
TCP Maintenance and Minor Extensions R. Scheffenegger
(tcpm) NetApp, Inc.
Internet-Draft M. Kuehlewind
Updates: 1323 (if approved) University of Stuttgart
Intended status: Experimental May 28, 2011
Expires: November 29, 2011

 Additional negotiation in the TCP Timestamp Option field
 during the TCP handshake
 draft-scheffenegger-tcpm-timestamp-negotiation-02

Abstract

 A number of TCP enhancements in so diverse fields as congestion
 control, loss recovery or side-band signaling could be improved by
 making the values carried in the Timestamp option transparent, and
 changing the receiver side processing of timestamps in the presence
 of selective acknowledgements.

 This documents specifies a backwards compatible way of negotiating
 for Timestamp capabilities, and lists a number of benefits and
 drawbacks of this approach.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 29, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 1]

Internet-Draft Timestamp Negotiation May 2011

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 5
 3. Overview . 6
 4. Problem statement . 9
 5. Signaling . 11
 5.1. Capability Flags . 12
 5.2. Implicit extended negotiation 15
 6. Possible use cases . 17
 6.1. One-way delay variation measurement 17
 6.2. Early spurious retransmit detection 18
 6.3. Early lost retransmission detection 19
 6.4. Integrity of the Timestamp value 21
 6.5. Disambiguation with slow Timestamp clock 21
 6.6. Opaque timestamps as segment digest 22
 6.7. Timestamp value as covert channel 22
 7. Discussion . 24
 8. Acknowledgements . 25
 9. Updates to Existing RFCs 25
 10. IANA Considerations . 25
 11. Security Considerations 26
 12. References . 26
 12.1. Normative References 26
 12.2. Informative References 26
 Appendix A. Possible Extension 28
 A.1. Capability Flags . 29
 A.2. Range Negotiation . 30
 Appendix B. Revision history 31
 Authors’ Addresses . 31

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 2]

Internet-Draft Timestamp Negotiation May 2011

1. Introduction

 The timestamp option originally introduced in [RFC1323] was designed
 solely for two-way delay measurement and to support a particular TCP
 algorithm (Reno). It would be useful to be able to support one-way
 delay measurement and to take advantage of developments since TCP
 Reno, such as selective acknowledgements (SACK) [RFC2018].

 This specification defines a protocol for the two ends of a TCP
 session to negotiate alternative semantics for the timestamps they
 will exchange during the rest of the session. It updates RFC1323 but
 it is backwards compatible with implementations of RFC1323 timestamp
 options.

 The RFC1323 timestamp protocol presents the following problems when
 trying to extend it for alternative uses:

 a. Opaque meaning for the value in a timestamp.

 * A timestamp value (TSval) as defined in [RFC1323] is
 deliberately only meaningful to the end that sends it. The
 other end is merely meant to echo the value without
 understanding it. This is fine if one end is trying to
 measure two-way delay (round trip time). However, to measure
 one-way delay, timestamps from both ends need to be compared
 by one end, which needs to relate the values in timestamps
 from both ends to a notion of the passage of time that both
 ends share.

 b. No control over which timestamp to echo.

 * A host implementing [RFC1323] is meant to echo the timestamp
 value of the most recent in-order segment received. This was
 fine for TCP Reno, but it is not the best choice for TCP
 sessions using selective acknowledgement (SACK) [RFC2018].

 * A [RFC1323] host is meant to echo the timestamp value of the
 earliest unacknowledged segment, e.g. if a host delays ACKs
 for one segment, it echoes the first timestamp not the second.
 It is desirable to include delay due to ACK withholding when a
 host is conservatively measuring RTT. However, is not useful
 to include the delay due to ACK withholding when measuring
 one-way delay.

 c. Alternative protection against wrapped sequence numbers.

 * [RFC1323] also points out that the timestamps it specifies
 will always strictly monotonically increase in each window so

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 3]

Internet-Draft Timestamp Negotiation May 2011

 they can be used to protect against wrapped sequence numbers
 (PAWS). If the endpoints negotiate an alternative timestamp
 scheme in which timestamps may not monotonically increase per
 window, then it needs to be possible to negotiate alternative
 protection against wrapped sequence numbers.

 To solve these problems this specification changes the wire protocol
 of the TCP timestamp option in two main ways:

 1. It updates [RFC1323] to add the ability to negotiate the
 semantics of timestamp options. The initiator of a TCP session
 starts the negotiation in the TSecr field in the first <SYN>,
 which is currently unused. This specification defines the
 semantics of the TSecr field in a segment with the SYN flag set.
 A version number is included to allow further extension of
 capability negotiation in future.

 2. It updates [RFC1323] to define version 0 of timestamp
 capabilities to include:

 * the duration in seconds of a tick of the timestamp clock using
 a floating point representation

 * agreement that both ends will echo the timestamp on the most
 recently received segment, rather than the one that would be
 echoed by an [RFC1323] host. There is no specific option to
 request this behavior, however it is implied by successful
 negotiation of both SACK and timestamp capabilities.

 * an ability to mask a specified number of the lower significant
 bits of the timestamp values, so they are not considered for
 timestamp calculations, or in an algorithm to protect against
 wrapped sequence numbers.

 With this new wire protocol, a number of new use-cases for the TCP
 timestamp option become possible. Section 6 gives some examples.
 Further extensions might be required in future. Appendix A gives an
 example of a further version of timestamp capability negotiation that
 could be defined in the future.

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 4]

Internet-Draft Timestamp Negotiation May 2011

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The reader is expected to be familiar with the definitions given in
 [RFC1323].

 Further terminology used within this document:

 Timestamp clock rate
 This document refers to clock rates for convenience. A rate is
 expressed in Hertz (ticks-per-second). For signaling purposes,
 the rate is not directly indicated in the protocol in Hertz
 (s^-1) but as the duration between two ticks of the timestamp
 clock, measured in seconds (s). The reason is to have high
 precision at long durations (low frequencies) available in the
 encoding (see Section 5 for details).

 Timestamp option
 This refers to the entire TCP timestamp option, including both
 TSval and TSecr fields.

 Timestamp capabilities
 Refers only to the values and bits carried in the TSecr field of
 <SYN> and <SYN,ACK> segments during a TCP handshake. For
 signaling purposes, the timestamp capabilities are sent in clear
 with the <SYN> segment, and in an encoded form (see Section 5 for
 details) in the <SYN,ACK> segment.

