
core P. van der Stok
Internet-Draft consultant
Intended status: Standards Track B. Greevenbosch
Expires: August 7, 2015 independent
 A. Bierman
 YumaWorks
 J. Schoenwaelder
 A. Sehgal
 Jacobs University
 February 3, 2015

 CoAP Management Interface
 draft-vanderstok-core-comi-06

Abstract

 This document describes a network management interface for
 constrained devices, called CoMI. CoMI is an adaptation of the
 RESTCONF protocol for use in constrained devices and networks. It is
 designed to reduce the message sizes, server code size, and
 application development complexity. The Constrained Application
 Protocol (CoAP) is used to access management data resources specified
 in YANG, or SMIv2 converted to YANG. The payload of the CoMI message
 is encoded in Concise Binary Object Representation (CBOR).

Note

 Discussion and suggestions for improvement are requested, and should
 be sent to core@ietf.org.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 7, 2015.

van der Stok, et al. Expires August 7, 2015 [Page 1]

Internet-Draft CoMI February 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Design considerations 4
 1.2. Terminology . 5
 1.2.1. Tree Diagrams . 5
 2. CoMI Architecture . 6
 2.1. RESTCONF/YANG Architecture 9
 3. CoAP Interface . 10
 4. MG Function Set . 11
 4.1. Data Retrieval . 11
 4.1.1. GET . 12
 4.1.2. Mapping of the ’select’ Parameter 12
 4.1.3. Retrieval Examples 13
 4.2. Data Editing . 23
 4.2.1. POST . 23
 4.2.2. PUT . 23
 4.2.3. DELETE . 24
 4.3. Notify functions . 24
 4.4. Module Discovery . 25
 4.5. Error Return Codes 27
 5. Mapping YANG to CoMI payload 28
 5.1. YANG Hash Generation 29
 5.2. Re-Hash Procedure . 29
 5.3. ietf-yang-hash YANG Module 30
 5.3.1. YANG Re-Hash Example 32
 5.4. YANG Hash in URL . 33
 6. Mapping YANG to CBOR . 33
 6.1. High level encoding 33
 6.2. Conversion from YANG datatypes to CBOR datatypes 34
 7. Error Handling . 35
 8. Security Considerations 36
 9. IANA Considerations . 37

van der Stok, et al. Expires August 7, 2015 [Page 2]

Internet-Draft CoMI February 2015

 10. Acknowledgements . 37
 11. Changelog . 37
 12. References . 39
 12.1. Normative References 39
 12.2. Informative References 40
 Appendix A. Payload and Server sizes 43
 Appendix B. Notational Convention for CBOR data 45
 Appendix C. comparison with LWM2M 46
 Authors’ Addresses . 46

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is designed for
 Machine to Machine (M2M) applications such as smart energy and
 building control. Constrained devices need to be managed in an
 automatic fashion to handle the large quantities of devices that are
 expected in future installations. The messages between devices need
 to be as small and infrequent as possible. The implementation
 complexity and runtime resources need to be as small as possible.

 The draft [I-D.ietf-netconf-restconf] describes a REST-like interface
 called RESTCONF, which uses HTTP methods to access structured data
 defined in YANG [RFC6020]. RESTCONF allows access to data resources
 contained in NETCONF [RFC6241] datastores. RESTCONF messages can be
 encoded in XML [XML] or JSON. The GET method is used to retrieve
 data resources and the POST, PUT, PATCH, and DELETE methods are used
 to create, replace, merge, and delete data resources.

 A large amount of Management Information Base (MIB) [RFC3418]
 specifications already exist for monitoring purposes. This data can
 be accessed in RESTCONF if the server converts the SMIv2 modules to
 YANG, using the mapping rules defined in [RFC6643].

 The CoRE Management Interface (CoMI) is intended to work on
 standardized data-sets in a stateless client-server fashion. The
 RESTCONF protocol is adapted and optimized for use in constrained
 environments, using CoAP instead of HTTP. Standardized data sets
 promote interoperability between small devices and applications from
 different manufacturers. Stateless communication is encouraged to
 keep communications simple and the amount of state information small
 in line with the design objectives of 6lowpan [RFC4944] [RFC6775],
 RPL [RFC6650], and CoAP [RFC7252].

 RESTCONF uses the HTTP methods HEAD, OPTIONS, and PATCH, which are
 not available in CoAP. HTTP uses TCP which is not recommended for
 CoAP. The transport protocols available to CoAP are much better
 suited for constrained networks.

van der Stok, et al. Expires August 7, 2015 [Page 3]

Internet-Draft CoMI February 2015

 TODO: Introduce CoAP Patch options to allow modification to subsets
 of resource.

 CoMI is low resource oriented, uses CoAP, and only supports the
 methods GET, PUT, POST and DELETE. The payload of CoMI is encoded in
 CBOR [RFC7049] which is automatically generated from JSON [JSON].
 CBOR has a binary format and hence has more coding efficiency than
 JSON. To promote small packets, CoMI uses an additional data
 identifier string to number conversion to minimise CBOR payloads and
 URI length. It is assumed that the managed device is the most
 constrained entity. The client might be more capable, however this
 is not necessarily the case.

 Currently, small managed devices need to support at least two
 protocols: CoAP and SNMP. When the MIB can be accessed with the CoAP
 protocol, the SNMP protocol can be replaced with the CoAP protocol.
 Although the SNMP server size is not huge (see Appendix A), the code
 for the security aspects of SMIv3 is not negligible. Using CoAP to
 access secured management objects reduces the code complexity of the
 stack in the constrained device, and harmonizes applications
 development.

 The objective of CoMI is to provide a CoAP based Function Set that
 reads and sets values of managed objects in devices to (1) initialize
 parameter values at start-up, (2) acquire statistics during
 operation, and (3) maintain nodes by adjusting parameter values
 during operation.

 The end goal of CoMI is to provide information exchange over the CoAP
 transport protocol in a uniform manner as a first step to the full
 management functionality as specified in
 [I-D.ersue-constrained-mgmt].

1.1. Design considerations

 CoMI supports discovery of resources, accompanied by reading, writing
 and notification of resource values. As such it is close to the
 device management of the Open Mobile Alliance described in [OMA]. A
 detailed comparison between CoMI and LWM2M management can be found in
 Appendix C. CoMI supports MIB modules which have been translated
 from SMIv2 to YANG, using [RFC6643]. This mapping is read-only so
 writable SMIv2 objects need to be converted to YANG using an
 implementation-specific mapping.

 CoMI uses a simple URI to access the management object resources.
 Complexity introduced by instance selection, or multiple object
 specification is expressed with uri-query attributes. The choice for
 uri-query attributes makes the URI structure less context dependent.

van der Stok, et al. Expires August 7, 2015 [Page 4]

Internet-Draft CoMI February 2015

 TODO: Use of YANG data model reduces message size.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Readers of this specification should be familiar with all the terms
 and concepts discussed in [RFC3410], [RFC3416], and [RFC2578].

 The following terms are defined in the NETCONF protocol [RFC6241]:
 client, configuration data, datastore, and server.

 The following terms are defined in the YANG data modelling language
 [RFC6020]: container, data node, key, key leaf, leaf, leaf-list, and
 list.

 The following terms are defined in RESTCONF protocol
 [I-D.ietf-netconf-restconf]: data resource, datastore resource, edit
 operation, query parameter, target resource, and unified datastore.

 The following terms are defined in this document:

 YANG hash: CoMI object identifier, which is a 30-bit numeric hash of
 the YANG object identifier string for the object. When a YANG
 hash value is printed in a request target URI, error-path or other
 string, then the lowercase hexadecimal representation is used.
 Leading zeros are used so the value uses 8 hex characters.

 The following list contains the abbreviations used in this document.

 XXXX: TODO, and others to follow.

1.2.1. Tree Diagrams

 A simplified graphical representation of the data model is used in
 this document. The meaning of the symbols in these diagrams is as
 follows:

 Brackets "[" and "]" enclose list keys.

 Abbreviations before data node names: "rw" means configuration
 data (read-write) and "ro" state data (read-only).

 Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

van der Stok, et al. Expires August 7, 2015 [Page 5]

Internet-Draft CoMI February 2015

 Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 Ellipsis ("...") stands for contents of subtrees that are not
 shown.

