
Kitten Working Group M. Short, Ed.
Internet-Draft S. Moore
Intended status: Standards Track P. Miller
Expires: April 30, 2015 Microsoft Corporation

October 27, 2014

Public Key Cryptography for Initial Authentication
in Kerberos (PKINIT) Freshness Extension

draft-short-pkinit-freshness-00

Abstract
This document describes how to extend Public Key Cryptography for Initial Authentication in Kerberos
(PKINIT) extension [RFC4556] to exchange an opaque data blob which a KDC can validate to ensure that the
client is currently in possession of the private key during a PKInit AS exchange.

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups
may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or
to cite them other than as "work in progress."

This Internet-Draft will expire on April 30, 2015.

Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these
documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Simplified BSD License text as described in Section
4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD
License.

Table of Contents
1. Introduction

1.1. Kerberos message flow using KRB_AS_REQ without pre-authentication
1.2. Requirements Language

2. Message Exchanges
2.1. Generation of KRB_ERROR Message
2.2. Generation of KRB_AS_REQ Message
2.3. Receipt of KRB_AS_REQ Message

3. PreAuthentication Data Types
4. PA-PK-AS-KDCTOKEN
5. Extended PKAuthenticator
6. Acknowledgements
7. IANA Considerations
8. Security Considerations
9. References

9.1. Normative References
9.2. Informative References

Authors' Addresses

1. Introduction
Kerberos PKINIT [RFC4556] defines two schemes to use asymmetric cryptography in a Kerberos
preauthenticator. One uses Diffie-Hellman key exchange and the other depends on public key encryption.
The public key encryption scheme is less commonly used for two reasons:

Elliptic Curve Cryptography (ECC) Support [RFC5349] only supports Elliptic Curve Diffie-Hellman
(ECDH) key agreement.
Requires certificates with an encryption key which is not deployed on many existing smart cards.

In the Diffie-Hellman exchange, the client uses its private key only to sign the AuthPack specified in Section
3.2.1 of [RFC4556] which is performed before any traffic is sent to the KDC. Thus a client can generate
requests with future times in the PKAuthenticator, and then send those requests at the future times. Unless
the time is outside the validity period of the client's certificate, the KDC will validate it and return a TGT the
client can use without possessing the private key.

As a result, a client performing PKINIT with the Diffie-Hellman key exchange does not prove current
possession of the private key being used for authentication. It proves only prior use of that key. Ensuring
that the client has current possession of the private key requires that the signed PKAuthenticator data
include information that the client could not have predicted in advance.

1.1. Kerberos message flow using KRB_AS_REQ without pre-
authentication

Today some password-based AS exchanges [RFC4120] depend on the client sending a KRB_AS_REQ
without pre-authentication to trigger the KDC to provide the Kerberos client with information needed to
complete an AS exchange such as the supported encryption types and salt value (see message flow below):

KDC Client Application Server

 <---- AS-REQ without pre-authentication
KRB-ERROR ---->

 <---- AS-REQ

AS-REP ---->

 <---- TGS-REQ
TGS-REP ---->

Figure 1

We can use this mechanism in PKInit for KDCs to provide data which the client returns as part of the
KRB_AS_REQ to ensure that the PA_PK_AS_REQ [RFC4556] was not pregenerated.

1.2. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
RFC 2119 [RFC2119].

2. Message Exchanges
This following summarizes the message flow with extensions to [RFC4120] and [RFC4556] required to
support a KDC provided freshness token during the initial request for a ticket:

1. The client generates a KRB_AS_REQ with the OPT-HARDWARE-AUTH option specified in
Section 2.9.3 [RFC4120] to the KDC.

2. The KDC generates a KRB_ERROR as specified in Section 3.1.3 of [RFC4120] providing a
freshness token.

3. The client receives the error as specified in Section 3.1.4 of [RFC4120] and includes the
freshness token as part of the KRB_AS_REQ as specified in [RFC4120] and [RFC4556].

4. The KDC receives and validates the KRB_AS_REQ as specified in Section 3.2.2 [RFC4556]
then additionally validates the freshness token.

5. The KDC and client continue as specified in [RFC4120] and [RFC4556].

2.1. Generation of KRB_ERROR Message
The KDC will indicate support by adding to the METHOD-DATA object the PA-PK-AS-KDCTOKEN with
padata-type is PA_PK_AS_KDCTOKEN.

2.2. Generation of KRB_AS_REQ Message
After the client receives the KRB-ERROR message, when generating the PKInit AS-REQ it extracts PA-PK-
AS-KDCTOKEN as an opaque data blob. When generating the PKAuthenticator, the PA-PK-AS-KDCTOKEN
SHALL be added as an opaque blob in the kdcToken field so it becomes part of the signed data in the
KRB_AS_REQ.