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 5]

Internet-Draft Timestamp Negotiation May 2011

3. Overview

 The TCP Timestamp option (TSopt) provides timestamp echoing for
 round-trip time (RTT) measurements. TSopt is widely deployed and
 activated by default in many systems. [RFC1323] specifies TSopt the
 following way:

 Kind: 8

 Length: 10 bytes

 +-------+-------+---------------------+---------------------+
 |Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)|
 +-------+-------+---------------------+---------------------+
 1 1 4 4

 Figure 1: RFC1323 TSopt

 "The Timestamps option carries two four-byte timestamp fields.
 The Timestamp Value field (TSval) contains the current value of
 the timestamp clock of the TCP sending the option.

 The Timestamp Echo Reply field (TSecr) is only valid if the ACK
 bit is set in the TCP header; if it is valid, it echos a times-
 tamp value that was sent by the remote TCP in the TSval field of a
 Timestamps option. When TSecr is not valid, its value must be
 zero. The TSecr value will generally be from the most recent
 Timestamp option that was received; however, there are exceptions
 that are explained below.

 A TCP may send the Timestamps option (TSopt) in an initial <SYN>
 segment (i.e., segment containing a SYN bit and no ACK bit), and
 may send a TSopt in other segments only if it re- ceived a TSopt
 in the initial <SYN> segment for the connection."

 The comparison of the timestamp in the TSecr field to the current
 timestamp clock gives an estimation of the two-way delay (RTT).
 [RFC1323] specifies various cases when more than one timestamp is
 available to echo. The approach taken by [RFC1323] is not always be
 the best choice, i.e. when the TCP Selective Acknowledgment option
 (SACK) is used in conjunction. In addition there are use cases where
 one-way delay (OWD) measurements are needed. These mechanisms
 usually also rely on the TSopt to estimated the variation in OWD.
 Current implementations are based around certain assumptions,

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 6]

Internet-Draft Timestamp Negotiation May 2011

 * sender using one specific timestamp clock rate, or

 * one specific rate from a limited set of possible timestamp
 clock rates, or

 * the network conditions do not change for a short training
 period while timestamp values are sampled, and

 * the sender using all bits of TSval to reflect the timestamp
 clock value directly with no bits used for different purposes
 such as covert channels.

 These assumptions may not be valid in general in the public internet.

 This document specifies a way of negotiating the timestamp
 capabilities available between the end hosts. This is enabled by
 using the TSecr field in the TCP <SYN> segment. In order to remain
 backwards compatible, a receiver capable of timestamp capability
 negotiation has to XOR the receivers (local) capabilities flags with
 the received TSval, before echoing the result back in the TSecr
 field. During the initial handshake, the sender has to store the
 sent initial TSval, in order to determine if the receiver can support
 this timestamp capability negotiation.

 Enhancements in the area of TCP congestion control can use the
 measurement of the one-way delay variation as one input. However,
 without explicit knowledge of the partner’s timestamp clock, arriving
 at a good estimate requires a training phase over multiple segment
 exchanges. In this phase, the network conditions need remain nearly
 static to arrive at good measurements. In addition, the receiver has
 to assume that the full TSval represents the timestamp clock value of
 the sender, with no different use of some bits of the TSval. Covert
 channels or fingerprinting a timestamp value artificially increase
 the measurement noise, and a receiver may be lead to assume a higher
 timestamp clock rate than what is actually implemented by the sender.
 In order to assist such algorithms, explicit knowledge at an early
 phase of the session needs to be negotiated.

 In addition, by using synergistic signaling between timestamps
 [RFC1323] and selective acknowledgments [RFC2018], enhancements in
 loss recovery are possible by removing any remaining retransmission
 and acknowledgment ambiguity. See Section 6 for a detailed
 discussion.

 Receivers conforming to [RFC1323] are required to only reflect the
 timestamp of the last segment that was received in order, or the
 timestamp of the last not yet acknowledged segment in the case of
 delayed acknowledgments. In order to allow progressive deployment of

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 7]

Internet-Draft Timestamp Negotiation May 2011

 changed timestamp option semantics, a backwards compatible way of
 negotiating the semantic is required.

 As the importance of the timestamp option increases by using it in
 more aspects of a TCP senders operation, so increases the importance
 of maintaining the integrity of the reflected timestamps. At the
 same time this must not inhibit the receiver to interpret a received
 timestamp in TSval.

 This is achieved by indicating how many LSB bits of the timestamp
 value must not be interpreted by the receiver. Apart from the
 purpose of maintaining timestamp integrity for the use as input
 signal into congestion control algorithms, this also allows the use
 of timestamp based methods to discriminate at the earliest possible
 moment (within 1 RTT after the retransmission) between spurious
 retransmissions and genuine loss even when using slow running TCP
 timestamp clocks.

 As an optional extension, a timestamp clock rate range negotiation is
 also introduced in Appendix A. This is only included as example of
 possible further enhancements.

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 8]

Internet-Draft Timestamp Negotiation May 2011

4. Problem statement

 Timestamp values are carried in each segment if negotiated for.
 However, the content of this values is to be treated as an opaque
 entity by the receiver. This document describes an enhancement to
 the timestamp negotiation, and must meet the following criteria:

 o Indicate the (rough) timestamp clock rate used by the sender in a
 wide range. The slowest rate should be slower than 1 Hz, while
 the highest rate should allow unique timestamps per segment, even
 at extremely high link speeds. At the time of writing, the
 shortest meaningful duration was found to be a 64 byte packets
 (i.e. ACK segment) sent at a rate of 100 Gbit/s. This
 corresponds to a maximum timestamp clock rate of around 200 MHz,
 or a tick duration at about 5 ns.

 o Allow for timestamps that are not directly related to real time
 (i.e. segment counting, or use of the timestamp value as a true
 extension of sequence numbers).

 o Provide means to prevent or at least detect tampering with the
 echoed timestamp value.

 o Allow for future extensions that may use some of the timestamp
 value bits for other signaling purposes for the remainder of the
 session.

 o Signaling must be backwards compatible with existing TCP stacks
 implementing basic [RFC1323] timestamps. Current methods for
 timestamp value generation must be supported.

 o Allow to state timing information explicitly during the initial
 handshake, to avoid a training phase extending beyond the initial
 handshake.

 o Possibly provide a means to disambiguate resent <SYN> segments.

 Some legacy implementations exist that violate [RFC1323] in that the
 TSecr field in a <SYN> is not cleared (see
 [I-D.ietf-tcpm-tcp-security]. The protocol should have some
 resiliency in the presence of such misbehaving senders, and must not
 lead to an unfair advantage for such wrongly negotiated sessions.

