzed. Specific aspects of conplexity devel opers want to
i gnore include:

o whether authoritative information is actually sourced fromrenote
datastores (as well as how to get to those datastores),

o whether such information has been locally cached or not,

o whether there are zero, one, or nore controllers asserting
owner ship of information, and

0o whether there are interactions with other applications
concurrently running el sewhere

The solution requirenments described in this docunent detail what is
needed to support application access to authoritative network YANG
objects fromcontrollers (star) or peering network devices (nesh) in
such a way to neet these goals.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I1ETF). Note that other groups nay al so distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Voit, et al. Expi res March 29, 2015 [Page 1]

| nt er net - Draf t

Peer Mount Requirenents Sept enber 2014

Internet-Drafts are draft docunments valid for a maxi mum of six nonths
repl aced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

and may be updat ed,

This Internet-Draft wll expire on March 29, 2015.

Copyright Notice

Copyright (c) 2014 | ETF Trust and the persons identified as the

document aut hors.

Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Legal
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
describe your rights and restrictions with respect

carefully, as they
to this docunent.

Code Conponents extracted fromthis docunent

must

include Sinplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided wi thout warranty as

described in the Sinplified BSD License.

Tabl e of Contents

Busi ness Probl em

1
2. Term nol ogy .
3

Sol uti on Cont ext

. 3. 1. Peer Mbunt

3.2. Eventual Conélétency and YANG 1 1:
4. Exanpl e Use Cases . Coe e
.1. Cdoud Policer

4 o
4.2. DDoS Threshol ding . .
4.3. Service Chain CIaSS|f|cat|on

Appllcatloh élnpllflcatlon
Cachi ng Consi derations

.2.2. Pub/Sub of bject Updaieé :

Li fecycl e of the Munt Topol ogy :

:3.1. Di scovery and Creation of Nbunf Topology.

1
2
5
5
3
5
5.3.2. Restrictions on the Munt Topol ogy
4 Ce e e
5 .
6 Security CDnS|derat|ons .

7

8

9

Managenment
5. Requirenents
5.
5. 2.
.2.1. Caching Overview

5.
5. Mount Filter
5. Transport
5.
5. Hi gh Availability .
5. Configuration
5.

Voit, et al.

Assurance and anltorlng

Loéd.Bélénéiﬁg.aﬁd.cﬁpécity

OCoOoO~N~NO OIS~ W

Expi res March 29, 2015 [Page 2]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

6. | ANA Considerations .. 20
7. Acknow edgenents ... 20
8. References,
8.1. Normative References 21
8. 2. Informative References 21
8.3. URIso s s s s, 21
Aut hors’ Addresses, 22

1. Busi ness Probl em

I nstrunenting Physical and Virtual Network El enents purely al ong
devi ce boundaries is insufficient for today’'s requirenents. |nstead,
users, applications, and operators are asking for the ability to
interact with varying subsets of network information at the highest
vi abl e I evel of abstraction. Likew se applications that run locally
on devices may require access to data that transcends the boundaries
of the device they are deployed. Achieving this can be difficult
since a running network is conprised of a distributed nesh of object
ownership. (l.e., the authoritative device owning a particul ar
object will vary.) Solutions require the transparent assenbly of

di fferent objects fromacross a network in order to provide

consol idated, tine synchronized, and consistent views required for

t hat abstraction.

Recent approaches have focused on a Network Controller as the arbiter
of new networ k-wi de abstractions. Controller based solutions are
supportabl e by requirenments outlined in this docunent. However this
is not the only deploynent nodel covered by this docunent. Equally
valid are depl oynent nodels where Network El enents exchange
information in a way which allows one or nore of those Elenents to
provi de the desired network | evel abstraction. This is not a new

i dea. Exanples of Network El ement based protocols which already do
network | evel abstractions include VRRP [RFC3768], nlLACP/ I CCP[I CCP],
and Anycast-RP [RFC4610] . As network el enents increase their conpute
power and support Linux based conpute virtualization, we should
expect additional |ocal applications to energe as well (such as
Distributed Analytics [1]).

Utimately network application programm ng nmust be sinplified. To do
this:

0 we nust provide APIs to both controller and network el enent based
applications in a way which allows access to network objects as if
t hey were coming froma cl oud,

o we nust enable these |ocal applications to interact with network
| evel abstractions,

Voit, et al. Expi res March 29, 2015 [Page 3]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

o we nust hide the nesh of interdependencies and consi stency
enf orcement mechani sns bet ween devices which will underpin a
particul ar abstraction,

o we nust enable flexible deploynent nodels, in which applications
are able to run not only on controller and OSS franmeworks but al so
on network devices w thout requiring heavy m ddl eware with | arge
footprints, and

o we need to naintain clear authoritative ownership of individual
data itens while not burdening applications with the need to
reconcil e and synchronize information replicated in different
systens, nor needing to maintain redundant data nodel s that
operate on the sanme underlying data.

