
lamps R. Struik
Internet-Draft Struik Security Consultancy
Intended status: Standards Track March 11, 2021
Expires: September 12, 2021

 ECDSA Signatures in Verification-Friendly Format
 draft-struik-lamps-verification-friendly-ecdsa-01

Abstract

 This document specifies how to represent ECDSA signatures so as to
 facilitate accelerated verification of single signatures and fast
 batch verification. We demonstrate that this representation
 technique can be applied retroactively by any device (rather than
 only by the signer), thereby facilitating transitioning to always
 generating ECDSA signatures in this way, without changing
 standardized ECDSA specifications. This facilitates verifying
 devices to reap the significant speed-up potential (ranging from
 ˜1.3x to more than 2x) fast verification techniques afford.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2021.

Struik Expires September 12, 2021 [Page 1]

Internet-Draft fast-verification-with-ecdsa March 2021

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Fostering Fast Verification with ECDSA 2
 2. Review of ECDSA and ECDSA* 3
 3. Signature Verification with ECDSA and ECDSA* 4
 4. Transitionary Considerations 5
 5. Implementation Status . 6
 6. Informal Comparison with Speed-ups for EdDSA Signatures . . . 6
 7. Security Considerations 7
 8. Privacy Considerations 7
 9. IANA Considerations . 7
 9.1. OIDs for Use with PKIX and CMS 7
 10. Acknowledgements . 9
 11. References . 9
 11.1. Normative References 9
 11.2. Informative References 10
 Author’s Address . 10

1. Fostering Fast Verification with ECDSA

 ECDSA is one of the most widely used elliptic-curve digital signature
 algorithms. It has been standardized in FIPS Pub 186-4, ANSI X9.62,
 BSI, SECG, and IETF, and is widely deployed by a plethora of internet
 protocols specified by the Internet Engineering Task Force (IETF),
 with industry specifications in the areas of machine-to-machine
 communication, such as ZigBee, ISA, and Thread, with wireless
 communication protocols, such as IEEE 802.11, with payment protocols,
 such as EMV, with vehicle-to-vehicle (V2V) specifications, as well as
 with electronic travel documents and other specifications developed
 under a more stringent regulatory oversight regime, such as, e.g.,
 ICAO and PIV. ECDSA is the only elliptic-curve based signature
 scheme endorsed by regulatory bodies in both the United States and
 the European Union.

Struik Expires September 12, 2021 [Page 2]

Internet-Draft fast-verification-with-ecdsa March 2021

 While methods for accelerated verification of ECDSA signatures and
 for combining this with key computations have been known for over 1
 1/2 decade (see, e.g., [SAC2005] and [SAC2010]), these have been
 commonly described in technical papers in terms of ECDSA*, a slightly
 modified version of ECDSA, where their use with standardized ECDSA
 seems less well known. It is the purpose of this document to bridge
 this gap and describe how ECDSA signatures can be easily generated to
 facilitate more efficient verification, without failing. We
 emphasize that this does not require changes to standardized
 specifications of ECDSA, thereby allowing reuse of existing standards
 and easy integration with existing implementations. We exemplify
 this for ECDSA certificates.

2. Review of ECDSA and ECDSA*

 In this section, we summarize the properties of the signature scheme
 ECDSA and of the modified signature scheme ECDSA* that are relevant
 for our exposition. The signature schemes are defined in terms of a
 suitable elliptic curve E, hash function H, and several
 representation functions, where n is the (prime) order of the base
 point G of this curve, and where E is an elliptic curve in short-
 Weierstrass form. For full details, we refer to the relevant
 standards.

 With the ECDSA signature scheme, the signature over a message m
 provided by a signing entity with static private key d is an ordered
 pair (r,s) of integers in the interval [1,n-1], where the value r is
 derived from a so-called ephemeral signing key R:=k*G generated by
 the signer via a fixed public conversion function and where the value
 s is a function of the ephemeral private key k, the static private
 key d, the value r and the value e derived from message m via hash
 function H and representation hereof in the interval [0,n-1]. (More
 specifically, one has e=s*k-d*r (mod n), where r is a function of the
 x-coordinate of R.) A signature (r,s) over message m purportedly
 signed by an entity with public key Q:=d*G is accepted if Q is indeed
 a valid public key, if both signature components r and s are integers
 in the interval [1,n-1] and if the reconstructed value R’ derived
 from the purported signature, message, and public key yields r, via
 the same fixed conversion function as used during the signing
 operation. (More specifically, one computes R’:=(1/s)*(e*G+r*Q) and
 checks that r is the same function of the x-coordinate of R’.)