 As there exist some benefit to change the receiver side treatment of
 which timestamp value to echo, the negotiation protocol itself must
 also provide some backwards compatibility. Therefore, even when a
 sender tries to negotiate for a higher version than supported by the
 receiver, the receiver MUST respond with at least version 0. Also, a

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 9]

Internet-Draft Timestamp Negotiation May 2011

 future protocol enhancement MUST make sure that any extension is
 compatible with at least version 0.

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 10]

Internet-Draft Timestamp Negotiation May 2011

5. Signaling

 To support these design goals stated in Section 4, only the TSecr
 field in the initial <SYN> can be used directly. The response from
 the receiver has to be encoded, since no unused field is available in
 the <SYN,ACK>. The most straightforward encoding is a XOR with a
 value, known to the sender. Therefore, the receiver also uses TSecr
 to indicate it’s capabilities, but calculates the XOR sum with the
 received TSval. This allows the receiver to remain stateless and
 functionalities like syncache (see [RFC4987]) can be maintained with
 no change.

 During the initial TCP three-way handshake, timestamp capabilities
 are negotiated using the TSecr field. Timestamp capabilities MAY
 only be negotiated in TSecr when the SYN bit is set. A host detects
 the presence of timestamp capability flags when the EXO bit is set in
 the TSecr field of the received <SYN> segment. When receiving a
 session request (<SYN> segment with timestamp capabilities), a
 compliant TCP receiver is required to XOR the received TSval with the
 receivers timestamp capabilities. The resulting value is then sent
 in the <SYN,ACK> response.

 A host initiating a TCP session must verify if the partner also
 supports timestamp capability negotiation and a supported version,
 before using enhanced algorithms. Note that this change in semantics
 does not necessarily change the signaling of timestamps on the wire
 after initial negotiation.

 When selective acknowledgements [RFC2018] are also negotiated for,
 the immediate echoing of the last received timestamp value has to be
 enabled, regardless of the senders version of the timestamp
 capabilities.

 To mitigate the effect from misbehaving TCP senders appearing to
 negotiate for timestamp capabilities, a receiver MUST verify that one
 specific bit (EXO) is set, and any reserved bits (currently 8, RES
 field) are cleared. This limits the chance for a receiver to
 mistakenly negotiate for version 0 capabilities to around 0.05%.
 However, as a receiver has to use changed semantics when reflecting
 TSval also for higher values in the version field, a misbehaving
 sender negotiating for SACK, but not properly clearing TSecr, may
 have a 37.5% chance of receiving timestamp values with modified
 receiver behavior. This may lead to an increased number of spurious
 retransmission timeouts, putting such a session to a disadvantage.

 Once timestamp capabilities are successfully negotiated, the receiver
 must ignore an indicated number of opaque bits, before applying the
 heuristics defined in [RFC1323]. The monotonic increase of the

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 11]

Internet-Draft Timestamp Negotiation May 2011

 timestamp value could be violated for each newly sent segment,
 conflicting with the constraints imposed by PAWS.

 The presented distribution of the common three fields, EXO, VER and
 MASK, that MUST be present regardless of which version is implemented
 in a compliant TCP stack, is a result of the previously mentioned
 design goals. The lower three octets MAY be redefined freely with
 subsequent versions of the timestamp capability negotiation protocol.
 This allows a future version to be implemented in such a way, that a
 receiver can still operate with the modified behavior, and a minimum
 amount of processing (PAWS)

 The wide range of indicated timestamp clock rates (spanning 9 orders
 of (decimal) magnitude, or 28 binary digits, and the limitation to no
 more than 24 bits requires the use of a logarithmic encoding. Since
 the precision of the timestamp clock value is most valuable at low
 frequencies (long tick durations), the clock rate is encoded as a
 time duration. This results in full precision for common used
 timestamp clock tick durations, while allowing even higher
 frequencies at reduced precision (subnormal numbers representing very
 short tick durations). A format was chosen that resembles, but does
 not conform to, the format of an IEEE-754 binary16 representation.

 The timestamp clock values a host is using must not necessarily run
 synchronous with the internal TCP clock. Different clock sources,
 such as a NTP stratum, RTC, CPU cycle counters, or other independent
 clocks can be used to derive the TSval. This allows the de-coupling
 of the coarse-grained TCP clock used for retransmission and delayed
 ACK timeouts, from the clock frequency indicated in the TSval itself.
 Since [RFC1323] timestamp clocks used to be only useful for RTT
 measurement, and calculation of the RTO, the straight forward use of
 the TCP timer directly seemed natural to minimize subsequent RTT
 calculations.

 Most stacks will at first not be able to dynamically adjust their
 timestamp clock rate. Therefore, the indicated clock duration can be
 a static, compile time value. To use the indicated clock duration,
 for example to perform one-way delay variation calculations, simple
 integer operations can be used after an initial conversion of the
 wire presentation to longer (i.e. 32 or 64 bit) integer values.

5.1. Capability Flags

 In order to signal the supported capabilities, the TSecr value is
 overloaded with the following flags and fields during the initial
 <SYN> and <SYN,ACK> segments. The initiating host of a session with
 timestamp capability negotiation has to keep minimal state to decode
 the returned capabilities XOR’ed with the sent TSval.

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 12]

Internet-Draft Timestamp Negotiation May 2011

 Kind: 8

 Length: 10 bytes

 +-------+-------+---------------------+---------------------+
 |Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)|
 +-------+-------+---------------------+---------------------+
 1 1 4 | 4 |
 / |
 .-----------------------------------’ |
 / \
 | |
 +-+
 |E| | # | DUR | |
 |X|VER| MASK # RES |-------------------------------|
 |O| | # | EXP | FRAC |
 +-+

 Figure 2: Timestamp Capability flags

 Common fields to all versions:

 EXO - Extended Options (1 bit)
 Indicates that the sender supports extended timestamp
 capabilities as defined by this document, and MUST be set to
 one by a compliant implementation. This flag also enables
 the immediate echoing of the TSval with the next ACK, if both
 timestamp capabilities and selective acknowledgement
 [RFC2018] are successful negotiated during the initial
 handshake. This change in semantics is independent of the
 version in the signaled timestamp capabilities.

 VER - Version (2 bits)
 Version of the capabilities fields definition. This document
 specifies codepoint 0. With the exception of the immediate
 mirroring - simplifying the receiver side processing - and
 the masking of some LSB bits before performing the Protection
 Against Wrapped Sequence Numbers (PAWS) test, hosts must
 treat received timestamps as opaque entity and not use them
 as inputs into advanced heuristics, if the version is not
 supported. The lower 3 octets of the timestamp capability
 flags MUST be ignored if an unsupported version is received.
 It is expected, that a host will implement at least version
 0. A receiver MUST respond with the appropriate (equal or
 version 0) version when responding to a new session request.

