
NETCONF Data Modeling Language Working Group (netmod) E. Voit
Internet-Draft A. Clemm
Intended status: Informational S. Bansal
Expires: March 29, 2015 A. Tripathy
 P. Yellai
 Cisco Systems
 September 25, 2014

 Requirements for Peer Mounting of YANG subtrees from Remote Datastores
 draft-voit-netmod-peer-mount-requirements-00

Abstract

 Network integrated applications want simple ways to access YANG
 objects and subtrees which might be distributed across network.
 Performance requirements may dictate that it is unaffordable for a
 subset of these applications to go through existing centralized
 management brokers. For such applications, development complexity
 must be minimized. Specific aspects of complexity developers want to
 ignore include:

 o whether authoritative information is actually sourced from remote
 datastores (as well as how to get to those datastores),

 o whether such information has been locally cached or not,

 o whether there are zero, one, or more controllers asserting
 ownership of information, and

 o whether there are interactions with other applications
 concurrently running elsewhere

 The solution requirements described in this document detail what is
 needed to support application access to authoritative network YANG
 objects from controllers (star) or peering network devices (mesh) in
 such a way to meet these goals.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

Voit, et al. Expires March 29, 2015 [Page 1]

Internet-Draft Peer Mount Requirements September 2014

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 29, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Business Problem . 3
 2. Terminology . 4
 3. Solution Context . 5
 3.1. Peer Mount . 6
 3.2. Eventual Consistency and YANG 1.1 7
 4. Example Use Cases . 7
 4.1. Cloud Policer . 8
 4.2. DDoS Thresholding . 9
 4.3. Service Chain Classification, Load Balancing and Capacity
 Management . 10
 5. Requirements . 10
 5.1. Application Simplification 11
 5.2. Caching Considerations 12
 5.2.1. Caching Overview 12
 5.2.2. Pub/Sub of Object Updates 13
 5.3. Lifecycle of the Mount Topology 16
 5.3.1. Discovery and Creation of Mount Topology 16
 5.3.2. Restrictions on the Mount Topology 17
 5.4. Mount Filter . 17
 5.5. Transport . 17
 5.6. Security Considerations 17
 5.7. High Availability . 18
 5.8. Configuration . 19
 5.9. Assurance and Monitoring 19

Voit, et al. Expires March 29, 2015 [Page 2]

Internet-Draft Peer Mount Requirements September 2014

 6. IANA Considerations . 20
 7. Acknowledgements . 20
 8. References . 21
 8.1. Normative References 21
 8.2. Informative References 21
 8.3. URIs . 21
 Authors’ Addresses . 22

1. Business Problem

 Instrumenting Physical and Virtual Network Elements purely along
 device boundaries is insufficient for today’s requirements. Instead,
 users, applications, and operators are asking for the ability to
 interact with varying subsets of network information at the highest
 viable level of abstraction. Likewise applications that run locally
 on devices may require access to data that transcends the boundaries
 of the device they are deployed. Achieving this can be difficult
 since a running network is comprised of a distributed mesh of object
 ownership. (I.e., the authoritative device owning a particular
 object will vary.) Solutions require the transparent assembly of
 different objects from across a network in order to provide
 consolidated, time synchronized, and consistent views required for
 that abstraction.

 Recent approaches have focused on a Network Controller as the arbiter
 of new network-wide abstractions. Controller based solutions are
 supportable by requirements outlined in this document. However this
 is not the only deployment model covered by this document. Equally
 valid are deployment models where Network Elements exchange
 information in a way which allows one or more of those Elements to
 provide the desired network level abstraction. This is not a new
 idea. Examples of Network Element based protocols which already do
 network level abstractions include VRRP [RFC3768], mLACP/ICCP[ICCP],
 and Anycast-RP [RFC4610] . As network elements increase their compute
 power and support Linux based compute virtualization, we should
 expect additional local applications to emerge as well (such as
 Distributed Analytics [1]).

 Ultimately network application programming must be simplified. To do
 this:

 o we must provide APIs to both controller and network element based
 applications in a way which allows access to network objects as if
 they were coming from a cloud,

 o we must enable these local applications to interact with network
 level abstractions,

Voit, et al. Expires March 29, 2015 [Page 3]

Internet-Draft Peer Mount Requirements September 2014

 o we must hide the mesh of interdependencies and consistency
 enforcement mechanisms between devices which will underpin a
 particular abstraction,

 o we must enable flexible deployment models, in which applications
 are able to run not only on controller and OSS frameworks but also
 on network devices without requiring heavy middleware with large
 footprints, and

 o we need to maintain clear authoritative ownership of individual
 data items while not burdening applications with the need to
 reconcile and synchronize information replicated in different
 systems, nor needing to maintain redundant data models that
 operate on the same underlying data.