2. CoMI Architecture

 This section describes the CoMI architecture to use CoAP for the
 reading and modifying of instrumentation variables used for the
 management of the instrumented node.

 Client
 +--+
 | +----------------+ +----------------+ |
 | | SMIv2 | > | YANG | > COAP |
 | |specification(2)| |specification(1)| Request(3) |
 | +----------------+ +----------------+[* |
 +-----------------------------*-----------[---------*----------+
 * [*
 * [+-----------+
 mapping * security[| Network |
 * (8) [| packet(4) |
 * [+-----------+
 Server * [*
 +-----------------------------*-----------[---------*----------+
 | * [* |
 | * Retrieval, |
 | * Modification(5) |
 | */ * |
 | +---*--------+ |
	+--------------+ +------------+					
		configuration		Operational		
		(6b)		state(6a)		
	+--------------+ +------------+					
	variable store (6) *					
+---*--------+						
*						
Variable						
Instrumentation(7)						
 +--+

 Figure 1: Abstract CoMI architecture

van der Stok, et al. Expires August 7, 2015 [Page 6]

Internet-Draft CoMI February 2015

 Figure 1 is a high level representation of the main elements of the
 CoAP management architecture. A client sends requests as payload in
 packets over the network to a managed constrained node.

 Objectives are:

 o Equip a constrained node with a management server that provides
 information about the operational characteristics of the code
 running in the constrained node.

 o The server provides this information in a variable store that
 contains values describing the performance characteristics and the
 code parameter values.

 o The client receives the performance characteristics on a regular
 basis or on request.

 o The client sets the parameter values in the server at bootstrap
 and intermittently when operational conditions change.

 o The constrained network requires the payload to be as small as
 possible, and the constrained server memory requirements should be
 as small as possible.

 For interoperability it is required that in addition to using the
 Internet Protocol for data transport:

 o The names, type, and semantics of the instrumentation variables
 are standardized.

 o The instrumentation variables are described in a standard
 language.

 o The signature of the CoAP request in the server is standardized.

 o The format of the packet payload is standardized.

 o The notification from server to client is standardized.

 The different numbered components of Figure 1 are discussed according
 to component number.

 (1) YANG specification: contains a set of named and versioned
 modules. A module specifies a hierarchy of named and typed
 resources. A resource is uniquely identified by a sequence of its
 name and the names of the enveloping resources following the
 hierarchy order. The YANG specification serves as input to the
 writers of application and instrumentation code and the humans

van der Stok, et al. Expires August 7, 2015 [Page 7]

Internet-Draft CoMI February 2015

 analysing the returned values (arrow from YANG specification to
 Variable store). The specification can be used to check the
 correctness of the CoAP request and do the CBOR encoding.

 (2) SMIv2 specification: A named module specifies a set of variables
 and "conceptual tables". Named variables have simple types.
 Conceptual tables are composed of typed named columns. The
 variable name and module name identify the variable uniquely.
 There is an algorithm to translate SMIv2 specifications to YANG
 specifications.

 (3) CoAP request: The CoAP request needs a Universal Resource
 Identifier (URI) and the payload of the packet to send a request.
 The URI is composed of the schema, server, path and query and
 looks like coap://entry.example.com/<path>?<query>. Fragments are
 not supported. Allowed operations are PUT, GET, DELETE, and POST.
 New variables can be created with POST when they exist in the YANG
 specification. The Observe option can be used to return variable
 values regularly or on event occurrence (notification).

 (3.1) CoAP <path>: The path identifies the variable in the form
 "/mg/<hash-value>".

 (3.2) CoAP <query>: The query parameter is used to specify
 additional (optional) aspects like the module name, the smi
 context, and others. The idea is to keep the path simple and put
 variations on variable specification in the query.

 (3.3) CoAP discovery: Discovery of the variables is done with
 standard CoAP resource discovery using /.well-known/core with
 ?rt=/core.mg.

 (4) Network packet: The payload contains the CBOR encoding of JSON
 objects. This object corresponds to the converted RESTCONF
 message payload.

 (5) Retrieval, modification: The server needs to parse the CBOR
 encoded message and identify the corresponding instances in the
 Variable store. In addition, this component includes the code for
 CoAP Observe and block options.

 (6) Variable store: The store is composed of two parts: Operational
 state and Configuration datastore (see Section 2.1). CoMI does
 not see the different variable store types. The Variable store
 contains instances of the YANG specification. Values are stored
 in the appropriate instances, and or values are returned from the
 instances into the payload of the packet.

van der Stok, et al. Expires August 7, 2015 [Page 8]

Internet-Draft CoMI February 2015

 (7) Variable instrumentation: This code depends on implementation of
 drivers and other node specific aspects. The Variable
 instrumentation code stores the values of the parameters into the
 appropriate places in the operational code. The variable
 instrumentation code reads current execution values from the
 operational code and stores them in the appropriate instances.

 (8) Security: The server MUST prevent unauthorized users from
 reading or writing any data resources. CoMI relies on DTLS which
 is specified to secure CoAP communication.

2.1. RESTCONF/YANG Architecture

 CoMI adapts the RESTCONF architecture so data exchange and
 implementation requirements are optimized for constrained devices.

 The RESTCONF protocol uses a unified datastore to edit conceptual
 data structures supported by the server. The details of transaction
 preparation and non-volatile storage of the data are hidden from the
 RESTCONF client. CoMI also uses a unified datastore, to allow
 stateless editing of configuration variables and the notification of
 operational variables.

 The child schema nodes of the unified datastore include all the top-
 level YANG data nodes in all the YANG modules supported by the
 server. The YANG data structures represent a hierarchy of data
 resources. The client discovers the list of YANG modules, and
 important conformance information such as the module revision dates,
 YANG features supported, and YANG deviations required. The
 individual data nodes are discovered indirectly by parsing the YANG
 modules supported by the server.

 The YANG data definition statements contain a lot of information that
 can help automation tools, developers, and operators use the data
 model correctly and efficiently. The YANG definitions and server
 YANG module capability advertisements provide an "API contract" that
 allow a client to determine the detailed server management
 capabilities very quickly. CoMI allows access to the same data
 resources as a RESTCONF server, except the messages are optimized to
 reduce identifier and payload size.

 RESTCONF uses a simple algorithmic mapping from YANG to URI syntax to
 identify the target resource of a retrieval or edit operation. A
 client can construct operations or scripts using a predictable
 syntax, based on the YANG data definitions. The target resource URI
 can reference a data resource instance, or the datastore itself (to
 retrieve the entire datastore or create a top-level data resource
 instance). CoMI uses a 30-bit YANG hash value (based on the YANG

van der Stok, et al. Expires August 7, 2015 [Page 9]

Internet-Draft CoMI February 2015

 data node path identifier strings) to identify schema nodes in the
 target resource URI and in the payload.

 Any message payload data is relative to the node specified in the
 target resource URI in a request message. CoMI message payloads are
 based on the JSON encoding of a RESTCONF message payload. The JSON
 identifier names are first converted to their 30-bit YANG hash values
 and then the payload is converted to CBOR.

3. CoAP Interface

 In CoAP a group of links can constitute a Function Set. The format of
 the links is specified in [I-D.ietf-core-interfaces]. This note
 specifies a Management Function Set. CoMI end-points that implement
 the CoMI management protocol support at least one discoverable
 management resource of resource type (rt): core.mg, with path: /mg,
 where mg is short-hand for management. The name /mg is recommended
 but not compulsory (see Section 4.4).

 The mg resource has three sub-resources accessible with the paths:

 /mg: YANG-based data with path "/mg" and using CBOR content encoding
 format. This path represents a datastore resource which contains
 YANG data resources as its descendant nodes. All identifiers
 referring to YANG data nodes within this path are encoded as YANG
 hash values (see Section 5.4.

 /mg/mod.uri: URI indicating the location of the server module
 information, with path "/mg/mod.uri" and CBOR content format.
 This YANG data is encoded with plain identifier strings, not YANG
 hash values.

 /mg/yang.hash: URI indicating the location of the server YANG hash
 information if any objects needed to be re-hashed by the server.
 It has path "/mg/yang.hash" and is encoded in CBOR format. The
 "ietf-yang-hash" module of Section 5.3 is used to define the
 syntax and semantics of this data structure. This YANG data is
 encoded with plain identifier strings, not YANG hash values. The
 server will only have this resource if there are any objects that
 needed to be re-hashed due to a hash collision.