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 13]

Internet-Draft Timestamp Negotiation May 2011

 MASK - Mask Timestamps (5 bits)
 The MASK field indicates how many least significant bits
 should be excluded by the receiver, before further processing
 the timestamp (i.e. PAWS, of for timing purposes). The
 unmasked portion of a TSval has to comply with the
 constraints imposed by [RFC1323] on the generation of valid
 timestamps, e.g. must be monotonic increasing between
 segments, and strict monotonic increasing for each window.
 Note that this does not impact the reflected timestamp in any
 way - TSecr will always be equal to an appropriate TSval.
 This field MUST be present in all future version of timestamp
 capability fields. A value of 31 (all bits set) MUST be
 interpreted by a receiver that the full TSval is opaque. For
 PAWS to be effective, at least 2 bits are required to
 discriminate between an increase (and roll-over) versus
 outdated segments.

 Version 0 specific fields:

 RES - Reserved (8 bits)
 Reserved for future use, and MUST be zero ("0") with version
 0. If timestamp capabilities are received with version set
 to 0, but some of these bits set, the receiver MUST ignore
 the extended options field and react as if the TSecr was zero
 (compatibility mode).

 DUR - Duration (16 bits)
 The timestamp clock tick duration, measured in seconds. This
 is a binary floating point value, indicating the length
 between two timestamp clock ticks. A value of zero (both
 exponent and fraction set to zero) is supported and
 indicates, that the timestamp values are NOT linear related
 to wall-clock time (i.e. the sender may perform some form of
 segment counting or sequence number extension instead). A
 host receiving a duration of zero from the other end host
 MUST NOT perform time-based heuristics which take the
 received TSval into account. The special floating point
 numbers infinity and not-a-number (NaN), where all exponent
 bits are set, are not supported.
 Timestamp clock periods faster than 1 ms SHOULD be
 implemented by inserting the timestamp "late" before
 transmitting a segment to avoid unnecessary timing jitter.
 Shortest clock periods, with periods of only a few
 microseconds or less, are provided for hardware-assisted
 implementations.
 The range of possible values runs from 15.99 s to 7.45 ns
 with highest precision, and down to 3.64 ps with reducing
 precision, which is also the shortest difference in tick

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 14]

Internet-Draft Timestamp Negotiation May 2011

 duration, that could be resolved. This equates to clock
 frequencies of 0.06 Hz, 134 MHz and 275 GHz respectively.
 Despite the provision of such a large dynamic range, a
 receiver should consider, that a timestamp clock may deviate
 from the indicated rate by a large fraction.

 EXP - Exponent (5 bits)
 The exponent component of the binary floating point number
 indicating the timestamp tick duration. The exponent bias is
 28. Subnormal numbers (lower precision), where the exponent
 is set to zero, extend the lowest possible value
 representation to 2^-39 s (or 3.64 ps) at reduced precision.
 An exponent value of 31 MUST be treated as normal exponent.
 This allows timestamp clock ticks of up to 15.99 s.
 Note that this representation is not identical to the
 binary16 definition in IEEE 754-2008, and can not be
 processed as-is in a standard floating point library. See
 Section 6.1 for details.

 FRAC - Fraction (11 bits)
 The fraction component of a binary floating point number
 indicating the timestamp tick duration. The range with the
 highest resolution, excluding subnormal numbers, covers clock
 periods between 7.45 ns (or 134 MHz clock frequency) and
 15.99 s (0.06 Hz). The field has an implicit lead bit with
 value 1 unless the exponent field is stored with all zeros.

 Example for an timestamp capability negotiation, to indicate that the
 senders timestamp clock (tcp clock) is running with 1 ms per tick:

 SYN, TSopt=<X>, TSecr=EXO|MASK|EXP=18|FRAC=0x031

 The clock rate calculates as 2^(18-28)*1.00000110001b, thus indicates
 an actual clock rate of 999.93 us

5.2. Implicit extended negotiation

 If both Timestamp capabilities and Selective Acknowledgement options
 [RFC2018] are negotiated (both hosts send these options in their
 respective segments), both hosts MUST echo the timestamp value of the
 last received segment, irrespective of the order of delivery. Note
 that this is in conflict with [RFC1323], where only the timestamp of
 the last segment received in sequence is mirrored. As SACK allows
 discrimination of reordered or lost segments, the reflected
 timestamps are not required to convey the most conservative
 information. If SACK indicates lost or reordered packets at the
 receiver, the sender MUST take appropriate action such as ignoring
 the received timestamps for calculating the round trip time, or

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 15]

Internet-Draft Timestamp Negotiation May 2011

 assuming a delayed packet (with appropriate handling). The exact
 implications are beyond the scope of this document.

 The immediate echoing of the last received timestamp value allowed by
 the synergistic use of the timestamp option with the SACK option
 enables enhancements to improve loss recovery, round trip time (RTT)
 and one-way delay (OWD) variation measurements (see Section 6) even
 during loss or reordering episodes. This is enabled by removing any
 retransmission ambiguity using unique timestamps for every
 retransmission, while simultaneously the SACK option indicates the
 ordering of received segments even in the presence of ACK loss or
 reordering.

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 16]

Internet-Draft Timestamp Negotiation May 2011

6. Possible use cases

6.1. One-way delay variation measurement

 New congestion control algorithms are currently proposed, that react
 on the measured one-way delay variation (i.e.
 [I-D.ietf-ledbat-congestion], [Chirp]). This control variable is
 updated after each received ACK:

 C(t) = TSval(t) - TSecr(t)

 V(t) = C(t) - C(t-1)

 provided that the timestamp clock rates at both ends are running at
 roughly the same rate. Without prior knowledge of the timestamp
 clock rate used by the partner, a sender can try to learn this rate
 by observing the exchanged segments for a duration of a few RTTs.
 However, such a scheme fails if the partner uses some form of
 implicit integrity check of the timestamp values, which would appear
 as either random scrambling of LSB bits in the timestamp, or give the
 impression of a much higher clock rate than what is actually used.
 If the partner uses some form of segment counting as timestamp value,
 without any direct relationship to the wall-clock time, the above
 formula will fail to yield meaningful results. Finally the network
 conditions need to remain stable during any such training phase, so
 that the sender can arrive at reasonable estimates of the partners
 timestamp clock rate.