 These steps will eliminate much unnecessary overhead currently
 required of today’s network programmer.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Authoritative Datastore - A datastore containing the authoritative
 copy of an object, i.e. the source and the "owner" of the object.

 Client Datastore - a datastore containing an object whose source and
 "owner" is a remote datastore.

 Data Node - An instance of management information in a YANG
 datastore.

 Datastore - A conceptual store of instantiated information, with
 individual data items represented by data nodes which are arranged in
 hierarchical manner.

 Data Subtree - An instantiated data node and the data nodes that are
 hierarchically contained within it.

 Mount Client - The system at which the mount point resides, into
 which on or more remote subtrees may be mounted.

 Mount Binding - An instance of mounting from a specific Mount Point
 to a remote datastore. Types include:

 o On-demand: Mount Client only pulls information when application
 requests

Voit, et al. Expires March 29, 2015 [Page 4]

Internet-Draft Peer Mount Requirements September 2014

 o Periodic: Mount Server pushes current state at a pre-defined
 interval

 o Unsolicited: Mount Server maintains active bindings and sends to
 client cache upon change

 Mount Point - Point in the local data store which may reference a
 single remote subtree

 Mount Server - The server with which the Mount Client communicates
 and which provides the Mount Client with access to the mounted
 information. Can be used synonymously with Mount Target.

 Peer Mount - The act of representing remote objects in the local
 datastore

 Target Data Node - Data Node on Mount Server against which a Mount
 Binding is established

3. Solution Context

 YANG modeling has emerged as a preferred way to offer network
 abstractions. The requirements in this document can be enabled by
 expanding of the syntax of YANG capabilities embodied within RFC 6020
 [RFC6020] and YANG 1.1 [rfc6020bis]. A companion draft to this one
 which details a potential set of YANG technology extensions which can
 support key requirements within this document are contained in .
 [draft-clemm-mount].A "-02" release of this draft which includes
 specifications to support many additional concepts will be posted in
 the coming days.

 To date systems built upon YANG models have been missing two
 capabilities:

 1. Peer Datastore Mount: Datastores have not been able to proxy
 objects located elsewhere. This puts additional burden upon
 applications which then need to find and access multiple
 (potentially remote) systems.

 2. Eventual Consistency: YANG Datastore implementations have
 typically assumed ACID [2] transaction models. There is nothing
 inherent in YANG itself which demands ACID transactional
 guarantees. YANG models can also expose information which might
 be in the process of undergoing convergence. Since IP networking
 has been designed with convergence in mind, this is a useful
 capability since some types of applications must participate
 where there is dynamically changing state.

Voit, et al. Expires March 29, 2015 [Page 5]

Internet-Draft Peer Mount Requirements September 2014

3.1. Peer Mount

 First this document will dive deeper into Peer Datastore Mount
 (a.k.a., "Peer Mount"). Contrary to existing YANG datastores, where
 hierarchical datatree(s) are local in scope and only includes data
 that is "owned" by the local system, we need an agent or interface on
 one system which is able refer to managed resources that reside on
 another system. This allows applications on the same system as the
 YANG datastore server, as well as remote clients that access the
 datastore through a management protocol such as NETCONF, to access
 all data as if it were local to that same server. This must be done
 in a manner that is transparent to users and applications. This must
 be done in a way which does not require a user or application to be
 aware of the fact that some data resides in a different location and
 have them directly access that other system. In this way, the user
 is projected an image of one virtual consolidated datastore.

 The value in such a datastore comes from its under-the-covers
 federation. The datastore transparently exposes information from
 multiple systems across the network. The user does not need to be
 aware of the precise distribution and ownership of data themselves,
 nor is there a need for the application to discover those data
 sources, maintain separate associations with them, and partition its
 operations to fit along remote system boundaries. The effect is that
 a network device can broaden and customize the information available
 for local access. Life for the application is easier.

 Any Object type can be included in such a datastore. This can
 include configuration data that is either persistent or ephemeral,
 and which is valid within only a single device or across a domain of
 devices. This can include operational data that represents state
 across a single device or across a multiple devices.

 Another useful aspect of "Peer Mount" is its ability to embed
 information from external YANG models which haven’t necessarily been
 normalized. Normalization is a good thing. But the massive human
 efforts invested in uber-data-models have never gained industry
 traction due to the resulting models’ brittle nature and complexity.
 By mounting remote trees/objects into local datastores it is possible
 to expose remote objects under a locally optimized hierarchy without
 having to transpose remote objects into a separate local model. Once
 this exists, object translation and normalization become optional
 capabilities which may also be hidden.