These steps will elimnate much unnecessary overhead currently
requi red of today’s network progranmer.

2. Term nol ogy
The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

Aut horitative Datastore - A datastore containing the authoritative
copy of an object, i.e. the source and the "owner" of the object.

Client Datastore - a datastore containing an object whose source and
"owner" is a renote datastore.

Data Node - An instance of managenent information in a YANG
dat ast ore.

Dat astore - A conceptual store of instantiated information, with
i ndividual data itens represented by data nodes which are arranged in
hi erarchi cal manner.

Data Subtree - An instanti ated data node and the data nodes that are
hierarchically contained within it.

Mount Client - The system at which the nount point resides, into
whi ch on or nore renote subtrees may be nount ed.

Mount Binding - An instance of nounting froma specific Munt Point
to a renote datastore. Types include:

0 On-demand: Mount Cient only pulls information when application
requests

Voit, et al. Expi res March 29, 2015 [Page 4]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

o Periodic: Munt Server pushes current state at a pre-defined
i nterval

0 Unsolicited: Munt Server nmintains active bindings and sends to
client cache upon change

Mount Point - Point in the |local data store which may reference a
single renote subtree

Mount Server - The server with which the Mount Cient comuni cates
and which provides the Mount Client wwth access to the nounted
informati on. Can be used synonynously with Muunt Target.

Peer Mount - The act of representing renpte objects in the | ocal
dat astore

Target Data Node - Data Node on Munt Server agai nst which a Munt
Bi nding is established

3. Sol ution Context

YANG nodel i ng has energed as a preferred way to offer network
abstractions. The requirenents in this docunent can be enabl ed by
expandi ng of the syntax of YANG capabilities enbodied within RFC 6020
[RFC6020] and YANG 1.1 [rfc6020bis]. A conpanion draft to this one
whi ch details a potential set of YANG technol ogy extensions which can
support key requirenents within this docunent are contained in
[draft-clemm nount]. A "-02" release of this draft which includes
specifications to support many additional concepts will be posted in
the com ng days.

To date systens built upon YANG nodel s have been m ssing two
capabilities:

1. Peer Datastore Munt: Datastores have not been able to proxy
objects |located el sewhere. This puts additional burden upon
applications which then need to find and access nmultiple
(potentially renpote) systens.

2. Eventual Consistency: YANG Dat astore inplenentations have
typically assuned ACID [2] transaction nodels. There is nothing
i nherent in YANG itself which demands ACID transacti onal
guarantees. YANG nodel s can al so expose information which m ght
be in the process of undergoi ng convergence. Since |P networking
has been designed with convergence in mnd, this is a useful
capability since sone types of applications nmust participate
where there is dynam cally changi ng state.

Voit, et al. Expi res March 29, 2015 [Page 5]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

3. 1. Peer Mbount

First this docunent will dive deeper into Peer Datastore Munt
(a.k.a., "Peer Mount"). Contrary to existing YANG dat astores, where
hi erarchical datatree(s) are local in scope and only includes data
that is "owned" by the local system we need an agent or interface on
one systemwhich is able refer to managed resources that reside on
anot her system This allows applications on the sane systemas the
YANG dat astore server, as well as renote clients that access the

dat astore through a managenent protocol such as NETCONF, to access
all data as if it were local to that same server. This nust be done
in a manner that is transparent to users and applications. This nust
be done in a way which does not require a user or application to be
aware of the fact that sone data resides in a different |ocation and
have them directly access that other system In this way, the user
is projected an i mage of one virtual consolidated datastore.

The value in such a datastore cones fromits under-the-covers
federation. The datastore transparently exposes information from

mul tiple systens across the network. The user does not need to be
aware of the precise distribution and ownershi p of data thensel ves,
nor is there a need for the application to discover those data
sources, maintain separate associations wwth them and partition its
operations to fit along renote system boundaries. The effect is that
a network device can broaden and custom ze the information avail able
for I ocal access. Life for the application is easier.

Any Obj ect type can be included in such a datastore. This can

i nclude configuration data that is either persistent or epheneral,
and which is valid within only a single device or across a domain of
devices. This can include operational data that represents state
across a single device or across a nmultiple devices.

Anot her useful aspect of "Peer Mount" is its ability to enbed
informati on from external YANG nodels which haven't necessarily been
normal i zed. Normalization is a good thing. But the massive human
efforts invested in uber-data-nodels have never gained industry
traction due to the resulting nodels’ brittle nature and conplexity.
By nmounting renote trees/objects into |local datastores it is possible
to expose renpte objects under a locally optimzed hierarchy w thout
having to transpose renote objects into a separate | ocal nodel. Once
this exists, object translation and normalization becone optional
capabilities which may al so be hidden.