 This note addresses these concerns by providing a means by which both
 host are required to use a timestamp clock that is closely related to
 the wall-clock time, with known clock rate, and also provides means
 by which a host can signal the use of a few LSB bits for timestamp
 value integrity checks. To arrive at a valid one-way delay (OWD)
 variation, first the timestamp received from the partner has to be
 right-shifted by a known amount of bits as defined by the mask field.
 Next the local and remote timestamp values need to be normalized to a
 common base clock rate (typically, the local clock rate):

 remote clock rate
 C = (TSecr >> local mask) - (TSval >> remote mask) * -----------------
 t local clock rate

 V(t) = C(t) - C(t-1)

 The adjustment factor can be calculated once during the timestamp
 capability negotiation phase, and pure integer arithmetic can be used
 during per-segment processing:

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 17]

Internet-Draft Timestamp Negotiation May 2011

 EXP.min = min(EXP.loc, EXP.rem)

 EXP.rem -= EXP.min

 EXP.loc -= EXP.min

 FRAC.rem = (0x800 | FRAC.rem) << EXP.rem

 FRAC.loc = (0x800 | FRAC.loc) << EXP.loc

 and assuming that the local clock rate (tick duration) is lower

 ADJ = FRAC.rem / FRAC.loc

 with ADJ being a integer variable. For higher precision, two
 appropriately calculated integers can be used.

 Any previously required training on the remote clock rate can be
 removed, resulting in a simpler and more dependable algorithm.
 Furthermore, transient network effects during the training phase
 which may result in a wrong inference of the remote clock rate are
 eliminated completely.

6.2. Early spurious retransmit detection

 Using the provided timestamp negotiation scheme, clients utilizing
 slow running timestamp clocks can set aside a small number of least
 significant bits in the timestamps. These bits can be used to
 differentiate between original and retransmitted segments, even
 within the same timestamp clock tick (i.e. when RTT is smaller than
 the TCP timestamp clock rate). It is recommended to use only a
 single bit (mask = 1), unless the sender can also perform lost
 retransmission detection. Using more than 2 bits for this purpose is
 discouraged due to the diminishing probability of loosing
 retransmitted packets more than one time. A simple scheme could send
 out normal data segments with the so masked bits all cleared. Each
 advance of the timestamp clock also clears those bits again. When a
 segment is retransmitted without the timestamp clock increasing,
 these bits increased by one for each consecutive retry of the same
 segment, until the maximum value is reached. Newly sent segments
 (during the same clock interval) should maintain these bits, in order
 to maintain monotonically increasing values, even though compliant
 end hosts do not require this property. This scheme maintains
 monotonically increasing timestamp values - including the masked
 bits. Even without negotiating the immediate mirroring of timestamps
 (done by simultaneously doing timestamp capabilities negotiation, and
 selective acknowledgments), this extends the use of the Eifel
 Detection [RFC3522] and Eifel Response [RFC4015] algorithm to detect

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 18]

Internet-Draft Timestamp Negotiation May 2011

 and react to spurious retransmissions under all circumstances. Also,
 currently experimental schemes such as ER-SRTO [Cho08] could be
 deployed without requiring the receiver to explicitly support that
 capability.

 Seg0 Seg1 Seg2 Seg3 Seg4
 TS00 TS00 TS00 TS00 TS00
 X

 Seg1 Seg5
 TS01 TS01

 Seg6 Seg7
 TS01 TS10

 Figure 3: timestamp for spurious retranmit detection

 Masked bits are the 2nd digit, the timestamp value is represented by
 the first digit. The timestamp clock "ticks" between segment 6 and
 7.

6.3. Early lost retransmission detection

 During phases where multiple segments in short succession (but not
 necessarily successive segments) are lost, there is a high likelihood
 that at least one segment is retransmitted, while the cause of loss
 (i.e. congestion, fading) is still persisting. The best current
 algorithms can recover such a lost retransmission with a few
 constraints, for example, that the session has to have at least
 DupThresh more segments to send beyond the current recovery phase.
 During loss recovery, when a retransmission is lost again, currently
 the timestamp can also not be used as means of conveying additional
 information, to allow more rapid loss recovery while maintaining
 packet conservation principles. Only the timestamp of the last
 segment preceding the continuous loss will be reflected. Using the
 extended timestamp option negotiation together with selective
 acknowledgements, the receiver will immediately reflect the timestamp
 of the last seen segment. Using both SACK and TS information
 synergistically, a sender can infer the exact order in which original
 and retransmitted segments are received. This allows a slightly less
 conservative and faster approach to retransmit lost retransmitted
 segments.

 This can be implemented in combination with the masked bit approach
 described in the previous paragraph, or without. However, if the
 timestamp clock rate is lower than 1/2 RTT, both the original and the
 retransmitted segment may carry an identical timestamp. If the

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 19]

Internet-Draft Timestamp Negotiation May 2011

 sender cannot discriminate between the original and the retransmitted
 segments, is MUST refrain from taking any action before such a
 determination can be made.

 In this example, masked bits are used, with a simple marking method.
 As the timestamp value of the retransmission itself is already
 different from the original segments, such an additional
 discrimination would not strictly be required here. The timestamp
 clock ticks in the first digit and the dupthresh value is 3.

 Seg0 Seg1 Seg2 Seg3 Seg4 Seg5 Seg6 Seg7
 TS00 TS10 TS10 TS10 TS10 TS10 TS10 TS20
 X X X *

 Seg1 Seg2 Seg3 Seg4
 TS21 TS30 TS30 TS30
 X

 Seg1 Seg8 Seg9
 TS31 TS31 TS40

 Figure 4: timestamp under loss

 If Seg1,TS00 is lost twice, and Seg4,TS10 is also lost, the sender
 could resend Seg1 once more after seeing dupthresh number of segments
 sent after the first retransmission of Seg1 being received (ie, when
 Seg4 is SACKed). However, there is a ambiguity between retransmitted
 segments and original segments, as the sender cannot know, if a SACK
 for one particular segment was due to the retransmitted segment, or a
 delayed original segment. The timestamp value will not help in this
 case, as per RFC1323 it will be held at TS00 for the entire loss
 recovery episode. Therefore, currently a sender has to assume that
 any SACKed segments may be due to delayed original sent segments, and
 can only resolve this conflict by injecting additional, previously
 unsent segments. Once dupthresh newly injected segments are SACKed,
 continuous loss (and not further delay) of Seg1 can safely be
 assumed, and that segment be resent. This approach is conservative
 but constrained by the requirement that additional segments can be
 sent, and thereby delayed in the response.

 With the synergistic use of timestamp extended options together with
 selective acknowledgments, the receiver would immediately reflect
 back the timestamp of the last received segment. This allows the
 sender to discriminate between a SACK due to a delayed Seg4,TS10, or
 a SACK because of Seg4,TS30. Therefore, the appropriate decision
 (retransmission of Seg1 once more, or addressing the observed
 reordering/delay accordingly [I-D.blanton-tcp-reordering] can be
 taken with high confidence.