 Another useful aspect of "Peer Mount" is its ability to mount remote
 trees where the local datastore does not know the full subtree being
 installed. In fact, the remote datastore might be dynamically
 changing the mounted tree. These dynamic changes can be reflected as

Voit, et al. Expires March 29, 2015 [Page 6]

Internet-Draft Peer Mount Requirements September 2014

 needed under the "attachment points" within the namespace hierarchy
 where the data subtrees from remote systems have been mounted. In
 this case, the precise details of what these subtrees exactly contain
 does not need to be understood by the system implementing the
 attachment point, it simply acts as a single point of entry and
 "proxy" for the attached data.

3.2. Eventual Consistency and YANG 1.1

 The CAP theorem [3] states that it is impossible for a distributed
 computer system to simultaneously provide Consistency, Availability,
 and Partition tolerance. (I.e., distributed network state management
 is hard.) Mostly for this reason YANG implementations have shied
 away from distributed datastore implementations where ACID
 transactional guarantees cannot be given. This of course limits the
 universe of applicability for YANG technology.

 Leveraging YANG concepts, syntax, and models for objects which might
 be happening to undergo network convergence is valuable. Such reuse
 greatly expands the universe of information visible to networking
 applications. The good news is that there is nothing in YANG 1.1
 syntax that prohibits its reapplication for distributed datastores.
 Extensions are needed however.

 Requirements described within this document can be used to define
 technology extensions to YANG 1.1 for remote datastore mounting.
 Because of the CAP theorem, it must be recognized that systems built
 upon these extensions MAY choose to support eventual consistency
 rather than ACID guarantees. Some applications do not demand ACID
 guarantees (examples are contained in this document’s Use Case
 section). Therefore for certain classes of applications, eventual
 consistency [4] should be viewed as a cornerstone feature capability
 rather than a bug.

4. Example Use Cases

 Many types of applications can benefit from the simple and quick
 availability of objects from peer network devices. Because network
 management and orchestration systems have been fulfilling a subset of
 the requirements for decades, it is important to focus on what has
 changed. Changes include:

 o SDN applications wish to interact with local datastore(s) as if
 they represent the real-time state of the distributed network.

 o Independent sets of applications and SDN controllers might care
 about the same authoritative data node or subtree.

Voit, et al. Expires March 29, 2015 [Page 7]

Internet-Draft Peer Mount Requirements September 2014

 o Changes in the real-time state of objects can announce themselves
 to subscribing applications.

 o The union of an ever increasing number of abstractions provided
 from different layers of the network are assumed to be consistent
 with each other (at least once a reasonable convergence time has
 been factored in).

 o CPU and VM improvements makes running Linux based applications on
 network elements viable.

 Such changes can enable a new class of applications. These
 applications are built upon fast-feedback-loops which dynamically
 tune the network based on iterative interactions upon a distributed
 datastore.

4.1. Cloud Policer

 A Cloud Policer enables a single aggregated data rate to tenants/
 users of a data center cloud that applies across their VMs; a rate
 independent of where specific VMs are physically hosted. This works
 by having edge router based traffic counters available to a
 centralized application, which can then maintain an aggregate across
 those counters. Based on the sum of the counters across the set of
 edge routers, new values for each device based Policer can be
 recalculated and installed. Effectively policing rates are
 continuously rebalanced based on the most recent traffic offered to
 the aggregate set of edge devices.

 The cloud policer provides a very simple cloud QoS model. Many other
 QoS models could also be implemented. Example extensions include:

 o CIR/PIR guarantees for a tenant,

 o hierarchical QoS treatment,

 o providing traffic delivery guarantees for specific enterprise
 branch offices, and

 o adjusting the prioritization of one application based on the
 activity of another application which perhaps is in a completely
 different location.

 It is possible to implement such a cloud policer application with
 maximum application developer simplicity using peer mount. To do
 this the application accesses a local datastore which in turn does a
 peer mount from edge routers the objects which house current traffic
 counter statistics. These counters are accessed as if they were part

Voit, et al. Expires March 29, 2015 [Page 8]

Internet-Draft Peer Mount Requirements September 2014

 of the local datastore structures, without concern for the fact that
 the actual authoritative copies reside on remote systems.

 Beyond this centralized counter collection peer mount, it is also
 possible to have distributed edge routers mount information in the
 reverse direction. In this case local edge routers can peer mount
 centrally calculated policer rates for the device, and access these
 objects as if they were locally configured.

 For both directions of mounting, the authoritative copy resides in a
 single system and is mounted by peers. Therefore issues with regards
 to inconsistent configuration of the same redundant data across the
 network are avoided. Also as can be seen in this use case, the same
 system can act as a mount client of some objects while acting as
 server for other objects.