Anot her useful aspect of "Peer Mount" is its ability to nmount renote
trees where the | ocal datastore does not know the full subtree being
installed. In fact, the renote datastore m ght be dynamcally

changi ng the nounted tree. These dynam c changes can be reflected as

Voit, et al. Expi res March 29, 2015 [Page 6]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

needed under the "attachnment points"” within the nanmespace hierarchy
where the data subtrees fromrenote systens have been nounted. In
this case, the precise details of what these subtrees exactly contain
does not need to be understood by the systeminpl enenting the
attachnment point, it sinply acts as a single point of entry and
"proxy" for the attached data.

3.2. Eventual Consistency and YANG 1.1

The CAP theorem [3] states that it is inpossible for a distributed
conputer systemto sinultaneously provide Consistency, Availability,
and Partition tolerance. (l.e., distributed network state managenent
is hard.) Mstly for this reason YANG i npl enent ati ons have shi ed
away fromdistributed datastore inplenentations where ACI D

transacti onal guarantees cannot be given. This of course limts the
uni verse of applicability for YANG t echnol ogy.

Leveragi ng YANG concepts, syntax, and nodels for objects which m ght
be happening to undergo network convergence is valuable. Such reuse
greatly expands the universe of information visible to networking
applications. The good news is that there is nothing in YANG 1.1
syntax that prohibits its reapplication for distributed datastores.
Ext ensi ons are needed however.

Requi renments described within this docunment can be used to define

t echnol ogy extensions to YANG 1.1 for renote datastore nounting.
Because of the CAP theorem it nust be recognized that systens built
upon these extensions MAY choose to support eventual consistency

rat her than ACI D guarantees. Sone applications do not demand ACI D
guarantees (exanples are contained in this docunent’s Use Case
section). Therefore for certain classes of applications, eventual
consi stency [4] should be viewed as a cornerstone feature capability
rat her than a bug.

4. Exanpl e Use Cases

Many types of applications can benefit fromthe sinple and quick

avai lability of objects from peer network devices. Because network
managenment and orchestrati on systens have been fulfilling a subset of
the requirenments for decades, it is inportant to focus on what has
changed. Changes i ncl ude:

o SDN applications wish to interact with [ocal datastore(s) as if
they represent the real-tinme state of the distributed network.

o Independent sets of applications and SDN controllers mght care
about the sane authoritative data node or subtree.

Voit, et al. Expi res March 29, 2015 [Page 7]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

o Changes in the real-tine state of objects can announce thensel ves
to subscri bing applications.

o The union of an ever increasing nunber of abstractions provided
fromdifferent layers of the network are assunmed to be consi stent
wi th each other (at |east once a reasonabl e convergence tine has
been factored in).

o CPU and VM i nprovenents nakes runni ng Li nux based applications on
networ k el enents viabl e.

Such changes can enable a new class of applications. These
applications are built upon fast-feedback-Ioops which dynam cally
tune the network based on iterative interactions upon a distributed
dat ast or e.

4. 1. Cl oud Poli cer

A Coud Policer enables a single aggregated data rate to tenants/
users of a data center cloud that applies across their VMs; a rate

i ndependent of where specific VMs are physically hosted. This works
by havi ng edge router based traffic counters available to a
centralized application, which can then nmaintain an aggregate across
t hose counters. Based on the sumof the counters across the set of
edge routers, new values for each device based Policer can be
recal cul ated and installed. Effectively policing rates are

conti nuously rebal anced based on the nost recent traffic offered to
t he aggregate set of edge devi ces.

The cl oud policer provides a very sinple cloud QS nodel. Many ot her
QS nodel s could also be inplenented. Exanple extensions include:

o0 CIR PIR guarantees for a tenant,
o hierarchical QoS treatnent,

o providing traffic delivery guarantees for specific enterprise
branch offices, and

o adjusting the prioritization of one application based on the
activity of another application which perhaps is in a conpletely
di fferent |ocation.

It is possible to inplenment such a cloud policer application with
maxi mum appl i cati on devel oper sinplicity using peer nmount. To do
this the application accesses a | ocal datastore which in turn does a
peer nmount from edge routers the objects which house current traffic
counter statistics. These counters are accessed as if they were part

Voit, et al. Expi res March 29, 2015 [Page 8]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

of the |ocal datastore structures, w thout concern for the fact that
t he actual authoritative copies reside on renote systens.

Beyond this centralized counter collection peer nount, it is also
possi bl e to have distributed edge routers nount information in the
reverse direction. In this case |ocal edge routers can peer nount
centrally cal cul ated policer rates for the device, and access these
objects as if they were locally configured.

For both directions of nmounting, the authoritative copy resides in a
single systemand is nounted by peers. Therefore issues with regards
to inconsistent configuration of the sane redundant data across the
network are avoided. Also as can be seen in this use case, the sanme
system can act as a nount client of sonme objects while acting as
server for other objects.