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 20]

Internet-Draft Timestamp Negotiation May 2011

6.4. Integrity of the Timestamp value

 If the timestamp is used for congestion control purposes, an
 incentive exists for malicious receivers to reflect tampered
 timestamps, as demonstrated with some exploits [CUBIC].

 One way to address this is to not use timestamp information directly,
 but to keep state in the sender for each sent segment, and track the
 round trip time independent of sent timestamps. Such an approach has
 the drawback, that it is not straightforward to make it work during
 loss recovery phases for those segments possibly lost (or reordered).
 In addition there is processing and memory overhead to maintain
 possibly extensive lists in the sender that need to be consulted with
 each ACK. Despite these drawbacks, this approach is currently
 implemented due to lack of alternatives (see [Linux], and [BSD10]).

 The preferred approach is that the sender MAY choose to protect
 timestamps from such modifications by including a fingerprint (secure
 hash of some kind) in some of the least significant bits. However,
 doing so prevents a receiver from using the timestamp for other
 purposes, unless the receiver has prior knowledge about this use of
 some bits in the timestamp value. Furthermore, strict monotonic
 increasing values are still to be maintained. That constraint
 restricts this approach somewhat and limits or inhibits the use of
 timestamp values for direct use by the receiver (i.e. for one-way
 delay variation measurement, as the hash bits would look like random
 noise in the delay measurement).

6.5. Disambiguation with slow Timestamp clock

 In addition, but somewhat orthogonal to maintaining timestamp value
 integrity, there is a use case when the sender does not support a
 timestamp clock rate that can guarantee unique timestamps for
 retransmitted segments. This may happen whenever the TCP timestamp
 clock rate is slower than the round-trip time of the path. For
 unambiguously identifying regular from retransmitted segments, the
 timestamp must be unique for otherwise identical segments. Reserving
 the least significant bits for this purpose allows senders with slow
 running timestamp clocks to make use of this feature. However,
 without modifying the receiver behavior, only limited benefits can be
 extracted from such an approach. Furthermore the use of this option
 has implications in the protection against wrapped sequence numbers
 (PAWS - [RFC1323]), as the more bits are set aside for tamper
 prevention, the faster the timestamp number space cycles.

 Using Timestamp capabilities to explicitly negotiate mask bits, and
 set aside a (low) number of least significant bits for the above
 listed purposes, allows a sender to use more reliable integrity

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 21]

Internet-Draft Timestamp Negotiation May 2011

 checks. These masked bits are not to be considered part of the
 timestamp value, for the purposes described in [RFC1323] (i.e. PAWS)
 and subsequent heuristics using timestamp values (i.e. Eifel
 Detection), thereby lifting the strict requirement of always
 monotonically increasing timestamp values. However, care should be
 taken to not mask too many bits, for the reasons outlined in
 [RFC1323]. Using a mask value higher than 8 is therefore
 discouraged.

 The reason for having 5 bits for the mask field nevertheless is to
 allow the implementation of this protocol in conjunction with TCP
 cookie transaction (TCPCT) extended timestamps [RFC6013]. That
 allows for nearly a quarter of a 128 bit timestamp to be set aside.

6.6. Opaque timestamps as segment digest

 After making TCP alternate checksums historic ([RFC6247]), there
 still remains a need to address increased corruption probabilities
 when segment sizes are increased (see
 [I-D.ietf-tcpm-anumita-tcp-stronger-checksum]).

 Utilizing an all-opaque TSval field allows the sender to include a
 stronger CRC32, with semantics independent of the fixed TCP header
 fields. However, such a use would again exclude the use of PAWS on
 the receiver side, and a receiver would need to know the specifics of
 the digest for processing. It is assumed, that such a digest would
 only cover the data payload of a TCP segment. In order to allow
 disambiguation of retransmissions, a special TSval can be defined
 (e.g. TSval=0) which bypasses regular CRC processing but allows the
 identification of retransmitted segments.

 The full semantics of such a data-only CRC scheme are beyond the
 scope of this document, but would require a different version of the
 timestamp capability. Nevertheless, allowing the full TSval to
 remain unprocessed by the receiver for the purpose of PAWS even in
 version 0 could still allow the successful negotiation of sender-side
 enhancements such as loss recovery improvements (see Section 6.2, and
 Section 6.3).

 In effect, the masked portion of the timestamp values represent an
 unreliable out of band signal channel, that could also be used for
 other purposes than solely performing timestamp integrity checks (for
 example, this would allow ER-SRTO algorithms [Cho08]).

6.7. Timestamp value as covert channel

 Covert channels SHOULD NOT be implemented by using the mask field, as
 the explicit masking clearly points to such a channel. As the

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 22]

Internet-Draft Timestamp Negotiation May 2011

 regular operation of the timestamp clock is still maintained, covert
 channels working by artificially delaying data segments in an
 application (and thereby influencing the timestamp inserted into the
 segment) work unaffected. The received TSval would need to be
 shifted by the appropriate number of bits, before extracting the data
 from the covert channel by the receiver.

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 23]

Internet-Draft Timestamp Negotiation May 2011

7. Discussion

 RTT and OWD variation during loss episodes is not deeply researched.
 Current heuristics ([RFC1122], [RFC1323], Karn’s algorithm [RFC2988])
 explicitly exclude (and prevent) the use of RTT samples when loss
 occurs. However, solving the retransmission ambiguity problem - and
 the related reliable ACK delivery problem - would enable new
 functionality to improve TCP processing. Also, having an immediate
 echo of the last received timestamp value would enable new research
 to distinguish between corruption loss (assumed to have no RTT / OWD
 impact) and congestion loss (assumed to have RTT / OWD impact).
 Research into this field appears to be rather neglected, especially
 when it comes to large scale, public internet investigations. Due to
 the very nature of this, passive investigations without signals
 contained within the headers are only of limited use in empirical
 research.

 Retransmission ambiguity detection during loss recovery would allow
 an additional level of loss recovery control without reverting to
 timer-based methods. As with the deployment of SACK, separating
 "what" to send from "when" to send it could be driven one step
 further. In particular, less conservative loss recovery schemes
 which do not trade principles of packet conservation against
 timeliness, require a reliable way of prompt and best possible
 feedback from the receiver about any delivered segment and their
 ordering. [RFC2018] SACK alone goes quite a long way, but using
 timestamp information in addition could remove any ambiguity.
 However, the current specs in [RFC1323] make that use impossible,
 thus a modified semantic (receiver behavior) is a necessity.