4.2. DDoS Thresholding

 Another extension of the "Cloud Policer" application is the creation
 of additional action thresholds at bandwidth rates far greater than
 might be expected. If these higher thresholds are hit, it is
 possible to connect in DDoS scrubbers to ingress traffic. This can
 be done in seconds after a bandwidth spike. This can also be done if
 non-bandwidth counters are available. For example, if TCP flag
 counts are available it is possible to look for changes in SYN/ACK
 ratios which might signal a different type of attack. In all cases,
 when network counters indicate a return to normal traffic profiles
 the DDoS Scrubbers can be automatically disconnected.

 Benefits of only connecting a DDoS scrubber in the rare event an
 attack might be underway include:

 o marking down traffic for an out-of-profile tenant so that an
 potential attack doesn’t adversely impact others,

 o applying DDoS Scrubbing across many devices when an attack is
 detected in one,

 o reducing DDoS scrubber CPU, power, and licensing requirements
 (during the vast majority of time, spikes are not occurring), and

 o dynamic management and allocation of scarce platform resources
 (such as optimizing span port usage, or limiting IP-FIX reporting
 to levels where devices can do full flow detail exporting).

Voit, et al. Expires March 29, 2015 [Page 9]

Internet-Draft Peer Mount Requirements September 2014

4.3. Service Chain Classification, Load Balancing and Capacity
 Management

 Service Chains will dynamically change ingress classification
 filters, allocate paths from many ingress devices across shared
 resources. This information needs to be updated in real time as
 available capacity is allocated or failures are discovered. It is
 possible to simplify service chain configuration and dynamic topology
 maintenance by transparently updating remote cached topologies when
 an authoritative object is changed within a central repository. For
 example if the CPU in one VM spikes, you might want to recalculate
 and adjust many chained paths to relieve the pressure. Or perhaps
 after the recalculation you want to spin up a new VM, and then adjust
 chains when that capacity is on-line.

 A key value here is central calculation and transparent auto-
 distribution. In other words, a change only need be updated by an
 application in a single location, and the infrastructure will
 automatically synchronize changes across any number of subscribing
 devices without application involvement. In fact, the application
 need not even know many devices are monitoring the object which has
 been changed.

 Beyond 1:n policy distribution, applications can step back from
 aspects of failure recovery. What happens if a device is rebooting
 or simply misses a distribution of new information? With peer mount
 there is no doubt as to where the authoritative information resides
 if things get out of synch.

 While this ability is certainly useful for dynamic service chain
 filtering classification and next hop mapping, this use case has more
 general applicability. With a distributed datastore, diverse
 applications and hosts can locally access a single device’s current
 VM CPU and Bandwidth values. They can do it without needing to
 explicitly query that remote machine. Updates from a device would
 come from a periodic push of stats to a transparent cache to
 subscribed, or via an unsolicited update which is only sent when
 these value exceed established norms.

5. Requirements

 To achieve the objectives described above, the network needs to
 support a number of requirements

Voit, et al. Expires March 29, 2015 [Page 10]

Internet-Draft Peer Mount Requirements September 2014

5.1. Application Simplification

 A major obstacle to network programmability are any requirements
 which force applications to use abstractions more complicated than
 the developer cares to touch. To simplify applications development
 and reduce unnecessary code, the following needs must be met.

 Applications MUST be able to access a local datastore which includes
 objects whose authoritative source is located in a remote datastore
 hosted on a different server.

 Local datastores MUST be able to provide a hierarchical view of
 objects assembled from objects whose authoritative source may
 originate from potentially different and overlapping namespaces.

 Applications MUST be able to access all objects of a datastore
 without concern where the actual object is located, i.e. whether the
 authoritative copy of the object is hosted on the same system as the
 local datastore or whether it is hosted in a remote datastore.

 With two exceptions, a datastore’s application facing interfaces MUST
 make no differentiation whether individual objects exposed are
 authoritatively owned by the datastore or mounted from remote. This
 includes Netconf and Restconf as well as other, possibly proprietary
 interfaces (such as, CLI generated from corresponding YANG data
 models). The two exceptions are that it is acceptable to make a
 distinction between an object authoritatively owned by the data store
 and a remote object as follows:

 o Object updates / editing, creation and deletion. E.g. via edit-
 config conditions and constraints are assessed at the
 authoritative datastore when the update/create/delete is
 conducted. Any conditions or constraints at remote client
 datastores are NOT assessed.

 o Locks obtained at a client datastore: It is conceivable for the
 interface to distinguish between two lock modes: locking the
 entire subtree including remote data (in which case the
 datastore’s mount client needs to explicitly obtain and release
 locks from mounted authoritative datastores), or locking only
 authoritatively owned data, excluding remote data from the lock.