4.2. DDoS Threshol di ng

Anot her extension of the "Cloud Policer" application is the creation
of additional action thresholds at bandwidth rates far greater than
m ght be expected. |If these higher thresholds are hit, it is
possi bl e to connect in DDoS scrubbers to ingress traffic. This can
be done in seconds after a bandwi dth spike. This can also be done if
non- bandw dt h counters are available. For exanple, if TCP flag
counts are available it is possible to | ook for changes in SYN ACK
rati os which mght signal a different type of attack. |In all cases,
when network counters indicate a return to normal traffic profiles

t he DDoS Scrubbers can be autonatically di sconnected.

Benefits of only connecting a DDoS scrubber in the rare event an
attack m ght be underway incl ude:

o marking down traffic for an out-of-profile tenant so that an
potential attack doesn’t adversely inpact others,

o applying DDoS Scrubbing across nany devices when an attack is
detected i n one,

o reducing DDoS scrubber CPU, power, and licensing requirenments
(during the vast majority of tine, spikes are not occurring), and

o dynam c managenent and all ocation of scarce platformresources

(such as optim zing span port usage, or limting IP-FI X reporting
to |l evel s where devices can do full flow detail exporting).

Voit, et al. Expi res March 29, 2015 [Page 9]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

4.3. Service Chain Cassification, Load Bal anci ng and Capacity
Managemnent

Service Chains will dynam cally change ingress classification
filters, allocate paths from many ingress devices across shared
resources. This information needs to be updated in real tinme as
avai l abl e capacity is allocated or failures are discovered. It is
possible to sinplify service chain configuration and dynam c topol ogy
mai nt enance by transparently updating renote cached topol ogi es when
an authoritative object is changed within a central repository. For
exanple if the CPU in one VM spikes, you mght want to recal cul ate
and adj ust many chained paths to relieve the pressure. O perhaps
after the recal culation you want to spin up a new VM and then adj ust
chai ns when that capacity is on-line.

A key value here is central cal culation and transparent auto-
distribution. |In other words, a change only need be updated by an
application in a single location, and the infrastructure wl|l
automatically synchroni ze changes across any nunber of subscri bing
devi ces without application involvenment. |In fact, the application
need not even know many devices are nonitoring the object which has
been changed.

Beyond 1:n policy distribution, applications can step back from
aspects of failure recovery. What happens if a device is rebooting
or sinply msses a distribution of new information? Wth peer nount
there is no doubt as to where the authoritative information resides
i f things get out of synch.

While this ability is certainly useful for dynam c service chain
filtering classification and next hop mapping, this use case has nore
general applicability. Wth a distributed datastore, diverse
applications and hosts can locally access a single device's current
VM CPU and Bandwi dth val ues. They can do it w thout needing to
explicitly query that renote machine. Updates froma device woul d
cone froma periodic push of stats to a transparent cache to
subscribed, or via an unsolicited update which is only sent when

t hese val ue exceed established norns.

5. Requirenents

To achi eve the objectives described above, the network needs to
support a nunber of requirenents

Voit, et al. Expi res March 29, 2015 [Page 10]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

5.1. Application Sinplification

A maj or obstacle to network programmability are any requirenents
whi ch force applications to use abstractions nore conplicated than
the devel oper cares to touch. To sinplify applications devel opnent
and reduce unnecessary code, the follow ng needs nust be net.

Applications MJST be able to access a |ocal datastore which includes
obj ects whose authoritative source is located in a renpote datastore
hosted on a different server.

Local datastores MJUST be able to provide a hierarchical view of
obj ects assenbl ed from obj ects whose authoritative source nay
originate frompotentially different and overl appi ng nanmespaces.

Appl i cations MJUST be able to access all objects of a datastore
W t hout concern where the actual object is located, i.e. whether the
authoritative copy of the object is hosted on the sane system as the
| ocal datastore or whether it is hosted in a renote datastore.

Wth two exceptions, a datastore’s application facing interfaces MJST
make no differentiation whether individual objects exposed are
authoritatively owed by the datastore or nounted fromrenote. This
i ncl udes Netconf and Restconf as well as other, possibly proprietary
interfaces (such as, CLI generated from correspondi ng YANG dat a

nodel s). The two exceptions are that it is acceptable to nake a

di stinction between an object authoritatively owned by the data store
and a renote object as follows:

0 bject updates / editing, creation and deletion. E.g. via edit-
config conditions and constraints are assessed at the
authoritative datastore when the update/create/delete is
conducted. Any conditions or constraints at renote client
dat astores are NOT assessed.

0 Locks obtained at a client datastore: It is conceivable for the
interface to distinguish between two | ock nodes: | ocking the
entire subtree including renote data (in which case the
datastore’s nount client needs to explicitly obtain and rel ease
| ocks from nounted authoritative datastores), or |ocking only
authoritatively owned data, excluding renpote data fromthe | ock

These exceptions should not be very problematic as non-authoritative
copies wll typically be marked as read-only. This will not violate
any considerations of "no differentiation" of |ocal or renote.