 A synergistic signaling with immediate timestamp value echoes would
 however break legacy, per-packet RTT measurements. The reason is,
 that delayed ACKs would not be covered. Research has shown, that
 per-packet updates of the RTT estimation (for the purpose of
 calculating a reasonable RTO value) are only of limited benefit (see
 [Path99], and [PH04]). This is the most serious implication of the
 proposed synergistic signaling scheme with directly echoing the
 timestamp value of the segment triggering the ACK. Even when using
 the directly reflected timestamp values in an unmodified RTT
 estimator, the immediate impact would be limited to causing premature
 RTOs when the sending rate suddenly drops below two segments per RTT.
 That is, assuming the receiver implements delayed ACK and sending one
 ACK for every other data segment received. If the receiver has
 D-SACK [RFC2883] enabled, such premature RTOs can be detected and
 mitigated by the sender (for example, by increasing minRTO for low
 bandwidth flows).

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 24]

Internet-Draft Timestamp Negotiation May 2011

8. Acknowledgements

 The authors would like to thank Dragana Damjanovic for some initial
 thoughts around Timestamps and their extended potential use.

 The editor would like to thank Bob Briscoe for his insightful
 comments, and the gratuitous donation of text, that have resulted in
 a substantially improved document.

9. Updates to Existing RFCs

 Care has been taken to make sure the updates in this specification
 can be deployed incrementally.

 Updates to existing [RFC1323] implementations are only REQUIRED if
 they do not clear the TSecr value in the initial <SYN> segment. This
 is a misinterpretation of [RFC1323] and may leak data anyway (see
 [I-D.ietf-tcpm-tcp-security]). Otherwise, there will be no need to
 update an RFC1323-compliant TCP stack unless the timestamp
 capabilities negotiation is to be used.

 Implementations compliant with the definitions in this document shall
 be prepared to encounter misbehaving senders, that don’t clear TSecr
 in their initial <SYN>. It is believed, that checking the reserved
 bits to be all zero provides enough protection against misbehaving
 senders.

10. IANA Considerations

 With this document, the IANA is requested to establish a new registry
 to record the timestamp capability flags defined with future versions
 (codepoints 1, 2 and 3).

 The lower 24 bits (3 octets) of the timestamp capabilities field may
 be freely assigned in future versions. The first octet must always
 contain the EXO, VER and MASK fields for compatibility, and the MASK
 field MUST be set to allow interoperation with a version 0 receiver.

 This document specifies version 0 and the use of the last three
 octets to signal the senders timestamp clock rate to the receiver.

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 25]

Internet-Draft Timestamp Negotiation May 2011

11. Security Considerations

 The algorithm presented in this paper shares security considerations
 with [RFC1323] (see [I-D.ietf-tcpm-tcp-security]).

 Some implementations address the vulnerabilities of [RFC1323], by
 dedicating a few low-order bits of the timestamp fields for use with
 a (secure) hash, that protects against malicious modification of
 TSecr value by the receiver. A MASK field has been provided to
 transparently notify the receiver about that alternate use of low-
 order bits. This allows the use of timestamps for purposes requiring
 higher integrity and security while maintaining transparency to the
 receiver.

12. References

12.1. Normative References

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

12.2. Informative References

 [BSD10] Hayes, D., "Timing enhancements to the FreeBSD kernel to
 support delay and rate based TCP mechanisms", Feb 2010, <h
 ttp://caia.swin.edu.au/reports/100219A/
 CAIA-TR-100219A.pdf>.

 [CUBIC] Rhee, I., Ha, S., and L. Xu, "CUBIC: A New TCP-Friendly
 High-Speed TCP Variant", Feb 2005, <http://
 citeseerx.ist.psu.edu/viewdoc/
 download?doi=10.1.1.153.3152&rep=rep1&type=pdf>.

 [Chirp] Kuehlewind, M. and B. Briscoe, "Chirping for Congestion
 Control - Implementation Feasibility", Nov 2010, <http://
 bobbriscoe.net/projects/netsvc_i-f/chirp_pfldnet10.pdf>.

 [Cho08] Cho, I., Han, J., and J. Lee, "Enhanced Response Algorithm
 for Spurious TCP Timeout (ER-SRTO)", Jan 2008, <http://
 ubinet.yonsei.ac.kr/v2/publication/hpmn_papaers/ic/
 2008_Enhanced%20Response%20Algorithm%20for%20Spurious%

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 26]

Internet-Draft Timestamp Negotiation May 2011

 20TCP.pdf>.

 [I-D.blanton-tcp-reordering]
 Blanton, E., Dimond, R., and M. Allman, "Practices for TCP
 Senders in the Face of Segment Reordering",
 draft-blanton-tcp-reordering-00 (work in progress),
 February 2003.

 [I-D.ietf-ledbat-congestion]
 Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)",
 draft-ietf-ledbat-congestion-05 (work in progress),
 May 2011.

 [I-D.ietf-tcpm-anumita-tcp-stronger-checksum]
 Biswas, A., "Support for Stronger Error Detection Codes in
 TCP for Jumbo Frames",
 draft-ietf-tcpm-anumita-tcp-stronger-checksum-00 (work in
 progress), May 2010.

 [I-D.ietf-tcpm-tcp-security]
 Gont, F., "Security Assessment of the Transmission Control
 Protocol (TCP)", draft-ietf-tcpm-tcp-security-02 (work in
 progress), January 2011.

 [Linux] Sarolahti, P., "Linux TCP", Apr 2007,
 <http://www.cs.clemson.edu/˜westall/853/linuxtcp.pdf>.

 [PH04] Eckstroem, H. and R. Ludwig, "The Peak-Hopper: A New End-
 to-End Retransmission Timer for Reliable Unicast
 Transport", Apr 2004, <citeseerx.ist.psu.edu/viewdoc/
 download?doi=10.1.1.76.2748&rep=rep1&type=pdf>.

 [Path99] Allman, M. and V. Paxson, "On Estimating End-to-End
 Network Path Properties", Sep 1999,
 <http://www.icir.org/mallman/papers/estimation.ps>.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

 [RFC2988] Paxson, V. and M. Allman, "Computing TCP’s Retransmission
 Timer", RFC 2988, November 2000.

 [RFC3522] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 27]

Internet-Draft Timestamp Negotiation May 2011

 for TCP", RFC 3522, April 2003.

 [RFC4015] Ludwig, R. and A. Gurtov, "The Eifel Response Algorithm
 for TCP", RFC 4015, February 2005.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, August 2007.

 [RFC6013] Simpson, W., "TCP Cookie Transactions (TCPCT)", RFC 6013,
 January 2011.