 These exceptions should not be very problematic as non-authoritative
 copies will typically be marked as read-only. This will not violate
 any considerations of "no differentiation" of local or remote.

 When a change is made to an object, that change will be reflected in
 any datastore in which the object is included. This means that a

Voit, et al. Expires March 29, 2015 [Page 11]

Internet-Draft Peer Mount Requirements September 2014

 change made to the object through a remote datastore will affect the
 object in the authoritative datastore. Likewise, changes to an
 object in the authoritative datastore will be reflected at any client
 datastores.

 The distributed datastore MUST be able to include objects from
 multiple remote datastores. The same object may be included in
 multiple remote datastores; in other words, an object’s authoritative
 datastore MUST support multiple clients.

 The distributed datastore infrastructure MUST enable to access to
 some subset of the same objects on different devices. (This includes
 multiple controllers as well as multiple physical and virtual peer
 devices.)

 Applications SHOULD be able to extract a time synchronized set of
 operational data from the datastore. (In other words, the
 application asks for a subset of network state at time-stamp or time-
 range "X". The datastore would then deliver time synchronized
 snapshots of the network state per the request. The datastore may
 work with NTP and operational counter to optimize the synchronization
 results of such a query. It is understood that some types of data
 might be undergoing convergence conditions.)

 Authoritative datastore retain full ownership of "their" objects.
 This means that while remote datastores may access the data, any
 modifications to objects that are initiated at those remote
 datastores need to be authorized by the authoritative owner of the
 data. Likewise, the authoritative owner of the data may make changes
 to objects, including modifications, additions, and deletions,
 without needing to first ask for permission from remote clients.

 Applications MUST be designed to deal with incomplete data if remote
 objects are not accessible, e.g. due to temporal connectivity issues
 preventing access to the authoritative source. (This will be true
 for many protocols and programming languages. Mount is unlikely to
 add anything new here unless applications have extra error handling
 routines to deal with when there is no response from a remote
 system.).

5.2. Caching Considerations

5.2.1. Caching Overview

 Remote objects in a datastore can be accessed "on demand", when the
 application interacting with the datastore demands it. In that case,
 a request made to the local datastore is forwarded to the remote
 system. The response from the remote system, e.g. the retrieved

Voit, et al. Expires March 29, 2015 [Page 12]

Internet-Draft Peer Mount Requirements September 2014

 data, is subsequently merged and collated with the other data to
 return a consolidated response to the invoking application.

 A downside of a datastore which is distributed across devices can be
 the latency induced when remote object acquisition is necessary.
 There are plenty of applications which have requirements which simply
 cannot be served when latency is introduced. The good news is that
 the concept of caching lends itself well to distributed datastores.
 It is possible to transparently store some types of objects locally
 even when the authoritative copy is remote. Instead of fetching data
 on demand when an application demands it, the application is simply
 provided with the local copy. It is then up to the datastore
 infrastructure to keep selected replicated info in synch, e.g. by
 prefetching information, or by having the remote system publish
 updates which are then locally stored.

 This is not a new idea. Caching and Content Delivery Networks (CDN)
 have sped read access for objects within the Internet for years.
 This has enabled greater performance and scale for certain content.
 Just as important, these technologies have been employed without end
 user applications being explicitly aware of their involvement. Such
 concepts are applicable for scaling the performance of a distributed
 datastore.

 Where caching occurs, it MUST be possible for the Mount Client to
 store object copies of a remote data node or subtree in such a way
 that applications are unaware that any caching is occurring.
 However, the interface to a datastore MAY provide applications with a
 special mode/flag to allow them to force a read-through and perhaps
 even a write-through.

 Where caching occurs, system administration facilities SHOULD allow
 facilities to flush either the entire cache, or information
 associated with select Mount Points.

5.2.2. Pub/Sub of Object Updates

 When caching occurs, data can go stale. Pub/Sub provides a mechanism
 where changes in an authoritative data node or subtree can be
 monitored. If changes occur, these changes can be delivered to any
 subscribing datastores. In this way remote caches can be kept up-to-
 date. In this way, directly monitoring remote applications can
 quickly receive notifications without continuous polling.

Voit, et al. Expires March 29, 2015 [Page 13]

Internet-Draft Peer Mount Requirements September 2014

5.2.2.1. General Pub/Sub Update Requirements

 A Mount Client SHOULD be able to take advantage of pub/sub
 capabilities offered by a mount server. However, not every Mount
 Server offers according capabilities.

 A Mount Client SHOULD be able to revert back to retrieve objects "On
 Demand" and/or to pre-fetch objects by request.

 A Mount Server MAY support a pub/sub capability in which one or more
 remote clients subscribe to updates of a target data node / subtree,
 which are then automatically published by the Mount Server.