 With the ECDSA* signature scheme, one follows the same signing
 operation, except that one outputs as signature the ordered pair
 (R,s), rather than the pair (r,s), where R is the ephemeral signing
 key; one accepts a signature (R,s) over message m purportedly signed
 by an entity with public key Q by first computing the value r derived
 from signature component R via the conversion function, checking that

Struik Expires September 12, 2021 [Page 3]

Internet-Draft fast-verification-with-ecdsa March 2021

 Q is indeed a valid public key and that both r and s are integers in
 the interval [1,n-1], computing R’:=(1/s)*(e*G+r*Q) and checking
 whether, indeed, R’=R.

 It is known that ECDSA signatures and the corresponding ECDSA*
 signatures have the same success/failure conditions (i.e., ECDSA and
 ECDSA* are equally secure): if (r,s) is a valid ECDSA signature for
 message m purportedly signed by an entity with public key Q, then
 (R’,s) is a valid corresponding ECDSA* signature, where R’:=(1/
 s)(e*G+r*Q) is a point for which the conversion function yields r.
 Conversely, if (R,s) is a valid ECDSA* signature for message m
 purportedly signed by an entity with public key Q, then (r,s) is a
 valid corresponding ECDSA signature, where r is obtained from R via
 the conversion function.

 It is well-known that if an ECDSA signature (r,s) is valid for a
 particular message m and public key Q, then so is (r,-s) -- the so-
 called malleability -- and that, similarly, if an ECDSA* signature
 (R,s) is valid, then so is (-R,-s), where this relies on the fact
 that the conversion function only depends on the x-coordinate of R.

3. Signature Verification with ECDSA and ECDSA*

 In this section, we more closely scrutinize ECDSA and ECDSA*
 verification processes.

 With ECDSA*, signature verification primarily involves checking an
 elliptic curve equation, viz. checking whether R = (1/s)*(e*G+r*Q),
 which lends itself to accelerated signature verification techniques
 and the ability to use batch verification techniques, with
 significant potential for accelerated verification (with ˜1.3x and up
 and more than 2x speed-up potential, respectively). Here, speed-ups
 are due to the availability of the point R, which effectively allows
 checking an equation of the form -s*R + (e*G+r*Q)=O instead (where O
 is the identity element of the curve). Similarly to the case with
 EdDSA [RFC8032] (which natively represents the ephemeral signing key
 R as part of the signature), this offers the potential for batch
 verification, by checking a randomized linear combination of this
 equation instead (thereby sharing the so-called point doubling
 operations amongst all individual verifications and, potentially,
 sharing scalars for signers of more than one message). In the case
 of single verifications, efficient tricks allow reducing the bit-size
 of the scalars involved in evaluating this expression (thereby
 effectively halving the required point doubling operations).

 With ECDSA itself, these techniques are generally not available,
 since one cannot uniquely (and efficiently) reconstruct R from r:
 both R and -R yield the same r value. If the conversion function

Struik Expires September 12, 2021 [Page 4]

Internet-Draft fast-verification-with-ecdsa March 2021

 only has two pre-images, though, one can use malleability to remove
 ambiguity altogether.

 The modified ECDSA signing procedure is as follows:

 a. Generate ECDSA signature (r,s) of message m;

 b. If the ephemeral signing key R has odd parity of the
 y-coordinate, change (r,s) to (r,-s).

 Note that this modified signing procedure removes the ambiguity in
 the reconstruction of R from r if the conversion function would
 otherwise only have two preimages, since R and -R have different
 parity of the y-coordinate. In practice, this is the case for all
 prime-order curves, including the NIST prime curves P-256, P-384,
 P-521, all standardized Brainpool curves, and, e.g., the "BitCoin"
 curve secp256k1. (This follows from the observation that, for prime-
 order curves, r generally uniquely represents the x-coordinate of R.)

 NOTE: With ECDSA, any party (not just the signer) can recompute the
 ephemeral signing key R’ from a valid signature, since R’:=(1/
 s)(e*G+r*Q). In particular, any party can retroactively put the
 ECDSA signature in the required form above, thereby allowing
 subsequent unique reconstruction of the R value from r by verifying
 entities that know this modified signing procedure was indeed
 followed (again, subject to the assumption that r would only have two
 preimages otherwise, as is generally the case with prime-order
 curves).

 One can extend this technique to also apply to curves that have a
 small co-factor h, e.g., h=4 or h=8 (rather than h=1, as is the case
 with prime-order curves). This extension is out of scope for the
 current document.

4. Transitionary Considerations

 The modified signing procedure described in Section 3 facilitates the
 use of accelerated ECDSA verification techniques by devices that wish
 to do so, provided these know that this modified signing procedure
 was indeed followed. This can be realized explicitly via a new
 "fast-verification-friendly" label (e.g., OID) indicating that this
 was indeed the case. This has the following consequences:

 a. New device: accept both old and new label and apply speed-ups
 with new label if possible (and desired);

 b. Old device: implement flimsy parser that replaces new label by
 old label and proceed as with traditional ECDSA verification.