When a change is nade to an object, that change will be reflected in
any datastore in which the object is included. This neans that a

Voit, et al. Expi res March 29, 2015 [Page 11]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

change nmade to the object through a renpte datastore will affect the
object in the authoritative datastore. Likew se, changes to an
object in the authoritative datastore will be reflected at any client
dat ast or es.

The distributed datastore MJST be able to include objects from

mul tiple renote datastores. The sane object may be included in
multiple renote datastores; in other words, an object’s authoritative
dat ast ore MUST support nultiple clients.

The distributed datastore infrastructure MJST enable to access to
sone subset of the sanme objects on different devices. (This includes
multiple controllers as well as nultiple physical and virtual peer
devi ces.)

Applications SHOULD be able to extract a tinme synchroni zed set of
operational data fromthe datastore. (In other words, the
application asks for a subset of network state at tine-stanp or timne-
range "X'. The datastore would then deliver time synchronized
snapshots of the network state per the request. The datastore may
work with NTP and operational counter to optimze the synchronization
results of such a query. It is understood that sonme types of data

m ght be under goi ng convergence conditions.)

Aut horitative datastore retain full ownership of "their" objects.
This means that while renote datastores nmay access the data, any

nodi fications to objects that are initiated at those renote
datastores need to be authorized by the authoritative owner of the
data. Likewi se, the authoritative ower of the data may nmake changes
to objects, including nodifications, additions, and del etions,

wi thout needing to first ask for permssion fromrenote clients.

Appl i cations MUST be designed to deal with inconplete data if renote
obj ects are not accessible, e.g. due to tenporal connectivity issues
preventing access to the authoritative source. (This will be true
for many protocols and programm ng | anguages. Mowunt is unlikely to
add anyt hi ng new here unl ess applications have extra error handling
routines to deal with when there is no response froma renote
system).

5.2. Cachi ng Consi derations

5.2.1. Caching Overview
Renote objects in a datastore can be accessed "on demand”, when the
application interacting with the datastore demands it. In that case,

a request nmade to the |ocal datastore is forwarded to the renote
system The response fromthe renote system e.g. the retrieved

Voit, et al. Expi res March 29, 2015 [Page 12]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

data, is subsequently nerged and collated with the other data to
return a consolidated response to the invoking application.

A downsi de of a datastore which is distributed across devices can be
the I atency i nduced when renote object acquisition is necessary.
There are plenty of applications which have requirenents which sinply
cannot be served when latency is introduced. The good news is that

t he concept of caching lends itself well to distributed datastores.

It is possible to transparently store sone types of objects locally

even when the authoritative copy is renote. |Instead of fetching data
on demand when an application demands it, the application is sinply
provided with the local copy. It is then up to the datastore

infrastructure to keep selected replicated info in synch, e.g. by
prefetching information, or by having the renote system publish
updates which are then locally stored.

This is not a new idea. Caching and Content Delivery Networks (CDN)
have sped read access for objects within the Internet for years.
Thi s has enabl ed greater performance and scale for certain content.
Just as inportant, these technol ogi es have been enpl oyed w t hout end
user applications being explicitly aware of their involvenment. Such
concepts are applicable for scaling the performance of a distributed
dat ast or e.

Where caching occurs, it MJST be possible for the Mount Cient to
store object copies of a renpte data node or subtree in such a way
that applications are unaware that any caching is occurring.

However, the interface to a datastore MAY provide applications with a
special node/flag to allow themto force a read-through and perhaps
even a wite-through.

Where caching occurs, systemadm nistration facilities SHOULD al | ow
facilities to flush either the entire cache, or information
associ ated with sel ect Mount Points.

5.2.2. Pub/Sub of Object Updates

When caching occurs, data can go stale. Pub/Sub provides a nmechani sm
where changes in an authoritative data node or subtree can be

nmonitored. |f changes occur, these changes can be delivered to any
subscri bing datastores. In this way renote caches can be kept up-to-
date. In this way, directly nonitoring renote applications can

qui ckly receive notifications wthout continuous polling.

Voit, et al. Expi res March 29, 2015 [Page 13]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

5.2.2.1. GCeneral Pub/Sub Update Requirenents
A Mount Cient SHOULD be able to take advantage of pub/sub
capabilities offered by a nount server. However, not every Munt
Server offers according capabilities.

A Mount Cient SHOULD be able to revert back to retrieve objects "On
Demand" and/or to pre-fetch objects by request.

A Mount Server MAY support a pub/sub capability in which one or nore
renote clients subscribe to updates of a target data node / subtree,
whi ch are then automatically published by the Munt Server.

One or nore of the foll ow ng pub/sub policies MIST be support ed:

0 On Demand (i.e. no pub/sub) - default

o Periodic (wth a specified tine interval)

o On change, i medi ate as the change occurs.

o On change, at the end of fixed intervals if a change has occurred
Further nodifications are possible: e.g. on change, whether to only

publish only the object that has changed or the entire subtree that

had been subscribed to. (Effectively this is aggregate replication
at tree level, not at the object level.)