 One or more of the following pub/sub policies MUST be supported:

 o On Demand (i.e. no pub/sub) - default

 o Periodic (with a specified time interval)

 o On change, immediate as the change occurs.

 o On change, at the end of fixed intervals if a change has occurred

 Further modifications are possible: e.g. on change, whether to only
 publish only the object that has changed or the entire subtree that
 had been subscribed to. (Effectively this is aggregate replication
 at tree level, not at the object level.)

 Pub/sub is applicable to other applications as well, not limited to
 peer mounting. For example, a pub/sub capability can greatly
 facilitate monitoring, as applications no longer have to "poll" for
 data but can simply choose to subscribe to a stream of the most
 current data. Accordingly, servers that offer pub/sub capabilities
 for its YANG datastore SHOULD NOT limit subscribers to Mount Clients,
 but allow other applications to subscribe as well.

 It MUST be possible for Applications to subscribe to Data Node /
 Subtrees so that upon Mount Client receipt of subscribed information,
 it is immediately passed to the application.

 It MUST be possible for the Mount Client to subscribe to Data Node /
 Subtrees so that upon Mount Client receipt of subscribed information,
 it is cached and therefore awaiting local application requests.

 If there are no applications subscribing to a Data Node / Subtree, a
 server SHOULD cease to publish the corresponding data.

Voit, et al. Expires March 29, 2015 [Page 14]

Internet-Draft Peer Mount Requirements September 2014

 It MUST be possible for a Subscription to include a timestamp when
 the Subscription will expire.

 It MUST be possible to identify a specific time when a Mount Binding
 will return the current value(s) of a mounted Data Node / Subtree.
 (Such timeframes can be in the very near future in order to support a
 snapshot of network state or counters across many devices.)

 A publisher is not responsible to monitor if the subscribers are
 still active. It MAY do so, but is not obliged to do so.
 Subscriptions upon a Target Data Node do not remain active forever
 but MUST be periodically re-subscribed . The reason for this is to
 avoid "waste", for example in cases when subscribers "die". If a
 subscriber restarts, it is the subscribers responsibility to check
 whether its subscriptions are still intact or to resubscribe if
 needed.

 It MUST be possible for a Target Data Node to support 1:1 Mount
 Bindings to a single subscribed Mount Point.

 It MUST be possible for a Target Data Node to support 1:n Mount
 Bindings to many subscribed Mount Points.

5.2.2.2. Periodic Pub/Sub Updates

 Especially with network based Counters or Operational data, there
 need be no recurring request to send the next instance of data which
 is released on schedule to subscribers.

 It MUST be possible to for a Periodic Mount Point to identify a
 specific time when a Mount Target will return the current value(s) of
 a mounted Data Node / Subtree. This will allow for synchronization
 of calculation for objects delivered from many Mount Bindings to
 local applications.

 It MUST be possible to for a Periodic Mount Point to identify the
 desired start and stop timestamps for any replicated objects
 associated with duration. This will allow for time period
 synchronization of source data for objects delivered from many Mount
 Bindings to local applications.

5.2.2.3. Change-trigger Pub/Sub Updates

 For an Unsolicited Mount Point, if a data node or subtree changes,
 the Mount Target MUST provide updated objects to the Mount Client.

 For an Unsolicited Mount Point, if a data node or subtree changes,
 the Mount Target SHOULD be able to provide just the updated objects

Voit, et al. Expires March 29, 2015 [Page 15]

Internet-Draft Peer Mount Requirements September 2014

 to the Mount Client. Note: If there is a Mount Filter in place, then
 only the updated objects based on the filter will be delivered. It
 is possible that a Filter will result in no update needing to be
 sent.

 It SHOULD be possible to provide criteria per Mount Binding on the
 characteristics of changes to a Target Data Node’s monitored objects
 on before an update is sent to the subscribing system. (Effectively
 this becomes a "threshold trigger" for change notification to remote
 caches.)

5.3. Lifecycle of the Mount Topology

 Mount can drive a dynamic and richly interconnected mesh of peer-to-
 peer of object relationships. Each of these Mounts will be
 independently established by a Mount Client.

 It MUST be possible to bootstrap the Mount Client by providing the
 YANG paths to resources on the Mount Server.

 There SHOULD be the ability to add Mount Client bindings during run-
 time.

 A Mount Client MUST be able to be able to create, delete, and timeout
 Mount Bindings.

 A Mount Server maintaining a periodic or unsolicited Mount Binding
 MUST be able to inform the Mount Client of an intentional graceful
 disconnection of that binding.

 A Mount Client must be able to verify the existence of a periodic or
 unsolicited Mount Binding which has successfully been established on
 a Mount Server, and re-establish if it has disappeared.