 The mapping of YANG data nodes to CoMI resources is as follows: A
 YANG module describes a set of data trees composed of YANG data
 nodes. Every root of a data tree in a YANG module loaded in the CoMI
 server represents a resource of the server. All data root
 descendants represent sub-resources.

van der Stok, et al. Expires August 7, 2015 [Page 10]

Internet-Draft CoMI February 2015

 The resource identifiers of the instances of the YANG specifications
 are YANG hash values, as described in Section 5.1. When multiple
 instances of a list node exist, the instance selection is described
 in Section 4.1.3.4

 The profile of the management function set, with IF=core.mg, is shown
 in the table below, following the guidelines of
 [I-D.ietf-core-interfaces]:

 +------------+---------------+-------------------+------------------+
 | name | path | rt | Data Type |
 +------------+---------------+-------------------+------------------+
Management	/mg	core.mg	n/a
Data	/mg	core.mg.data	application/cbor
Module Set	/mg/mod.uri	core.mg.moduri	application/cbor
URI			
YANG Hash	/mg/yang.hash	core.mg.yang-hash	application/cbor
Info			
 +------------+---------------+-------------------+------------------+

4. MG Function Set

 The MG Function Set provides a CoAP interface to perform a subset of
 the functions provided by RESTCONF.

 A subset of the operations defined in RESTCONF are used in CoMI:

 +-----------+---+
 | Operation | Description |
 +-----------+---+
 | GET | Retrieve the datastore resource or a data resource |
 | | |
 | POST | Create a data resource |
 | | |
 | PUT | Create or replace a data resource |
 | | |
 | DELETE | Delete a data resource |
 +-----------+---+

4.1. Data Retrieval

van der Stok, et al. Expires August 7, 2015 [Page 11]

Internet-Draft CoMI February 2015

4.1.1. GET

 One or more instances of data resources are retrieved by the client
 with the GET method. The RESTCONF GET operation is supported in
 CoMI. The same constraints apply as defined in section 3.3 of
 [I-D.ietf-netconf-restconf]. The operation is mapped to the GET
 method defined in section 5.8.1 of [RFC7252].

 It is possible that the size of the payload is too large to fit in a
 single message. In the case that management data is bigger than the
 maximum supported payload size, the Block mechanism from
 [I-D.ietf-core-block] is used. Notice that the Block mechanism
 splits the data at fixed positions, such that individual data fields
 may become fragmented. Therefore, assembly of multiple blocks may be
 required to process the complete data field.

 There are two query parameters for the GET method. A CoMI server
 MUST implement the keys parameter and MAY implement the select
 parameter to allow common data retrieval filtering functionality.

 +----------------+--+
 | Query | Description |
 | Parameter | |
 +----------------+--+
keys	Request to select instances of a YANG definition
select	Request selected sub-trees from the target
	resource
 +----------------+--+

 The "keys" parameter is used to specify a specific instance of the
 resource. When keys is not specified, all instances are returned.
 When no or one instance of the resource exists, the keys parameter is
 not needed.

4.1.2. Mapping of the ’select’ Parameter

 ANUJ TODO: Add more details based on the RESTCONF ’select’ parameter.
 We need to add information about how this parameter is encoded.
 There should there be an error notification when filtering fails.

 RESTCONF uses the ’select’ parameter to specify an expression which
 can represent a subset of all data nodes within the target resource
 [I-D.ietf-netconf-restconf]. This parameter is useful for filtering
 sub-trees and retrieving only a subset that a managing application is
 interested in.

van der Stok, et al. Expires August 7, 2015 [Page 12]

Internet-Draft CoMI February 2015

 However, filtering is a resource intensive task and not all
 constrained devices can be expected to have enough computing
 resources such that they will be able to successfully filter and
 return a subset of a sub-tree. This is especially likely to be true
 with Class 0 devices that have significantly lesser RAM than 10 KiB
 [RFC7228]. Since CoMI is targeted at constrained devices and
 networks, only a limited subset of the ’select’ parameter is used
 here.

 Unlike the RESTCONF ’select’ parameter, CoMI does not use object
 names in "XPath" or "path-expr" format to identify the subset that
 needs to be filtered. Parsing XML is resource intensive for
 constrained devices [management] and using object names can lead to
 large message sizes. Instead, CoMI utilizes the YANG hashes
 described in Section 5 to identify the sub-trees that should be
 filtered from a target resource. Using these hashes ensures that a
 constrained node can identify the target sub-tree without expending
 many resources and that the messages generated are also efficiently
 encoded.

 The implementation of the ’select’ parameter is already optional for
 constrained devices, however, even when implemented it is expected to
 be a best effort feature, rather than a service that nodes must
 provide. This implies that if a node receives the ’select’ parameter
 specifying a set of sub-trees that should be returned, it will only
 return those that it is able to.

4.1.3. Retrieval Examples

 The examples in this section use a JSON payload with one or more
 entries describing the pair (identifier, value). CoMI transports the
 CBOR format to transport the equivalent contents. The CBOR syntax of
 the payloads is specified in Section 5.

4.1.3.1. Single instance retrieval

 A request to read the values of instances of a management object or
 the leaf of an object is sent with a confirmable CoAP GET message. A
 single object is specified in the URI path prefixed with /mg.

 Using for example the clock container from [RFC7317], a request is
 sent to retrieve the value of clock/current-datetime specified in
 module system-state. The answer to the request returns a
 (identifier, value) pair.

 In all examples: (1) the payload is expressed in JSON, although the
 operational payload is specified to be in CBOR, (2) the path is
 expressed in readable names although the transported path is

van der Stok, et al. Expires August 7, 2015 [Page 13]

Internet-Draft CoMI February 2015

 expressed a hash value of the name (where the hash value in the
 payload is expressed as a hexadecimal number, and the hash value in
 the URL as a baseb 64 number), and (3) only one instance is
 associated with the resource.

 REQ: GET example.com/mg/system-state/clock/current-datetime

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "current-datetime" : "2014-10-26T12:16:31Z"
 }

 The YANG hash value for ’current-datetime’ is calculated by
 constructing the schema node identifier for the object:

 /sys:system-state/sys:clock/sys:current-datetime

 The 30 bit murmur3 hash value is calculated on this string
 (0x15370408 and VNwQI). The request using this hash value is shown
 below:

 REQ: GET example.com/mg/VNwQI

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 0x15370408 : "2014-10-26T12:16:31Z"
 }

 The specified object can be an entire object. Accordingly, the
 returned payload is composed of all the leaves associated with the
 object. Each leaf is returned as a (YANG hash, value) pair. For
 example, the GET of the clock object, sent by the client, results in
 the following returned payload sent by the managed entity:

 REQ: GET example.com/mg/system-state/clock
 (Content-Format: application/cbor)

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "clock" : {
 "current-datetime" : "2014-10-26T12:16:51Z",
 "boot-datetime" : "2014-10-21T03:00:00Z"
 }
 }

van der Stok, et al. Expires August 7, 2015 [Page 14]

Internet-Draft CoMI February 2015

 The YANG hash values for ’clock’, ’current-datetime’, and ’boot-
 datetime’ are calculated by constructing the schema node identifier
 for the objects, and then calculating the 30 bit murmur3 hash values
 (shown in parenthesis):

 /sys:system-state/sys:clock (0x2eb2fa3b and usvo7)
 /sys:system-state/sys:clock/sys:current-datetime (0x15370408)
 /sys:system-state/sys:clock/sys:boot-datetime (0x1fa25361)

 The request using the hash values is shown below:

 REQ: GET example.com/mg/usvo7
 (Content-Format: application/cbor)

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 0x2eb2fa3b : {
 0x15370408 : "2014-10-26T12:16:51Z",
 0x1fa25361 : "2014-10-21T03:00:00Z"
 }
 }

4.1.3.2. Multiple instance retrieval

 The specified list node can have multiple instances. Accordingly,
 the returned payload is composed of all the instances associated with
 the list node. Each instance is returned as a (identifier, value)
 pair. For example, the GET of the /interfaces/interface/ipv6/
 neighbor instance identified with interface index "eth0" [RFC7223],
 sent by the client, results in the following returned payload sent by
 the managed entity:

van der Stok, et al. Expires August 7, 2015 [Page 15]

Internet-Draft CoMI February 2015

 REQ: GET example.com/mg/interfaces/interface/ipv6/neighbor?keys=eth0
 (Content-Format: application/cbor)