Pub/sub is applicable to other applications as well, not limted to
peer nounting. For exanple, a pub/sub capability can greatly
facilitate nonitoring, as applications no |onger have to "poll"™ for

data but can sinply choose to subscribe to a stream of the nost
current data. Accordingly, servers that offer pub/sub capabilities
for its YANG datastore SHOULD NOT |imt subscribers to Mount dients,
but all ow other applications to subscribe as well.

It MUST be possible for Applications to subscribe to Data Node /
Subtrees so that upon Mount Cient receipt of subscribed information,
it is inmediately passed to the application.

It MJUST be possible for the Mount Cient to subscribe to Data Node /
Subtrees so that upon Mount Cient receipt of subscribed information,
it is cached and therefore awaiting | ocal application requests.

If there are no applications subscribing to a Data Node / Subtree, a
server SHOULD cease to publish the correspondi ng dat a.

Voit, et al. Expi res March 29, 2015 [Page 14]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

It MUST be possible for a Subscription to include a tinmestanp when
t he Subscription will expire.

It MUST be possible to identify a specific time when a Munt Binding
Will return the current value(s) of a nounted Data Node / Subtree.
(Such tinmeframes can be in the very near future in order to support a
snapshot of network state or counters across many devices.)

A publisher is not responsible to nonitor if the subscribers are
still active. It MAY do so, but is not obliged to do so.

Subscri ptions upon a Target Data Node do not remain active forever
but MJST be periodically re-subscribed . The reason for this is to

avoi d "waste", for exanple in cases when subscribers "die". If a
subscriber restarts, it is the subscribers responsibility to check
whet her its subscriptions are still intact or to resubscribe if
needed.

It MUST be possible for a Target Data Node to support 1:1 Mount
Bi ndings to a single subscribed Munt Point.

It MUST be possible for a Target Data Node to support 1:n Mount
Bi ndi ngs to many subscri bed Mount Points.

5.2.2.2. Periodic Pub/Sub Updates

Especially wth network based Counters or Operational data, there
need be no recurring request to send the next instance of data which
is released on schedule to subscribers.

It MUST be possible to for a Periodic Muunt Point to identify a
specific time when a Mount Target will return the current val ue(s) of
a nounted Data Node / Subtree. This will allow for synchronization
of calculation for objects delivered from many Munt Bindings to

| ocal applications.

It MUST be possible to for a Periodic Mount Point to identify the
desired start and stop tinestanps for any replicated objects
associated with duration. This will allow for tinme period
synchroni zati on of source data for objects delivered from many Munt
Bi ndi ngs to | ocal applications.

5.2.2.3. Change-trigger Pub/Sub Updates

For an Unsolicited Mount Point, if a data node or subtree changes,
t he Mount Target MUST provi de updated objects to the Mount dient.

For an Unsolicited Mount Point, if a data node or subtree changes,
t he Mount Target SHOULD be able to provide just the updated objects

Voit, et al. Expi res March 29, 2015 [Page 15]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

to the Mount Cient. Note: If there is a Muwunt Filter in place, then

only the updated objects based on the filter will be delivered. It
is possible that a Filter will result in no update needing to be
sent.

It SHOULD be possible to provide criteria per Munt Binding on the
characteristics of changes to a Target Data Node' s nonitored objects
on before an update is sent to the subscribing system (Effectively
this becomes a "threshold trigger"” for change notification to renote
caches.)

5.3. Lifecycle of the Munt Topol ogy
Mount can drive a dynam c and richly interconnected nesh of peer-to-

peer of object relationships. Each of these Mounts will be
i ndependently established by a Mount dient.

It MUST be possible to bootstrap the Mount Cient by providing the
YANG paths to resources on the Muunt Server.

There SHOULD be the ability to add Mount Cient bindings during run-
time.

A Mount Cient MJUST be able to be able to create, delete, and tineout
Mount Bi ndi ngs.

A Mount Server maintaining a periodic or unsolicited Munt Binding
MUST be able to informthe Mount Cient of an intentional graceful
di sconnection of that binding.
A Mount Cient nust be able to verify the existence of a periodic or
unsol i cited Mount Bi ndi ng which has successfully been established on
a Mount Server, and re-establish if it has di sappear ed.

5.3.1. Discovery and Creation of Munt Topol ogy

Application visibility into an ever-changi ng set of network objects

is not trivial. While sone applications can be easily configured to
know t he Devi ces and avail abl e Mount Points of interest, other
applications will have to bal ance many aspects of dynam c device

availability, capabilities, and interconnectedness. For the nost
part, mai ntenance of these dynam c el enents can be done on the YANG
obj ects thensel ves wi thout anything needed new for Peer Munt.
Technol ogi es such as need reference are covered in other standards
initiatives. Therefore this draft does delve deeply into the needs
for Auto-discovery of YANG objects which may be adverti sed.