5.3.1. Discovery and Creation of Mount Topology

 Application visibility into an ever-changing set of network objects
 is not trivial. While some applications can be easily configured to
 know the Devices and available Mount Points of interest, other
 applications will have to balance many aspects of dynamic device
 availability, capabilities, and interconnectedness. For the most
 part, maintenance of these dynamic elements can be done on the YANG
 objects themselves without anything needed new for Peer Mount.
 Technologies such as need reference are covered in other standards
 initiatives. Therefore this draft does delve deeply into the needs
 for Auto-discovery of YANG objects which may be advertised.

Voit, et al. Expires March 29, 2015 [Page 16]

Internet-Draft Peer Mount Requirements September 2014

 However it will likely become interesting for a network element to
 limit the Data Subtrees which might be subscribed for Unsolicited and
 Periodic Update.

 It SHOULD be possible for a Mount Server to advertise potential
 Target Data Nodes which can support unsolicited and periodic binding
 types.

5.3.2. Restrictions on the Mount Topology

 Mount Clients MUST NOT create recursive Mount bindings (i.e., the
 Mount Client should not load any object or subtree which it has
 already delivered to another in the role of a Mount Server.) Note:
 Objects mounted from a controller as part of orchestration are *not*
 considered the same objects as those which might be mounted back from
 a network device showing the actual running config.

5.4. Mount Filter

 The Mount Server default MUST be to deliver the same Data Node /
 Subtree that would have been delivered via direct YANG access.

 It SHOULD be possible for a Mount Client to request something less
 that the full subtree or a target node. This will be valuable when
 the number or size of objects under a Target Data Node is large.

5.5. Transport

 Many secured transports are viable assuming transport, data security,
 scale, and performance objectives are met. Netconf is recommended
 for starting. Other transports may be proposed over time.
 Additional study is needed to assess how aspects of locking will
 supported in parallel with eventual consistency for different object
 writes.

 It MUST be possible to support Netconf Transport of subscribed Nodes
 and Subtrees.

 RESTconf [RESTconf] must be examined as well, especially as section
 1.2 studies a possible mix of locking.

5.6. Security Considerations

 Many security mechanisms exist to protect read/write access for CLI
 and API on network devices. To the degree possible these mechanisms
 should transparently protect data read and write when performing a
 Peer Mount. The text below starts with a subset of those
 requirements . Additional ones should be added.

Voit, et al. Expires March 29, 2015 [Page 17]

Internet-Draft Peer Mount Requirements September 2014

 The same mechanisms used to determine whether a remote host has
 access to a particular YANG Data Node or Subtree MUST be invoked to
 determine whether a Mount Client has access to that information.

 The same traditional transport level security mechanism security used
 for YANG over a particular transport MUST be used for the delivery of
 objects from a Mount Server to a Mount Client.

 A Mount Server implementation MUST NOT change any credentials passed
 by the Mount Client system for any Mount Binding request.

 The Mount Server MUST deliver no more objects from a Data Node or
 Subtree than allowable based on the security credentials provided by
 the Mount Client.

 To ensure the ensuring maximum scale limits, it MUST be possible to
 for a Mount Server to limit the number of bindings and transactional
 limits

 It SHOULD be possible to prioritize which Mount Binding instances
 should be serviced first if there is CPU, bandwidth, or other
 capacity constraints.

5.7. High Availability

 A key intent for Peer Mount is to allow access to an authoritative
 copy of an object for a particular domain. Of course system and
 software failures or scheduled upgrades might mean that the primary
 copy is not consistently accessible from a single device. In
 addition, system failovers might mean that the authoritative copy
 might be housed on a different device than the one where the binding
 was originally established. Peer Mount architectures must be built
 to enable Mount Clients to transparently provide access to objects
 where the authoritative copy moves due to dynamic network
 reconfigurations .

 For selected objects, Mount Bindings SHOULD be allowed to Anycast or
 ECMP (Equal Cost Multiple Path) addresses so that a Distributed Mount
 Server implementation can transparently provide (a) availability
 during failure events to Mount Clients, and (b) load balancing on
 behalf of Mount Clients.

 Where anycast unsolicited or periodic bindings are allowed to Anycast
 addresses, the real time state of Mount Server bindings MUST be
 coordinated across the set of Anycast addressed devices. In this
 way, the state of periodic and unsolicited Mount Bindings will not be
 lost during a failover.

Voit, et al. Expires March 29, 2015 [Page 18]

Internet-Draft Peer Mount Requirements September 2014

 The Mount Client and Mount Server MUST either have heart-beat
 mechanism OR use a connection oriented transport to detect each
 other’s failures.

 When a Mount Server detects disappearance of a Mount Client, the
 Mount Server SHOULD purge all the mount bindings from the failed
 Mount Client.