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "neighbor" : [
 {
 "ip" : "fe80::200:f8ff:fe21:67cf",
 "link-layer-address" : "00:00::10:01:23:45"
 },
 {
 "ip" : "fe80::200:f8ff:fe21:6708",
 "link-layer-address" : "00:00::10:54:32:10"
 },
 {
 "ip" : "fe80::200:f8ff:fe21:88ee",
 "link-layer-address" : "00:00::10:98:76:54"
 }
]
 }

 The YANG hash values for ’neighbor’, ’ip’, and ’link-layer-address’
 are calculated by constructing the schema node identifier for the
 objects, and then calculating the 30 bit murmur3 hash values (shown
 in parenthesis):

/if:interfaces/if:interface/ip:ipv6/ip:neighbor (0x2354bc49 and jVLxJ)
/if:interfaces/if:interface/ip:ipv6/ip:neighbor/ip:ip (0x20b8907e and guJB_)
/if:interfaces/if:interface/ip:ipv6/ip:neighbor/ip:link-layer-address
 (0x16f47fd8)

 The request using the hash values is shown below:

van der Stok, et al. Expires August 7, 2015 [Page 16]

Internet-Draft CoMI February 2015

 REQ: GET example.com/mg/jVLxJ?keys=eth0
 (Content-Format: application/cbor)

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 0x2354bc49 : [
 {
 0x20b8907e : "fe80::200:f8ff:fe21:67cf",
 0x16f47fd8 : "00:00::10:01:23:45"
 },
 {
 0x20b8907e : "fe80::200:f8ff:fe21:6708",
 0x16f47fd8 : "00:00::10:54:32:10"
 },
 {
 0x20b8907e : "fe80::200:f8ff:fe21:88ee",
 0x16f47fd8 : "00:00::10:98:76:54"
 }
]
 }

4.1.3.3. Access to MIB Data

 The YANG translation of the SMI specifying the
 ipNetToMediaTable yields:

van der Stok, et al. Expires August 7, 2015 [Page 17]

Internet-Draft CoMI February 2015

 container IP-MIB {
 container ipNetToPhysicalTable {
 list ipNetToPhysicalEntry {
 key "ipNetToPhysicalIfIndex ipNetToPhysicalNetAddressType
 ipNetToPhysicalNetAddress";
 leaf ipNetToMediaIfIndex {
 type: int32;
 }
 leaf ipNetToPhysicalIfIndex {
 type if-mib:InterfaceIndex;
 }
 leaf ipNetToPhysicalNetAddressType {
 type inet-address:InetAddressType;
 }
 leaf ipNetToPhysicalNetAddress {
 type inet-address:InetAddress;
 }
 leaf ipNetToPhysicalPhysAddress {
 type yang:phys-address {
 length "0..65535";
 }
 }
 leaf ipNetToPhysicalLastUpdated {
 type yang:timestamp;
 }
 leaf ipNetToPhysicalType {
 type enumeration { ... }
 }
 leaf ipNetToPhysicalState {
 type enumeration { ... }
 }
 leaf ipNetToPhysicalRowStatus {
 type snmpv2-tc:RowStatus;
 }
 }
 }

 The following example shows an "ipNetToPhysicalTable" with 2
 instances, using JSON encoding:

van der Stok, et al. Expires August 7, 2015 [Page 18]

Internet-Draft CoMI February 2015

 {
 "IP-MIB" {
 "ipNetToPhysicalTable" : {
 "ipNetToPhysicalEntry" : [
 {
 "ipNetToPhysicalIfIndex" : 1,
 "ipNetToPhysicalNetAddressType" : "ipv4",
 "ipNetToPhysicalNetAddress" : "10.0.0.51",
 "ipNetToPhysicalPhysAddress" : "00:00:10:01:23:45",
 "ipNetToPhysicalLastUpdated" : "2333943",
 "ipNetToPhysicalType" : "static",
 "ipNetToPhysicalState" : "reachable",
 "ipNetToPhysicalRowStatus" : "active"
 },
 {
 "ipNetToPhysicalIfIndex" : 1,
 "ipNetToPhysicalNetAddressType" : "ipv4",
 "ipNetToPhysicalNetAddress" : "9.2.3.4",
 "ipNetToPhysicalPhysAddress" : "00:00:10:54:32:10",
 "ipNetToPhysicalLastUpdated" : "2329836",
 "ipNetToPhysicalType" : "dynamic",
 "ipNetToPhysicalState" : "unknown",
 "ipNetToPhysicalRowStatus" : "active"
 }
]
 }
 }
 }

 The YANG hash values for ’ipNetToPhysicalEntry’ and its child nodes
 are calculated by constructing the schema node identifier for the
 objects, and then calculating the 30 bit murmur3 hash values (shown
 in parenthesis):

van der Stok, et al. Expires August 7, 2015 [Page 19]

Internet-Draft CoMI February 2015

 /ip-mib:IP-MIB/ip-mib:ipNetToPhysicalTable (0x30b7bc3f and wt7w_)
 /ip-mib:IP-MIB/ip-mib:ipNetToPhysicalTable/ip-mib:ipNetToPhysicalEntry
 (0x1067f289 and QZ/KJ)
 /ip-mib:IP-MIB/ip-mib:ipNetToPhysicalTable/ip-mib:ipNetToPhysicalEntry/
 ip-mib:ipNetToPhysicalIfIndex (0x00d38564)
 /ip-mib:IP-MIB/ip-mib:ipNetToPhysicalTable/ip-mib:ipNetToPhysicalEntry/
 ip-mib:ipNetToPhysicalNetAddressType (0x2745e222)
 /ip-mib:IP-MIB/ip-mib:ipNetToPhysicalTable/ip-mib:ipNetToPhysicalEntry/
 ip-mib:ipNetToPhysicalNetAddress (0x387804eb)
 /ip-mib:IP-MIB/ip-mib:ipNetToPhysicalTable/ip-mib:ipNetToPhysicalEntry/
 ip-mib:ipNetToPhysicalPhysAddress (0x1a51514a)
 /ip-mib:IP-MIB/ip-mib:ipNetToPhysicalTable/ip-mib:ipNetToPhysicalEntry/
 ip-mib:ipNetToPhysicalLastUpdated (0x03f95578)
 /ip-mib:IP-MIB/ip-mib:ipNetToPhysicalTable/ip-mib:ipNetToPhysicalEntry/
 ip-mib:ipNetToPhysicalType (0x24ade115)
 /ip-mib:IP-MIB/ip-mib:ipNetToPhysicalTable/ip-mib:ipNetToPhysicalEntry/
 ip-mib:ipNetToPhysicalState (0x09e640ef)
 /ip-mib:IP-MIB/ip-mib:ipNetToPhysicalTable/ip-mib:ipNetToPhysicalEntry/
 ip-mib:ipNetToPhysicalRowStatus (0x3b5c1ab6)

 The following example shows a request for the entire
 ipNetToPhysicalTable. Since all the instances are requested, no
 "keys" query parameter is needed.

van der Stok, et al. Expires August 7, 2015 [Page 20]

Internet-Draft CoMI February 2015

 REQ: GET example.com/mg/IP-MIB/ipNetToPhysicalTable

 REQ: GET example.com/mg/wt7w_

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 0x30b7bc3f : {
 0x1067f289 : [
 {
 0x00d38564 : 1,
 0x2745e222 : "ipv4",
 0x387804eb : "10.0.0.51",
 0x1a51514a : "00:00:10:01:23:45",
 0x03f95578 : "2333943",
 0x24ade115 : "static",
 0x09e640ef : "reachable",
 0x3b5c1ab6 : "active"
 },
 {
 0x00d38564 : 1,
 0x2745e222 : "ipv4",
 0x387804eb : "9.2.3.4",
 0x1a51514a : "00:00:10:54:32:10",
 0x03f95578 : "2329836",
 0x24ade115 : "dynamic",
 0x09e640ef : "unknown",
 0x3b5c1ab6 : "active"
 }
]
 }
 }

4.1.3.4. The ’keys’ Query Parameter

 There is a mandatory query parameter that MUST be supported by
 servers called "keys". This parameter is used to specify the key
 values for an instance of an object identified by a YANG hash value.
 Any key leaf values of the instance are passed in order. The first
 key leaf in the top-most list is the first key encoded in the ’keys’
 parameter.