Voit, et al. Expi res March 29, 2015 [Page 16]

I nt

5.3

5. 4.

5. 5.

5. 6.

\Voi

ernet - Draft Peer Mount Requirenents Sept enber 2014

However it wll likely beconme interesting for a network element to
l[imt the Data Subtrees which m ght be subscribed for Unsolicited and
Peri odi ¢ Updat e.

It SHOULD be possible for a Mount Server to advertise potenti al
Target Data Nodes whi ch can support unsolicited and peri odi ¢ bi ndi ng

types.
.2. Restrictions on the Munt Topol ogy

Mount Clients MJUST NOT create recursive Munt bindings (i.e., the
Mount Client should not | oad any object or subtree which it has
already delivered to another in the role of a Mount Server.) Note:
bj ects mounted froma controller as part of orchestration are *not*
consi dered the sanme objects as those which m ght be nounted back from
a network device showi ng the actual running config.

Mount Filter

The Mount Server default MJST be to deliver the sane Data Node /
Subtree that woul d have been delivered via direct YANG access.

It SHOULD be possible for a Mount Cient to request sonething | ess
that the full subtree or a target node. This will be val uabl e when
t he nunber or size of objects under a Target Data Node is |arge.

Transport

Many secured transports are viable assum ng transport, data security,
scal e, and perfornance objectives are net. Netconf is recommended
for starting. Oher transports may be proposed over tine.

Addi tional study is needed to assess how aspects of | ocking wll
supported in parallel with eventual consistency for different object
wites.

It MJUST be possible to support Netconf Transport of subscri bed Nodes
and Subtrees.

RESTconf [RESTconf] nust be exam ned as well, especially as section
1.2 studies a possible mx of Iocking.

Security Considerations

Many security nechani snms exist to protect read/wite access for CLI
and APl on network devices. To the degree possible these nechani snms
shoul d transparently protect data read and wite when performng a
Peer Mount. The text below starts with a subset of those
requirenents . Additional ones should be added.

t, et al. Expi res March 29, 2015 [Page 17]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

The sane mechani sns used to determ ne whether a renpte host has
access to a particular YANG Data Node or Subtree MJST be invoked to
deternm ne whether a Mount Cient has access to that information.

The sane traditional transport |evel security nmechanismsecurity used
for YANG over a particular transport MJST be used for the delivery of
objects froma Munt Server to a Mount Cient.

A Mount Server inplenentation MJST NOT change any credential s passed
by the Mount Cient systemfor any Mount Binding request.

The Mount Server MJST deliver no nore objects froma Data Node or
Subtree than all owabl e based on the security credentials provided by
the Mount Client.

To ensure the ensuring maxi mumscale limts, it MJST be possible to
for a Mount Server to limt the nunber of bindings and transacti onal
[imts

It SHOULD be possible to prioritize which Munt Binding instances
shoul d be serviced first if there is CPU, bandw dth, or other
capacity constraints.

5.7. High Availability

A key intent for Peer Mount is to allow access to an authoritative
copy of an object for a particular domain. O course system and
software failures or schedul ed upgrades m ght nmean that the primary
copy is not consistently accessible froma single device. In
addition, systemfailovers mght mean that the authoritative copy

m ght be housed on a different device than the one where the binding
was originally established. Peer Munt architectures nust be built
to enable Mount Clients to transparently provide access to objects
where the authoritative copy noves due to dynanmi c network
reconfigurations .

For sel ected objects, Munt Bindings SHOULD be allowed to Anycast or
ECWP (Equal Cost Multiple Path) addresses so that a Distributed Munt
Server inplenentation can transparently provide (a) availability
during failure events to Mount Clients, and (b) | oad bal anci ng on
behal f of Munt Cients.

Where anycast unsolicited or periodic bindings are allowed to Anycast
addresses, the real tinme state of Munt Server bindings MIST be
coordi nated across the set of Anycast addressed devices. |In this
way, the state of periodic and unsolicited Mount Bindings will not be
| ost during a failover.

Voit, et al. Expi res March 29, 2015 [Page 18]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

The Mount Cient and Mount Server MJST either have heart-beat
mechani sm OR use a connection oriented transport to detect each
other’s failures.

When a Mount Server detects di sappearance of a Mount Cient, the
Mount Server SHOULD purge all the nount bindings fromthe failed
Mount Cient.

When a failover occurs on the Mount Cient side, the new instance of
the Mount Client SHOULD re-establish the nount bindings with the
Mount Server(s).

When a failover occurs on the Mouunt Server side, the new owner of an
unsolicited nmount binding SHOULD send out the current state of the
obj ect to subscribed Mount Cients.

5.8. Configuration

At the Mount Cient, it MJUST be possible for all Munt bindings to
configure the followi ng such that the application needs no know edge.
This will includea diverse list of elenments such at the YANG URI path
to the renote subtree.