Struik Expires September 12, 2021 [Page 5]

Internet-Draft fast-verification-with-ecdsa March 2021

 Note that this parser "label replacement" step is a public operation,
 so any interface can implement this step.

 A label can also be realized implicitly (e.g., by stipulating the
 modified signing procedure in protocol specifications that use ECDSA
 signatures), where the benefit of not having to introduce a new label
 explicitly should be weighed against potential disadvantages of
 implicit labels, such as requiring extra care with specification work
 to avoid confusion and the likely need to reintroduce an explicit
 label if ECDSA signatures are processed outside the original context
 (e.g., using a generic crypographic token).

 As suggested before, any device can implement the modified ECDSA
 signing procedure retroactively, so one could conceivably implement
 this once for all existing ECDSA signatures and only use "new" labels
 once this task has been completed (i.e., old labels could be
 mothballed from then on).

 NOTE: the above labeling procedures assume that old and new labels
 are not part of the message to be signed. If they are, one may not
 be able to mothball old labels. In this case, signing devices should
 always use the old label during ECDSA signing and only change this to
 the corresponding new label afterwards, whereby verifying devices
 always replace the new label (since simply a pseudonym) by the
 corresponding old label before processing the ECDSA signature. This
 ensures that the signature semantics are not impacted and that old
 devices’ ECDSA verification implementations (after reinstating old
 labels) work as is, while still being able to flag verification-
 friendly ECDSA signature formatting.

5. Implementation Status

 [Note to the RFC Editor] Please remove this entire section before
 publication, as well as the reference to [RFC7942].

 The ECDSA* signature scheme has been implemented in V2V
 specifications [P1609.2], where ECDSA is used with the NIST curves
 P-224 and P-256.

6. Informal Comparison with Speed-ups for EdDSA Signatures

 The main message of this draft is as follows (no crypto required,
 except believing that the third step below works):

 a. EdDSA [RFC8032] does allow speedy signature verification and
 batch verification, since the signature is (R,s), i.e., it
 represents the ephemeral signing key R as part of the signature;

Struik Expires September 12, 2021 [Page 6]

Internet-Draft fast-verification-with-ecdsa March 2021

 b. With ECDSA, the signature is (r,s), where r is derived from the
 signing key R (essentially, r is the x-coordinate of R if the
 curve has co-factor h=1). However, generally, one cannot go back
 and get (r,s) --> (R,s), at least not efficiently;

 c. If one uses the modified ECDSA signing procedure of Section 3,
 one can, though, thereby allowing similar accelerations (30% and
 up) for signature verification as EdDSA does. This can be viewed
 as "point compression" (since it determines which of R and -R
 apply);

 d. The rest is detail, where the ideas underlying the speed-ups
 informally described in Section 3 are described in detail in the
 papers [SAC2005] and [SAC2010].

7. Security Considerations

 The signature representation change described in this document is
 publicly known and, therefore, does not affect security provisions.
 Obviously, any adversary could change the signature value in a
 malicious way, so as to make signature verification fail. This does,
 however, not extend capabilities the adversary already had.

8. Privacy Considerations

 The signature representation change described in this document is
 publicly known and, therefore, does not affect privacy provisions.

9. IANA Considerations

 This section requests the following IANA code point assignments.

 Editorial Note: the approach below is simply one way of realizing
 ECDSA* functionality. Other options to consider include, e.g.,
 introducing a non-critical extension as label, where old devices can
 simple ignore this. This will be elaborated upon further in next
 versions of this draft, after feedback.

9.1. OIDs for Use with PKIX and CMS

 This section registers the following object identifiers for the
 verification-friendly version of ECDSA introduced in this document:

 a. id-ecdsa-star-with-sha256 ::= {iso(1) identified-organization(3)
 thawte (101) (100) 81};

 b. id-ecdsa-star-with-sha384 ::= {iso(1) identified-organization(3)
 thawte (101) (100) 82};

Struik Expires September 12, 2021 [Page 7]

Internet-Draft fast-verification-with-ecdsa March 2021

 c. id-ecdsa-star-with-sha512 ::= {iso(1) identified-organization(3)
 thawte (101) (100) 83};

 d. id-ecdsa-star-with-shake128 ::= {iso(1) identified-
 organization(3) thawte (101) (100) 84};

 e. id-ecdsa-star-with-shake256 ::= {iso(1) identified-
 organization(3) thawte (101) (100) 85}.

 Each of these object identifiers indicates the use of ECDSA with the
 indicated hash function, as the corresponding object identifiers
 without the "-star-" substring specified in [RFC5480] (for ECDSA with
 SHA2-hash family members) and in [RFC8692] (for ECDSA with SHAKE
 family members) do, where the "-star-" substring simply indicates
 that the modified signing procedure specified in Section 3 of this
 document was indeed used.