 The key leafs from top to bottom and left to right are encoded as a
 comma-delimited list. If a key leaf value is missing then all values
 for that key leaf are returned.

 Example: In this example exactly 1 instance is requested from the
 ipNetToPhysicalEntry (from a previous example).

van der Stok, et al. Expires August 7, 2015 [Page 21]

Internet-Draft CoMI February 2015

 REQ: GET example.com/mg/IP-MIB/ipNetToPhysicalTable/
 ipNetToPhysicalEntry?keys=1,ipv4,10.0.0.51

 REQ: GET example.com/mg/QZ/KJ?keys=1,ipv4,10.0.0.51

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 0x1067f289 : [
 {
 0x00d38564 : 1,
 0x2745e222 : "ipv4",
 0x387804eb : "10.0.0.51",
 0x1a51514a : "00:00:10:01:23:45",
 0x03f95578 : "2333943",
 0x24ade115 : "static",
 0x09e640ef : "reachable",
 0x3b5c1ab6 : "active"
 }
]
 }

 An example illustrates the syntax of keys query parameter. In this
 example the following YANG module is used:

 module foo-mod {
 namespace foo-mod-ns;
 prefix foo;

 list A {
 key "key1 key2";
 leaf key1 { type string; }
 leaf key2 { type int32; }
 list B {
 key "key3";
 leaf key3 { type string; }
 leaf col1 { type uint32; }
 }
 }
 }

 The path identifier for the leaf "col1" is the following string:

 /foo:A/foo:B/foo:col1

van der Stok, et al. Expires August 7, 2015 [Page 22]

Internet-Draft CoMI February 2015

 The YANG has value for this identifier string 0xa9abdcca and pq9zK).

 The following string represents the RESTCONF target resource URI
 expression for the "col1" leaf for the key values "top", 17, and
 "group1":

 /restconf/data/foo-mod:A=top,17/B=group1/col1

 The following string represents the CoMI target resource identifier
 for the same instance of the "col1" leaf:

 /mg/pq9zK?keys=top,17,group1

4.2. Data Editing

 CoMI allows datastore contents to be created, modified and deleted
 using CoAP methods.

 TODO: Data-editing is an optional feature. A server can choose to
 only support YANG modules with read-only objects.

4.2.1. POST

 Data resource instances are created with the POST method. The
 RESTCONF POST operation is supported in CoMI, however it is only
 allowed for creation of data resources. The same constraints apply
 as defined in section 3.4.1 of [I-D.ietf-netconf-restconf]. The
 operation is mapped to the POST method defined in section 5.8.2 of
 [RFC7252].

 There are no query parameters for the POST method.

 TODO: CoMI does not support user-ordered lists in YANG.

4.2.2. PUT

 Data resource instances are created or replaced with the PUT method.
 The PUT operation is supported in CoMI. A request to set the values
 of instances of an object/leaf is sent with a confirmable CoAP PUT
 message. The Response is piggybacked to the CoAP ACK message
 corresponding with the Request. The same constraints apply as
 defined in section 3.5 of [I-D.ietf-netconf-restconf]. The operation
 is mapped to the PUT method defined in section 5.8.3 of [RFC7252].

van der Stok, et al. Expires August 7, 2015 [Page 23]

Internet-Draft CoMI February 2015

 There are no query parameters for the PUT method.

 TODO: Define where PATCH is needed.

4.2.3. DELETE

 Data resource instances are deleted with the DELETE method. The
 RESTCONF DELETE operation is supported in CoMI. The same constraints
 apply as defined in section 3.7 of [I-D.ietf-netconf-restconf]. The
 operation is mapped to the DELETE method defined in section 5.8.4 of
 [RFC7252].

 There are no optional query parameters for the PUT method.

4.3. Notify functions

 Notification by the server to a selection of clients when the value
 of a management object changes is an essential function for the
 management of servers. CoMI allows to do a notifications on all
 variables in the datastore.

 Notification of object changes is supported with the CoAP Observe
 [I-D.ietf-core-observe] function. The client subscribes to the
 object by sending a GET request with an "Observe" option.

 REQ: GET example.com/mg/ietf-ip/ipv6/neighbor/ip
 (observe option register)

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "ip" : "fe80::200:f8ff:fe21:67cf"
 }

 The same example with the hash values instead of the string
 identifiers looks like:

 REQ: GET example.com/mg/guJB_
 (observe option register)

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 0x20b8907e : "fe80::200:f8ff:fe21:67cf"
 }

van der Stok, et al. Expires August 7, 2015 [Page 24]

Internet-Draft CoMI February 2015

 In the example, the request returns a success response with the
 contents of the ip field. Consecutively the server will regularly
 notify the client when ip changes value.

 To check that the client is still alive, the server MUST send
 confirmable notifications once in a while. When the client does not
 confirm the notification from the server, the server will remove the
 client from the list of observers[I-D.ietf-core-observe].

 In the registration request, the client MAY include a "Response-To-
 Uri-Host" and optionally "Response-To-Uri-Port" option as defined in
 [I-D.becker-core-coap-sms-gprs]. In this case, the observations
 SHOULD be sent to the address and port indicated in these options.
 This can be useful when the client wants the managed device to send
 the trap information to a multicast address.

4.4. Module Discovery

 The presence and location of (path to) the management data are
 discovered by sending a GET request to "/.well-known/core" including
 a resource type (RT) parameter with the value "core.mg" [RFC6690].
 Upon success, the return payload will contain the root resource of
 the management data. It is up to the implementation to choose its
 root resource, but it is recommended that the value "/mg" is used,
 where possible. The example below shows the discovery of the
 presence and location of management data.

 REQ: GET /.well-known/core?rt=core.mg

 RES: 2.05 Content </mg>; rt="core.mg"

 Management objects MAY be discovered with the standard CoAP resource
 discovery. The implementation can add the hash values of the object
 identifiers to /.well-known/core with rt="core.mg.data". The
 available objects identified by the hash values can be discovered by
 sending a GET request to "/.well-known/core" including a resource
 type (RT) parameter with the value "core.mg.data". Upon success, the
 return payload will contain the registered hash values and their
 location. The example below shows the discovery of the presence and
 location of management data.

van der Stok, et al. Expires August 7, 2015 [Page 25]

Internet-Draft CoMI February 2015

 REQ: GET /.well-known/core?rt=core.mg.data

 RES: 2.05 Content </mg/BaAiN>; rt="core.mg.data",
 </mg/CF_fA>; rt="core.mg.data"; obs

 In the example the "obs" attribute indicates that the object /mg/
 CF_fA is observed.

 Lists of hash values may become prohibitively long. It is
 discouraged to provide long lists of objects on discovery.
 Therefore, it is recommended that details about management objects
 are discovered following the RESTCONF protocol. The YANG module
 information is stored in the "ietf-yang-library" module
 [I-D.ietf-netconf-restconf]. The resource "/mg/mod.uri" is used to
 retrieve the location of the YANG module library.

 Since many constrained servers within a deployment are likely to be
 similar, the module list can be stored locally on each server, or
 remotely on a different server.

 Local in example.com server:

 REQ: GET example.com/mg/mod.uri

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "mod.uri" : "example.com/mg/modules"
 }

 Remote in example-remote-server:

 REQ: GET example.com/mg/mod.uri

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "moduri" : "example-remote-server.com/mg/group17/modules"
 }

 Within the YANG module library all information about the module is
 stored such as: module identifier, identifier hierarchy, grouping,
 features and revision numbers.

van der Stok, et al. Expires August 7, 2015 [Page 26]

Internet-Draft CoMI February 2015

 The hash identifier is obtained as specified in Section 5.1. When a
 collision occurred in the name space of the target server, a rehash
 is executed.

4.5. Error Return Codes

 The RESTCONF return status codes defined in section 6 of the RESTCONF
 draft are used in CoMI error responses, except they are converted to
 CoAP error codes.