2.3. Receipt of KRB_AS_REQ Message
After validating the PA_PK_AS_REQ message normally, the KDC will validate the PA-PK-AS-KDCTOKEN in
an implementation specific way. If the freshness token is not valid, the KDC MUST return
KDC_ERR_PREAUTH_FAILED with PA-PK-AS-KDCTOKEN. Since the freshness tokens are validated by
KDCs in the same realm, standardizing the contents of the freshness token is not a concern for
interoperability.

3. PreAuthentication Data Types
The following are the new PreAuthentication data types:

Padata and Data Type Padata-type Value

PA_PK_AS_KDCTOKEN TBD

4. PA-PK-AS-KDCTOKEN
The PA-PK-AS-KDCTOKEN structure specifies an freshness token. Its structure is defined using ASN.1
notation. The syntax is as follows:

PA-PK-AS-KDCTOKEN ::= OCTET STRING

5. Extended PKAuthenticator
The PKAuthenticator structure specified in Section 3.2.1 [RFC4556] is extended to include a new kdcToken
as follows:

PKAuthenticator ::= SEQUENCE {
 cusec [0] INTEGER (0..999999),
 ctime [1] KerberosTime,
 -- cusec and ctime are used as in [RFC4120], for
 -- replay prevention.
 nonce [2] INTEGER (0..4294967295),
 -- Chosen randomly; this nonce does not need to
 -- match with the nonce in the KDC-REQ-BODY.
 paChecksum [3] OCTET STRING OPTIONAL,
 -- MUST be present.
 -- Contains the SHA1 checksum, performed over
 -- KDC-REQ-BODY.
 ...,
 kdcToken [4] PA-PK-AS-KDCTOKEN OPTIONAL,
 -- MUST be present if sent by KDC
 ...
}

6. Acknowledgements
Nathan Ide and Magnus Nystrom reviewed the document and provided suggestions for improvements.

7. IANA Considerations
IANA is requested to assign numbers for PA_PK_AS_KDCTOKEN listed in the Kerberos Parameters registry
Pre-authentication and Typed Data as follows:

Type Value Reference

TBD PA_PK_AS_KDCTOKEN [This RFC]

8. Security Considerations
The freshness token SHOULD include either signing or sealing data from the KDC to prevent tampering.
Kerberos error messages are not integrity protected unless authenticated using Kerberos FAST [RFC6113].

The freshness token SHOULD include signing, encrypting or sealing data from the KDC to determine
authenticity. Even if FAST is required to provide integrity protection, a different KDC would not be able to
validate freshness tokens without some kind of shared database.

Since the client treats the KDC provided data blob as opaque, changing the contents will not impact existing
clients. Thus extensions to the freshness token do not impact client interoperability.

9. References

9.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119,
March 1997.

[RFC4120] Neuman, C., Yu, T., Hartman, S. and K. Raeburn, "The Kerberos Network Authentication Service
(V5)", RFC 4120, July 2005.

[RFC4556] Zhu, L. and B. Tung, "Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)",
RFC 4556, June 2006.

[RFC5349] Zhu, L., Jaganathan, K. and K. Lauter, "Elliptic Curve Cryptography (ECC) Support for Public Key
Cryptography for Initial Authentication in Kerberos (PKINIT)", RFC 5349, September 2008.

9.2. Informative References

[RFC6113] Hartman, S. and L. Zhu, "A Generalized Framework for Kerberos Pre-Authentication", RFC 6113,
April 2011.

Authors' Addresses
Michiko Short (editor)
Microsoft Corporation
USA
EMail: michikos@microsoft.com

Seth Moore
Microsoft Corporation
USA
EMail: sethmo@microsoft.com

Paul Miller
Microsoft Corporation
USA
EMail: paumil@microsoft.com

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc4120
http://tools.ietf.org/html/rfc4556
http://tools.ietf.org/html/rfc5349
http://tools.ietf.org/html/rfc6113
mailto:michikos@microsoft.com
mailto:sethmo@microsoft.com
mailto:paumil@microsoft.com

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Kerberos message flow using KRB_AS_REQ without pre-authentication
	1.2. Requirements Language
	2. Message Exchanges
	2.1. Generation of KRB_ERROR Message
	2.2. Generation of KRB_AS_REQ Message
	2.3. Receipt of KRB_AS_REQ Message
	3. PreAuthentication Data Types
	4. PA-PK-AS-KDCTOKEN
	5. Extended PKAuthenticator
	6. Acknowledgements
	7. IANA Considerations
	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References
	Authors' Addresses