5.9. Assurance and Monitoring

APl usage for YANG should be tracked via existing nechanisns. There
is nointent to require additional transaction tracking than woul d
have been provided normally. However there are additional

requi renents which should allow the state of existing and histori cal
bi ndi ngs to be provided.

A Mount Client MIUST be able to poll a Munt Server for the state of
unsolicited and periodic Mount Binding nmai ntai ned between the two
devi ces.

A Mount Server MJST be able to publish the set of unsolicited and
periodi ¢ Mount Bi ndings which are currently established on or bel ow
any identified data node.

A Mount Server MJST be able to publish the set of unsolicited and
periodi ¢ Mount Bi ndings which are going to a specific Munt Cient.

A Mount Server MJST be able to publish the set fulfilled Munt
Bi ndi ngs which are going to a specific Munt Cient.

A Mount Server MJST be able to publish a |ist of the Munt Bi ndings
transacti ons successfully conpl et ed.

Voit, et al. Expi res March 29, 2015 [Page 19]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

A Mount Server MJST be able to publish a list of the Munt Bi ndi ngs
which failed, along with reasons that they failed. These reasons
m ght i ncl ude:

0 |Inproper security credentials provided for the Mount Cient to
access the target node

o Target node referenced does not exist

o Binding type requested not available for the target node
o Mount Server out of resources or resources not avail able
o Connection fromclient |ost before binding conplete

A Mount Client MUST be able to publish a |ist of the Munt Bi ndings
transacti ons successfully conpl et ed.

A Mount Cient MJUST be able to publish a list of the Munt Bindings
which failed, along with reasons that they failed. These reasons
m ght i ncl ude:
o0 No response from Mount Cient
o Connection could not be established with Munt Cient
0 Security credentials provided to Muunt Server rejected
o Target node referenced does not exi st
o Binding type requested not available for the target node
o Mount Server out of resources or resources not avail able
o Connection fromclient |ost before binding conplete
6. | ANA Consi derations

Thi s docunment makes no request of | ANA

Note to RFC Editor: this section nay be renpbved on publication as an
RFC.

7. Acknow edgenents

W wi sh to acknow edge the hel pful contributions, conments, and
suggestions that were received from D nkar Kunjikrishnan, Harish

Voit, et al. Expi res March 29, 2015 [Page 20]

I nternet-Draft Peer Mount Requirenents Sept enber 2014

Gumaste, Rohit M, Shruthi V. , Sudarshan Ganapathi, and Swaroop
Shastri .

8. Ref er ences
8.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

[RFC3768] Hinden, R, "Virtual Router Redundancy Protocol (VRRP)"
RFC 3768, April 2004.

[RFC4610] Farinacci, D. and Y. Cai, "Anycast-RP Using Protocol
I ndependent Multicast (PIM", RFC 4610, August 2006.

[RFC6020] Bjorklund, M, "YANG - A Data Mddeling Language for the
Net wor k Configuration Protocol (NETCONF)", RFC 6020,
Oct ober 2010.

8. 2. I nformati ve References

[I CCP] Martini, L., Ed., "Inter-Chassis Comuni cati on Protocol
for L2VPN PE Redundancy", March 2014,
<https://tools.ietf.org/htm/draft-ietf-pwe3-iccp-16>.

[RESTconf]
Bi erman, A., Ed., "RESTCONF Protocol", July 2014,
<https://tools.ietf.org/htm/draft-ietf-netconf-restconf-
01>.

[draft-clem nount]
Cemm A, Ed., "Munting YANG Defined Information from
Renot e Dat astores", Septenber 2013,
<http://tools.ietf.org/id/
draft-cl enm net nod- nount - 01. t xt >.

[rfc6020bi s]
Bj orklund, M, "YANG - A Data Model i ng Language for the
Net wor k Configuration Protocol (NETCONF)", July 2014,
<https://datatracker.ietf.org/doc/draft-ietf-netnod-
rf c6020bi s/ >.

8.3. URIs

[1] http://thomaswdi nsnore. coni 2014/ 05/ 01/ di stri but ed-anal yti cs-
primer/

Voit, et al. Expi res March 29, 2015 [Page 21]

| nt er net - Draf t Peer

Mount

Requi renent s

[2] http://en.w ki pedi a.org/w ki/ACI D

Sept enber 2014

[3] http://robertgreiner.com 2014/ 08/ cap-theoremrevisited/

[4] http://guide.couchdb. org/draft/consistency. htn

Aut hors’ Addresses

Eric Voit
Ci sco Systens

Email: evoit @i sco.com

Al ex O emm

Ci sco Systens

Email : al ex@i sco. com
Shashi Kumar Bansal

Ci sco Systens

Emai | : shabansa@i sco. com
Ambi ka Tri pat hy

Ci sco Systens

Emai | : anbtri pa@i sco. com
Pr abhakara Yel | ai

Ci sco Systens

Emai | : pyel |l ai @i sco. com

Voit, et al. Expi res March 29, 2015

[Page 22]