 TODO: complete RESTCONF to CoAP error code mappings

van der Stok, et al. Expires August 7, 2015 [Page 27]

Internet-Draft CoMI February 2015

 +-------------------------------+------------------+
 | RESTCONF Status Line | CoAP Status Code |
 +-------------------------------+------------------+
 | 100 Continue | none? |
 | | |
 | 200 OK | 2.05 |
 | | |
 | 201 Created | 2.01 |
 | | |
 | 202 Accepted | none? |
 | | |
 | 204 No Content | ? |
 | | |
 | 304 Not Modified | 2.03 |
 | | |
 | 400 Bad Request | 4.00 |
 | | |
 | 403 Forbidden | 4.03 |
 | | |
 | 404 Not Found | 4.04 |
 | | |
 | 405 Method Not Allowed | 4.05 |
 | | |
 | 409 Conflict | none? |
 | | |
 | 412 Precondition Failed | 4.12 |
 | | |
 | 413 Request Entity Too Large | 4.13 |
 | | |
 | 414 Request-URI Too Large | 4.00 |
 | | |
 | 415 Unsupported Media Type | 4.15 |
 | | |
 | 500 Internal Server Error | 5.00 |
 | | |
 | 501 Not Implemented | 5.01 |
 | | |
 | 503 Service Unavailable | 5.03 |
 +-------------------------------+------------------+

5. Mapping YANG to CoMI payload

 A mapping for the encoding of YANG data in CBOR is necessary for the
 efficient transport of management data in the CoAP payload. Since
 object names may be rather long and may occur repeatedly, CoMI allows
 for association of a given object path identifier string value with
 an integer, called a "YANG hash".

van der Stok, et al. Expires August 7, 2015 [Page 28]

Internet-Draft CoMI February 2015

5.1. YANG Hash Generation

 The association between string value and string number is done
 through a hash algorithm. The 30 least significant bits of the
 "murmur3" 32-bit hash algorithm are used. This hash algorithm is
 described online at http://en.wikipedia.org/wiki/MurmurHash.
 Implementation are available online, including at
 https://code.google.com/p/smhasher/wiki/MurmurHash. When converting
 4 input bytes to a 32-bit integer in the hash algorithm, the Little-
 Endian convention MUST be used.

 The hash is generated for the string representing the object path
 identifier. A canonical representation of the path identifier is
 used.

 Prefix values are used on every node.

 The prefix values defined in the YANG module containing the data
 object are used for the path expression. For external modules,
 this is the value of the ’prefix’ sub-statement in the ’import’
 statement for each external module.

 Path expressions for objects which augment data nodes in external
 modules are calculated in the augmenting module, using the prefix
 values in the augmenting module.

 Choice and case node names are not included in the path
 expression. Only ’container’, ’list’, ’leaf’, ’leaf-list’, and
 ’anyxml’ nodes are listed in the path expression.

 The "murmur3_32" hash function is executed for the entire path
 string. The value ’42’ is used as the seed for the hash function.
 The YANG hash is subsequently calculated by taking the 30 least
 significant bits.

 The resulting 30-bit number is used by the server, unless the value
 is already being used for a different object by the server. In this
 case, the re-hash procedure in the following section is executed.

5.2. Re-Hash Procedure

 A hash collision occurs if two different path identifier strings have
 the same hash value. If the server has over 38,000 objects in its
 YANG modules, then the probability of a collision is fairly high. If
 a hash collision occurs on the server, then the object that is
 causing the conflict has to be altered, such that the new hash value
 does not conflict with any value already in use by the server.

van der Stok, et al. Expires August 7, 2015 [Page 29]

Internet-Draft CoMI February 2015

 In most cases, the hash function is expected to produce unique values
 for all the objects supported by a constrained device. Given a known
 set of YANG modules, both server and client can calculate the YANG
 hashes independently, and offline.

 Even though collisions are expected to happen rather rarely, they
 needs to be considered. Collisions can be detected before
 deployment, if the vendor knows which modules are supported by the
 server, and hence all YANG hashes can be calculated. Collisions are
 only an issue when they occur at the same server. The client needs
 to discover any re-hash mappings on a per server basis.

 If the server needs to re-hash any object identifiers, then it MUST
 create a "rehash-map" entry for the altered identifier, as described
 in the following YANG module.

5.3. ietf-yang-hash YANG Module

 The "ietf-yang-hash" YANG module is used by the server to report any
 objects that have been mapped to produce a new hash value that does
 not conflict with any other YANG hash values used by the server.

 YANG tree diagram for "ietf-yang-hash" module:

 +--ro yang-hash
 +--ro rehash* [hash]
 +--ro hash uint32
 +--ro path? string
 +--ro append? string

 module ietf-yang-hash {
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-hash";
 prefix "yh";

 organization
 "IETF CORE (Constrained RESTful Environments) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/core/>
 WG List: <mailto:core@ietf.org>

 WG Chair: Carsten Bormann
 <mailto:cabo@tzi.org>

 WG Chair: Andrew McGregor

van der Stok, et al. Expires August 7, 2015 [Page 30]

Internet-Draft CoMI February 2015

 <mailto:andrewmcgr@google.com>

 Editor: Peter van der Stok
 <mailto:consultancy@vanderstok.org>

 Editor: Bert Greevenbosch
 <mailto:andy@bert.greevenbosch@huawei.com>

 Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

 Editor: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>

 Editor: Anuj Sehgal
 <mailto:s.anuj@jacobs-university.de>";

 description
 "This module contains re-hash information for the CoMI protocol.

 Copyright (c) 2014 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

 // RFC Ed.: remove this note
 // Note: extracted from draft-vanderstok-core-comi-05.txt

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 revision 2014-10-27 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: CoMI Protocol.";
 }

van der Stok, et al. Expires August 7, 2015 [Page 31]

Internet-Draft CoMI February 2015

 container yang-hash {
 config false;
 description
 "Contains information on the YANG Hash values used by
 the server.";

 list rehash {
 key hash;
 description
 "Each entry describes an re-hash mapping in use by
 the server.";

 leaf hash {
 type uint32;
 description "The hash value that has a collision";
 }
 leaf path {
 type string;
 description
 "The YANG identifier path expression that caused the
 collision and is being remapped";
 }
 leaf append {
 type string;
 description
 "The string that the server appended to the path
 expression contained in the ’path’ leaf to produce
 a new path expression and therefore new hash value.
 The YANG hash value for the new string (identified
 by ’path’ + ’append’) is used to identify the
 ’path’ object.";
 }
 }
 }

 }

5.3.1. YANG Re-Hash Example

 In this example the server has an object that is already registered
 when the "/foo:A/foo:B/foo:col1" object is processed. This object
 path string hashes to value 0x29abdcca. The server has appended the
 string "_" to the path to produce a new hash (0x2a7a2044) which does
 not collide with any other objects.

 The server would return the following information if the client
 retrieved the "/mg/yang-hash" resource.

van der Stok, et al. Expires August 7, 2015 [Page 32]

Internet-Draft CoMI February 2015

 REQ: GET example.com/mg/yang-hash

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "ietf-yang-hash:yang-hash" : {
 "rehash" : [
 {
 "hash" : 712646724,
 "path" :"/foo:A/foo:B/foo:col1",
 "append" : "_"
 }
]
 }
 }

5.4. YANG Hash in URL

 When a URL contains a YANG hash, it is encoded using base64url "URL
 and Filename safe" encoding as specified in [RFC4648].

 The hash H is represented as a 30-bit integer, divided into five
 6-bit integers as follows:

 B1 = (H & 0x3f000000) >> 24
 B2 = (H & 0xfc0000) >> 18
 B3 = (H & 0x03f000) >> 12
 B4 = (H & 0x000fc0) >> 6
 B5 = H & 0x00003f

 Subsequently, each 6-bit integer Bx is translated into a character Cx
 using Table 2 from [RFC4648], and a string is formed by concatenating
 the characters in the order C1, C2, C3, C4, C5.

 For example, the YANG hash 0x29abdcca is encoded as "pq9zK".

6. Mapping YANG to CBOR

6.1. High level encoding

 When encoding YANG variables in CBOR, the CBOR encodings entry is a
 map. The key is the YANG hash of entry variable, whereas the value
 contains its value.

 For encoding of the variable values, a CBOR datatype is used.
 Section 6.2 provides the mapping between YANG datatypes and CBOR
 datatypes.

van der Stok, et al. Expires August 7, 2015 [Page 33]

Internet-Draft CoMI February 2015

6.2. Conversion from YANG datatypes to CBOR datatypes

 Table 1 defines the mapping between YANG datatypes and CBOR
 datatypes.