 When a failover occurs on the Mount Client side, the new instance of
 the Mount Client SHOULD re-establish the mount bindings with the
 Mount Server(s).

 When a failover occurs on the Mount Server side, the new owner of an
 unsolicited mount binding SHOULD send out the current state of the
 object to subscribed Mount Clients.

5.8. Configuration

 At the Mount Client, it MUST be possible for all Mount bindings to
 configure the following such that the application needs no knowledge.
 This will includea diverse list of elements such at the YANG URI path
 to the remote subtree.

5.9. Assurance and Monitoring

 API usage for YANG should be tracked via existing mechanisms. There
 is no intent to require additional transaction tracking than would
 have been provided normally. However there are additional
 requirements which should allow the state of existing and historical
 bindings to be provided.

 A Mount Client MUST be able to poll a Mount Server for the state of
 unsolicited and periodic Mount Binding maintained between the two
 devices.

 A Mount Server MUST be able to publish the set of unsolicited and
 periodic Mount Bindings which are currently established on or below
 any identified data node.

 A Mount Server MUST be able to publish the set of unsolicited and
 periodic Mount Bindings which are going to a specific Mount Client.

 A Mount Server MUST be able to publish the set fulfilled Mount
 Bindings which are going to a specific Mount Client.

 A Mount Server MUST be able to publish a list of the Mount Bindings
 transactions successfully completed.

Voit, et al. Expires March 29, 2015 [Page 19]

Internet-Draft Peer Mount Requirements September 2014

 A Mount Server MUST be able to publish a list of the Mount Bindings
 which failed, along with reasons that they failed. These reasons
 might include:

 o Improper security credentials provided for the Mount Client to
 access the target node

 o Target node referenced does not exist

 o Binding type requested not available for the target node

 o Mount Server out of resources or resources not available

 o Connection from client lost before binding complete

 A Mount Client MUST be able to publish a list of the Mount Bindings
 transactions successfully completed.

 A Mount Client MUST be able to publish a list of the Mount Bindings
 which failed, along with reasons that they failed. These reasons
 might include:

 o No response from Mount Client

 o Connection could not be established with Mount Client

 o Security credentials provided to Mount Server rejected

 o Target node referenced does not exist

 o Binding type requested not available for the target node

 o Mount Server out of resources or resources not available

 o Connection from client lost before binding complete

6. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

7. Acknowledgements

 We wish to acknowledge the helpful contributions, comments, and
 suggestions that were received from Dinkar Kunjikrishnan, Harish

Voit, et al. Expires March 29, 2015 [Page 20]

Internet-Draft Peer Mount Requirements September 2014

 Gumaste, Rohit M., Shruthi V. , Sudarshan Ganapathi, and Swaroop
 Shastri.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3768] Hinden, R., "Virtual Router Redundancy Protocol (VRRP)",
 RFC 3768, April 2004.

 [RFC4610] Farinacci, D. and Y. Cai, "Anycast-RP Using Protocol
 Independent Multicast (PIM)", RFC 4610, August 2006.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

8.2. Informative References

 [ICCP] Martini, L., Ed., "Inter-Chassis Communication Protocol
 for L2VPN PE Redundancy", March 2014,
 <https://tools.ietf.org/html/draft-ietf-pwe3-iccp-16>.

 [RESTconf]
 Bierman, A., Ed., "RESTCONF Protocol", July 2014,
 <https://tools.ietf.org/html/draft-ietf-netconf-restconf-
 01>.

 [draft-clemm-mount]
 Clemm, A., Ed., "Mounting YANG-Defined Information from
 Remote Datastores", September 2013,
 <http://tools.ietf.org/id/
 draft-clemm-netmod-mount-01.txt>.

 [rfc6020bis]
 Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", July 2014,
 <https://datatracker.ietf.org/doc/draft-ietf-netmod-
 rfc6020bis/>.

8.3. URIs

 [1] http://thomaswdinsmore.com/2014/05/01/distributed-analytics-
 primer/

Voit, et al. Expires March 29, 2015 [Page 21]

Internet-Draft Peer Mount Requirements September 2014

 [2] http://en.wikipedia.org/wiki/ACID

 [3] http://robertgreiner.com/2014/08/cap-theorem-revisited/

 [4] http://guide.couchdb.org/draft/consistency.html

Authors’ Addresses

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Alex Clemm
 Cisco Systems

 Email: alex@cisco.com

 Shashi Kumar Bansal
 Cisco Systems

 Email: shabansa@cisco.com

 Ambika Tripathy
 Cisco Systems

 Email: ambtripa@cisco.com

 Prabhakara Yellai
 Cisco Systems

 Email: pyellai@cisco.com

Voit, et al. Expires March 29, 2015 [Page 22]