 [RFC6247] Eggert, L., "Moving the Undeployed TCP Extensions RFC
 1072, RFC 1106, RFC 1110, RFC 1145, RFC 1146, RFC 1379,
 RFC 1644, and RFC 1693 to Historic Status", RFC 6247,
 May 2011.

Appendix A. Possible Extension

 This section is not intended as normative description of an
 extension, but merely as an example of a possible extension. Future
 extensions MUST set the common fields in such a way that a receiver
 capable of version 0 only can react appropriately.

 Certain hosts may want to negotiate a common optimal timestamp clock
 rate between each other for various purposes. For example, the
 balance between PAWS ([RFC1323]) and the timestamp clock resolution
 should be more towards one or the other. Also, if a hosts wants to
 have identical timestamp clock rates both at the sender and receiver
 to simplify one-way delay variation calculation, negotiating the
 clock rate could be useful. With identical timestamp clock rates,
 instead of multiplications and divisions, only additions and
 subtractions are required for OWD variation calculation.

 Without a full three way handshake, full negotiation of the timestamp
 clock rate is not possible. For this reason, a special semantic is
 required during negotiation. This allows both ends know the exact
 timestamp clock rate with only two exchanged segments, while at the
 same time remaining compatible with version 0.

 For this purpose, the following extension (version 1) of this
 proposal is one suggestion. Depending on the exact requirements, a
 different signaling may be more appropriate. For example, only the
 two different EXP fields could be required, while a single, but
 higher precision FRAC field for both low and high boundaries could
 suffice, and some additional signaling bits could be made available.

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 28]

Internet-Draft Timestamp Negotiation May 2011

A.1. Capability Flags

 Kind: 8

 Length: 10 bytes

 +-------+-------+---------------------+---------------------+
 |Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)|
 +-------+-------+---------------------+---------------------+
 1 1 4 | 4 |
 / |
 .-----------------------------------’ |
 / \
 | |
 +-+
 |E| | # | | | |
 |X|VER| MASK # EXP12lo | FRAC12lo | EXP12hi | FRAC12hi |
 |O| | # | | | |
 +-+

 Figure 5: Timestamp Capability enhanced flags

 The following additional fields are defined:

 VER - version (2 bits)
 Version 1 could indicated that the sender is capable of adjusting
 the timestamp clock rate within the bounds of the two 12 bit
 fields (see Appendix A.2). A receiver that only implements
 version 0 SHOULD NOT ignore the timestamp capability negotiation
 entirely when encountering an unsupported version, any SHOULD
 respond with a version 0 response nevertheless (see below) -
 thereby enabling enhanced uses of the timestamp value and the
 modification of the receiver side timestamp processing.

 EXP12lo and

 EXP12hi - binary12 Exponent (5 bits each)
 The exponent component of a truncated, 12 bit floating point
 number indicating the possible timestamp clock ranges. The
 exponent bias is also 28, and no special numbers (infinity, NaN)
 are allowed. The exponent value 31 is treated like any other
 exponent value.

 FRAC12lo and

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 29]

Internet-Draft Timestamp Negotiation May 2011

 FRAC12hi - binary12 Fraction (7 bits each)
 The fraction component of a 12 bit floating point number.
 Subnormal numbers are allowed (Exponent value 0). This allows a
 range between 7.45 ns and 15.99 s with full resolution (lower
 bound is 0.06 ns using subnormal values). As a value of zero
 (both exponent and fraction set to zero) has a special meaning,
 it is not a valid number for range negotiation.

A.2. Range Negotiation

 Only the host initiating a TCP session MAY offer a timestamp clock
 range, while the receiver SHOULD select a timestamp clock within
 these bounds. If the receiver can not adjust it’s timestamp clock to
 match the range, it MAY use a timestamp clock rate outside these
 bounds. If the receiver indicated a timestamp clock rate within the
 indicated bounds, the sender MUST set it’s timestamp clock rate to
 the negotiated rate. If the receiver uses a timestamp clock rate
 outside the indicated bounds, the sender MUST set the local timestamp
 clock rate to the value indicated by the closer boundary.

 The following example sequence is provided to demonstrate how
 timestamp clock range negotiation works. Both sender and receiver
 finally know the clock rate of their respective partner.

 SYN, TSopt=<X>, TSecr=EXO|VER=1|MASK|12bit-lo=1ms|12bit-hi=100ms

 SYN,ACK, TSopt=<Y>, TSecr=<X>^EXO|VER=0|MASK|16bit=10ms

 In this example, both hosts would run their respective timestamp
 clocks with a resolution of 10 ms.

 SYN, TSopt=<X>, TSecr=EXO|VER=1|MASK|12bit-lo=1ms|12bit-hi=100ms

 SYN,ACK, TSopt=<Y>, TSecr=<X>^EXO|VER=0|MASK|16bit=1000ms

 In this example, the sender would set the timestamp clock rate to a
 resolution of 100 ms (closer to the receivers clock rate of 1 sec),
 while the receiver will have a timestamp clock rate running at 1 sec.

 SYN, TSopt=<X>, TSecr=EXO|VER=1|MASK|12bit-lo=1ms|12bit-hi=100ms

 SYN,ACK, TSopt=<Y>, TSecr=<X>^EXO|VER=0|MASK|16bit=100us

 In this example, the sender would set the timestamp clock rate to a
 resolution of 10 ms (closest to the receiver’s clock rate of 100 us),
 while the receiver will have the timestamp clock running at 100 us.

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 30]

Internet-Draft Timestamp Negotiation May 2011

Appendix B. Revision history

 00 ... initial draft, early submission to meet deadline.

 01 ... refined draft, focusing only on those capabilities that have
 an immediate use case. Also excluding flags that can be substituted
 by other means (MIR - synergistic with SACK option only, RNG moved to
 appendix A, BIA removed and the exponent bias set to a fixed value.
 Also extended other paragraphs.

 02 ... updated document after IETF80 - referrals to "timestamp
 options" were seen to be ambiguous with "timestamp option", and
 therefore replaced by "timestamp capabilities". Also, the document
 was reworked to better align with RFC4101. Removed SGN and increased
 FRAC to allow higher precision.

Authors’ Addresses

 Richard Scheffenegger
 NetApp, Inc.
 Am Euro Platz 2
 Vienna, 1120
 Austria

 Phone: +43 1 3676811 3146
 Email: rs@netapp.com

 Mirja Kuehlewind
 University of Stuttgart
 Pfaffenwaldring 47
 Stuttgart 70569
 Germany

 Email: mirja.kuehlewind@ikr.uni-stuttgart.de

Scheffenegger & Kuehlewind Expires November 29, 2011 [Page 31]