 Elements of types not in this table, and of which the type cannot be
 inferred from a type in this table, are ignored in the CBOR encoding
 by default. Examples include the "description" and "key" elements.
 However, conversion rules for some elements to CBOR MAY be defined
 elsewhere.

 +--------------+------------------+---------------------------------+
 | YANG type | CBOR type | Specification |
 +--------------+------------------+---------------------------------+
int8, int16,	unsigned int	The CBOR integer type depends
int32,	(major type 0)	on the sign of the actual
int64,	or negative int	value.
uint16,	(mayor type 1)	
uint32,		
uint64,		
decimal64		
boolean	either "true"	
	(major type 7,	
	simple value 21)	
	or "false"	
	(major type 7,	
	simple value 20)	
string	text string	
	(major type 3)	
enumeration	unsigned int	
	(major type 0)	
bits	array of text	Each text string contains the
	strings	name of a bit value that is
		set.
binary	byte string	
	(major type 2)	
empty	null (major type	TBD: This MAY not be applicable
	7, simple value	to true MIBs, as SNMP may not
	22)	support empty variables...
union		Similar ot the JSON
		transcription from

van der Stok, et al. Expires August 7, 2015 [Page 34]

Internet-Draft CoMI February 2015

		[I-D.ietf-netmod-yang-json],
		the elements in a union MUST be
		determined using the procedure
		specified in section 9.12 of
		[RFC6020].
leaf-list	array (major	The array is encapsulated in
	type 4)	the map associated with the
		YANG variable.
list	array (major	Each array element contains a
	type 4) of maps	map of associated YANG hash -
	(major type 5)	value pairs.
container	map (major type	The map contains YANG hash -
	5)	value pairs corresponding to
		the elements in the container.
smiv2:oid	array of	Each integer contains an
	integers	element of the OID, the first
		integer in the array
		corresponds to the most left
		element in the OID.
 +--------------+------------------+---------------------------------+

 Table 1: Conversion of YANG datatypes to CBOR

7. Error Handling

 In case a request is received which cannot be processed properly, the
 managed entity MUST return an error message. This error message MUST
 contain a CoAP 4.xx or 5.xx response code, and SHOULD include
 additional information in the payload.

 Such an error message payload is encoded in CBOR, using the following
 structure:

 TODO: Adapt RESTCONF <errors> data structure for use in CoMI. Need
 to select the most important fields like <error-path>.

 errorMsg : ErrorMsg;

 *ErrorMsg {
 errorCode : uint;
 ?errorText : tstr;
 }

van der Stok, et al. Expires August 7, 2015 [Page 35]

Internet-Draft CoMI February 2015

 The variable "errorCode" has one of the values from the table below,
 and the OPTIONAL "errorText" field contains a human readable
 explanation of the error.

 +----------------+----------------+---------------------------------+
 | CoMI Error | CoAP Error | Description |
 | Code | Code | |
 +----------------+----------------+---------------------------------+
0	4.00	General error
1	4.00	Malformed CBOR data
2	4.00	Incorrect CBOR datatype
3	4.00	Unknown MIB variable
4	4.00	Unknown conversion table
5	4.05	Attempt to write read-only
		variable
0..2	5.01	Access exceptions
0..18	5.00	SMI error status
 +----------------+----------------+---------------------------------+

 The CoAP error code 5.01 is associated with the exceptions defined in
 [RFC3416] and CoAP error code 5.00 is associated with the error-
 status defined in [RFC3416].

8. Security Considerations

 For secure network management, it is important to restrict access to
 MIB variables only to authorised parties. This requires integrity
 protection of both requests and responses, and depending on the
 application encryption.

 CoMI re-uses the security mechanisms already available to CoAP as
 much as possible. This includes DTLS for protected access to
 resources, as well suitable authentication and authorisation
 mechanisms.

 Among the security decisions that need to be made are selecting
 security modes and encryption mechanisms (see [RFC7252]). This
 requires a trade-off, as the NoKey mode gives no protection at all,
 but is easy to implement, whereas the X.509 mode is quite secure, but
 may be too complex for constrained devices.

van der Stok, et al. Expires August 7, 2015 [Page 36]

Internet-Draft CoMI February 2015

 In addition, mechanisms for authentication and authorisation may need
 to be selected.

 CoMI avoids defining new security mechanisms as much as possible.
 However some adaptations may still be required, to cater for CoMI’s
 specific requirements.

9. IANA Considerations

 ’rt="core.mg.data"’ needs registration with IANA.

 ’rt="core.mg.moduri"’ needs registration with IANA.

 ’rt="core.mg.yang-hash"’ needs registration with IANA.

 Content types to be registered:

 o application/comi+cbor

10. Acknowledgements

 Mehmet Ersue and Bert Wijnen explained the encoding aspects of PDUs
 transported under SNMP. Carsten Bormann has given feedback on the
 use of CBOR. The draft has benefited from comments (alphabetical
 order) by Dee Denteneer, Esko Dijk, Michael van Hartskamp, Zach
 Shelby, Michel Veillette, Michael Verschoor, and Thomas Watteyne.
 The CBOR encoding borrows extensively from Ladislav Lhotka’s
 description on conversion from YANG to JSON.

11. Changelog

 Changes from version 00 to version 01

 o Focus on MIB only

 o Introduced CBOR, JSON, removed BER

 o defined mappings from SMI to xx

 o Introduced the concept of addressable table rows

 Changes from version 01 to version 02

 o Focus on CBOR, used JSON for examples, removed XML and EXI

 o added uri-query attributes mod and con to specify modules and
 contexts

van der Stok, et al. Expires August 7, 2015 [Page 37]

Internet-Draft CoMI February 2015

 o Definition of CBOR string conversion tables for data reduction

 o use of Block for multiple fragments

 o Error returns generalized

 o SMI - YANG - CBOR conversion

 Changes from version 02 to version 03

 o Added security considerations

 Changes from version 03 to version 04

 o Added design considerations section

 o Extended comparison of management protocols in introduction

 o Added automatic generation of CBOR tables

 o Moved lowpan table to Appendix

 Changes from version 04 to version 05

 o Merged SNMP access with RESTCONF access to management objects in
 small devices

 o Added CoMI architecture section

 o Added RESTCONf NETMOD description

 o Rewrote section 5 with YANG examples

 o Added server and payload size appendix

 o Removed Appendix C for now. It will be replaced with a YANG
 example.

 Changes from version 04 to version 05

 o Extended examples with hash representation

 o Added keys query parameter text

 o Added select query parameter text

 o Better separation between specification and instance

van der Stok, et al. Expires August 7, 2015 [Page 38]

Internet-Draft CoMI February 2015

 o Section on discovery updated

 o Text on rehashing introduced

 o Elaborated SMI MIB example

 o Yang libary use described

 o use of BigEndian/LittleEndian in Hash generation specified

 Changes from version 05 to version 06

 o Hash values in payload as hexadecimal and in URL in base64 numbers

 o Streamlined CoMI architecture text

 o Added select query parameter text

 o Data editing optional

 o Text on Notify added

 o Text on rehashing improved with example

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, October 2013.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, June 2014.

van der Stok, et al. Expires August 7, 2015 [Page 39]

Internet-Draft CoMI February 2015

 [I-D.becker-core-coap-sms-gprs]
 Becker, M., Li, K., Kuladinithi, K., and T. Poetsch,
 "Transport of CoAP over SMS", draft-becker-core-coap-sms-
 gprs-05 (work in progress), August 2014.

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Blockwise transfers in CoAP",
 draft-ietf-core-block-16 (work in progress), October 2014.

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP", draft-ietf-
 core-observe-16 (work in progress), December 2014.

 [I-D.ietf-netmod-yang-json]
 Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 draft-ietf-netmod-yang-json-02 (work in progress),
 November 2014.

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-04 (work in
 progress), January 2015.

12.2. Informative References

 [RFC1213] McCloghrie, K. and M. Rose, "Management Information Base
 for Network Management of TCP/IP-based internets:MIB-II",
 STD 17, RFC 1213, March 1991.

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
 MIB", RFC 2863, June 2000.

 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

 [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

van der Stok, et al. Expires August 7, 2015 [Page 40]

Internet-Draft CoMI February 2015

 [RFC3416] Presuhn, R., "Version 2 of the Protocol Operations for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC
 3416, December 2002.