 These new object identifiers are used with PKIX certificates and CMS
 in the same way as the corresponding object identifiers without the
 "-star-" substring, except that verifying devices now have the option
 to implement ECDSA signature verification as if ECDSA* signatures had
 been used, since the new object identifiers indicate the modified
 signing operation was followed, as illustrated in Section 3 of this
 document.

 As mentioned in Section 4, any ECDSA signature with the old object
 identifier can be changed retroactively to one with the corresponding
 new object identifier, provided one has assurance that the modified
 ECDSA signing procedure was indeed followed and, conversely, any
 ECDSA signature with the new object identifier can be changed to one
 with the corresponding old object identifier, without change in
 semantics (assuming these object identifiers are not part of the
 message that is signed).

 With [RFC5280], the signature algorithm is indicated twice: once as
 signatureAlgorithm field of the Certificate and once as the Signature
 field of the sequence tbsCertificate, where the former is not part of
 the message to be signed, whereas the latter is. Moreover, these two
 fields are stipulated to be the same (see Sections 4.1.1.2 and
 4.1.2.3 of [RFC5280]). In this case, old and new labels MUST be used
 as indicated in the NOTE of Section 3, where the two fields
 indicating the signature algorithm are always both changed at the
 same time (thereby, strictly complying with MUST behavior of PKIX
 that these two fields should be the same).

Struik Expires September 12, 2021 [Page 8]

Internet-Draft fast-verification-with-ecdsa March 2021

10. Acknowledgements

 Thanks to Rich Salz for suggesting to informally compare speed-ups
 with ECDSA* with those of EdDSA (now in Section 6).

11. References

11.1. Normative References

 [FIPS-186-4]
 FIPS 186-4, "Digital Signature Standard (DSS), Federal
 Information Processing Standards Publication 186-4", US
 Department of Commerce/National Institute of Standards and
 Technology, Gaithersburg, MD, July 2013.

 [I-D.ietf-lwig-curve-representations]
 Struik, R., "Alternative Elliptic Curve Representations",
 draft-ietf-lwig-curve-representations-19 (work in
 progress), December 2020.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
 <https://www.rfc-editor.org/info/rfc5480>.

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,
 RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/info/rfc7942>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

Struik Expires September 12, 2021 [Page 9]

Internet-Draft fast-verification-with-ecdsa March 2021

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8692] Kampanakis, P. and Q. Dang, "Internet X.509 Public Key
 Infrastructure: Additional Algorithm Identifiers for
 RSASSA-PSS and ECDSA Using SHAKEs", RFC 8692,
 DOI 10.17487/RFC8692, December 2019,
 <https://www.rfc-editor.org/info/rfc8692>.

 [SEC1] SEC1, "SEC 1: Elliptic Curve Cryptography, Version 2.0",
 Standards for Efficient Cryptography, , June 2009.

 [SEC2] SEC2, "SEC 2: Elliptic Curve Cryptography, Version 2.0",
 Standards for Efficient Cryptography, , January 2010.

11.2. Informative References

 [ECC] I.F. Blake, G. Seroussi, N.P. Smart, "Elliptic Curves in
 Cryptography", Cambridge University Press, Lecture Notes
 Series 265, July 1999.

 [GECC] D. Hankerson, A.J. Menezes, S.A. Vanstone, "Guide to
 Elliptic Curve Cryptography", New York: Springer-Verlag,
 2004.

 [P1609.2] IEEE 1609.2-2013, "IEEE Standard for Wireless Access in
 Vehicular Environments-Security Services for Applications
 and Management Messages", IEEE Vehicular Technology
 Society, New York: IEEE, 2013.

 [SAC2005] A. Antipa, D.R. Brown, R. Gallant, R. Lambert, R. Struik,
 S.A. Vanstone, "Accelerated Verification of ECDSA
 Signatures", SAC 2005, B. Preneel, S. Tavares, Eds.,
 Lecture Notes in Computer Science, Vol. 3897, pp. 307-318,
 Berlin: Springer, 2006.

 [SAC2010] R. Struik, "Batch Computations Revisited: Combining Key
 Computations and Batch Verifications", SAC 2010, A.
 Biryukov, G. Gong, D.R. Stinson, Eds., Lecture Notes in
 Computer Science, Vol. 6544, pp. 130-142, Berlin-
 Heidelberg: Springer, 2011.

Author’s Address

Struik Expires September 12, 2021 [Page 10]

Internet-Draft fast-verification-with-ecdsa March 2021

 Rene Struik
 Struik Security Consultancy

 Email: rstruik.ext@gmail.com

Struik Expires September 12, 2021 [Page 11]