 [RFC3418] Presuhn, R., "Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC
 3418, December 2002.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

 [RFC4088] Black, D., McCloghrie, K., and J. Schoenwaelder, "Uniform
 Resource Identifier (URI) Scheme for the Simple Network
 Management Protocol (SNMP)", RFC 4088, June 2005.

 [RFC4113] Fenner, B. and J. Flick, "Management Information Base for
 the User Datagram Protocol (UDP)", RFC 4113, June 2005.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC4293] Routhier, S., "Management Information Base for the
 Internet Protocol (IP)", RFC 4293, April 2006.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, September 2007.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)", RFC
 6241, June 2011.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC6643] Schoenwaelder, J., "Translation of Structure of Management
 Information Version 2 (SMIv2) MIB Modules to YANG
 Modules", RFC 6643, July 2012.

 [RFC6650] Falk, J. and M. Kucherawy, "Creation and Use of Email
 Feedback Reports: An Applicability Statement for the Abuse
 Reporting Format (ARF)", RFC 6650, June 2012.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, August 2012.

van der Stok, et al. Expires August 7, 2015 [Page 41]

Internet-Draft CoMI February 2015

 [RFC6775] Shelby, Z., Chakrabarti, S., Nordmark, E., and C. Bormann,
 "Neighbor Discovery Optimization for IPv6 over Low-Power
 Wireless Personal Area Networks (6LoWPANs)", RFC 6775,
 November 2012.

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, May 2014.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228, May 2014.

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, August 2014.

 [RFC7388] Schoenwaelder, J., Sehgal, A., Tsou, T., and C. Zhou,
 "Definition of Managed Objects for IPv6 over Low-Power
 Wireless Personal Area Networks (6LoWPANs)", RFC 7388,
 October 2014.

 [RFC7390] Rahman, A. and E. Dijk, "Group Communication for the
 Constrained Application Protocol (CoAP)", RFC 7390,
 October 2014.

 [I-D.ietf-core-interfaces]
 Shelby, Z. and M. Vial, "CoRE Interfaces", draft-ietf-
 core-interfaces-02 (work in progress), November 2014.

 [I-D.ersue-constrained-mgmt]
 Ersue, M., Romascanu, D., and J. Schoenwaelder,
 "Management of Networks with Constrained Devices: Problem
 Statement, Use Cases and Requirements", draft-ersue-
 constrained-mgmt-03 (work in progress), February 2013.

 [I-D.ietf-lwig-coap]
 Kovatsch, M., Bergmann, O., Dijk, E., He, X., and C.
 Bormann, "CoAP Implementation Guidance", draft-ietf-lwig-
 coap-01 (work in progress), July 2014.

 [STD0001] "Official Internet Protocols Standard", Web
 http://www.rfc-editor.org/rfcxx00.html, .

 [XML] "Extensible Markup Language (XML)", Web
 http://www.w3.org/xml, .

 [JSON] "JavaScript Object Notation (JSON)", Web
 http://www.json.org, .

van der Stok, et al. Expires August 7, 2015 [Page 42]

Internet-Draft CoMI February 2015

 [OMA] "OMA-TS-LightweightM2M-V1_0-20131210-C", Web
 http://technical.openmobilealliance.org/Technical/
 current_releases.aspx, .

 [DTLS-size]
 Hummen, R., Shafagh, H., Raza, S., Voigt, T., and K.
 Wehrle, "Delegation-based Authentication and Authorization
 for the IP-based Internet of Things", Web
 http://www.vs.inf.ethz.ch/publ/papers/
 mshafagh_secon14.pdf, .

 [dcaf] Bormann, C., Bergmann, O., and S. Gerdes, "Delegated
 Authenticated Authorization for Constrained Environments",
 Private Information , .

 [openwsn] Watteijne, T., "Coap size in Openwsn", Web
 http://builder.openwsn.org/, .

 [Erbium] Kovatsch, M., "Erbium Memory footprint for coap-18",
 Private Communication , .

 [management]
 Schoenwalder, J. and A. Sehgal, "Management of the
 Internet of Things", Web http://cnds.eecs.jacobs-
 university.de/slides/2013-im-iot-management.pdf, 2013.

Appendix A. Payload and Server sizes

 This section provides information on code sizes and payload sizes for
 a set of management servers. Approximate code sizes are:

van der Stok, et al. Expires August 7, 2015 [Page 43]

Internet-Draft CoMI February 2015

 +---------------+------------+-------+-------+----------------------+
 | Code | processor | Text | Data | reference |
 +---------------+------------+-------+-------+----------------------+
Observe agent	erbium	800	n/a	[Erbium]
CoAP server	MSP430	1K	6	[openwsn]
SNMP server	ATmega128	9K	700	[management]
Secure SNMP	ATmega128	30K	1.5K	[management]
DTLS server	ATmega128	37K	2K	[management]
NETCONF	ATmega128	23K	627	[management]
JSON parser	CC2538	4.6K	8	[dcaf]
CBOR parser	CC2538	1.5K	2.6K	[dcaf]
DTLS server	ARM7	15K	4	[I-D.ietf-lwig-coap]
DTLS server	MSP430	15K	4	[DTLS-size]
Certificate	MSP430	23K		[DTLS-size]
Crypto	MSP430	2-8K		[DTLS-size]
 +---------------+------------+-------+-------+----------------------+

 Thomas says that the size of the CoAP server is rather arbitrary, as
 its size depends mostly on the implementation of the underlying
 library modules and interfaces.

 Payload sizes are compared for the following request payloads, where
 each attribute value is null (N.B. these sizes are educated guesses,
 will be replaced with generated data). The identifier are assumed to
 be a string representation of the OID. Sizes for SysUpTime differ
 due to preambles of payload. "CBOR opt" stands for CBOR payload
 where the strings are replaced by table numbers.

van der Stok, et al. Expires August 7, 2015 [Page 44]

Internet-Draft CoMI February 2015

 +-------------------------+-----------+------+------+----------+
 | Request | BERR SNMP | JSON | CBOR | CBOR opt |
 +-------------------------+-----------+------+------+----------+
 | IPnetTOMediaTable | 205 | 327 | ˜327 | ˜51 |
 | | | | | |
 | lowpanIfStatsTable | | 710 | 614 | 121 |
 | | | | | |
 | sysUpTime | 29 | 13 | ˜13 | 20 |
 | | | | | |
 | RESTconf example | | | | |
 +-------------------------+-----------+------+------+----------+

Appendix B. Notational Convention for CBOR data

 To express CBOR structures [RFC7049], this document uses the
 following conventions:

 A declaration of a CBOR variable has the form:

 name : datatype;

 where "name" is the name of the variable, and "datatype" its CBOR
 datatype.

 The name of the variable has no encoding in the CBOR data.

 "datatype" can be a CBOR primitive such as:

 tstr: A text string (major type 3)

 uint: An unsigned integer (major type 0)

 map(x,y): A map (major type 5), where each first element of a pair
 is of datatype x, and each second element of datatype y. A ’.’
 character for either x or y means that all datatypes for that
 element are valid.

 A datatype can also be a CBOR structure, in which case the variable’s
 "datatype" field contains the name of the CBOR structure. Such CBOR
 structure is defined by a character sequence consisting of first its
 name, then a ’{’ character, then its subfields and finally a ’}’
 character.

 A CBOR structure can be encapsulated in an array, in which case its
 name in its definition is preceded by a ’*’ character. Otherwise the
 structure is just a grouping of fields, but without actual encoding
 of such grouping.

van der Stok, et al. Expires August 7, 2015 [Page 45]

Internet-Draft CoMI February 2015

 The name of an optional field is preceded by a ’?’ character. This
 means, that the field may be omitted if not required.

Appendix C. comparison with LWM2M

 TODO: Anuj promised text

Authors’ Addresses

 Peter van der Stok
 consultant

 Phone: +31-492474673 (Netherlands), +33-966015248 (France)
 Email: consultancy@vanderstok.org
 URI: www.vanderstok.org

 Bert Greevenbosch
 independent

 Email: ietf@bertgreevenbosch.nl

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

 Juergen Schoenwaelder
 Jacobs University
 Campus Ring 1
 Bremen 28759
 Germany

 Email: j.schoenwaelder@jacobs-university.de

 Anuj Sehgal
 Jacobs University
 Campus Ring 1
 Bremen 28759
 Germany

 Email: s.anuj@jacobs-university.de

van der Stok, et al. Expires August 7, 2015 [Page 46]

