
Transport Area Working Group J. Saldana
Internet-Draft J. Fernandez Navajas
Intended status: Standards Track J. Ruiz Mas
Expires: March 4, 2018 University of Zaragoza
 August 31, 2017

 Simplemux. A generic multiplexing protocol
 draft-saldana-tsvwg-simplemux-08

Abstract

 The high amount of small packets present in nowaday’s networks
 results in a low efficiency, as the size of the headers and the
 payload of these packets can be in the same order of magnitude. In
 some situations, multiplexing a number of small packets into a bigger
 one is desirable in order to improve the efficiency. For example, a
 number of small packets can be sent together between a pair of
 machines if they share a common network path. Thus, the traffic
 profile can be shifted from small to larger packets, reducing the
 network overhead and the number of packets per second to be managed
 by intermediate routers.

 This document describes Simplemux, a protocol able to encapsulate a
 number of packets belonging to different protocols into a single
 packet. Small headers (separators) are added at the beginning of
 each multiplexed packet, including some flags, the packet length and
 a "Protocol" field. This allows the inclusion of a number of packets
 belonging to different protocols (the "multiplexed packets") on a
 packet of another protocol (the "tunneling protocol").

 In order to reduce the overhead, the size of the multiplexing headers
 is kept very low (it may be a single byte when multiplexing small
 packets).

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Saldana, et al. Expires March 4, 2018 [Page 1]

Internet-Draft Simplemux August 2017

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 4, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 3
 1.2. Existing multiplexing protocols 3
 1.3. Benefits of multiplexing 5
 2. Description of the scenario 6
 3. Protocol description . 6
 4. Acknowledgements . 13
 5. IANA Considerations . 13
 6. Security Considerations 13
 7. References . 13
 7.1. Normative References 13
 7.2. Informative References 14
 Authors’ Addresses . 14

1. Introduction

 The high amount of small packets present in nowaday’s networks
 results in a low efficiency, when the size of the headers and the
 payload are in the same order of magnitude. In some situations,
 multiplexing a number of small packets into a bigger one is desirable
 in order to improve the efficiency. For example, a number of small
 packets can be sent together between a pair of machines if they share
 a common network path. Thus, the traffic profile can be shifted from
 small to larger packets, thus reducing the network overhead and the
 number of packets per second to be managed by intermediate routers.

 This document describes Simplemux, a protocol able to encapsulate a
 number of packets belonging to different protocols into a single

Saldana, et al. Expires March 4, 2018 [Page 2]

Internet-Draft Simplemux August 2017

 packet. This can be useful e.g. for grouping small packets and thus
 reducing the number of packets per second in a network.

 Simplemux is a generic multiplexing protocol, i.e. it can be used to
 aggregate a number of packets belonging to a protocol, on a single
 packet belonging to other (or the same) protocol. Thus, in this
 document we will talk about the "multiplexed" protocol, and the
 "tunneling" protocol, being Simplemux the "multiplexing" protocol.
 The "external header" will be the one of the "tunneling" protocol
 (see the figure (Figure 1))

 +--------------------------------+
 | Multiplexed Packet | Multiplexed protocol
 +--------------------------------+
 | Simplemux | Multiplexing protocol
 +--------------------------------+
 | Tunneling header | Tunneling protocol
 +--------------------------------+

 Figure 1

 As an example, if a number of small IPv6 packets have to travel over
 an IPv4 network, they can be multiplexed and put into a single IPv4
 packet. In this case, IPv4 is the "tunneling" protocol and IPv6 is
 the "multiplexed" protocol. The IPv4 header is called in this case
 the "tunneling" or the "external" header. The simplified scheme of
 this packet would be:

 |IPv4 hdr||Simplemux hdr|IPv6 packet||Simplemux hdr|IPv6 packet||...|

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Existing multiplexing protocols

 Different multiplexing protocols have been approved by the IETF in
 the past:

 o TMux [RFC1692]

 TMux is able to combine multiple short transport segments,
 independent of application type, and send them between a server and
 host pair. As stated in the reference, "The TMux protocol is

Saldana, et al. Expires March 4, 2018 [Page 3]

Internet-Draft Simplemux August 2017

 intended to optimize the transmission of large numbers of small data
 packets. In particular, communication load is not measured only in
 bits per seconds but also in packets per seconds, and in many
 situation the latter is the true performance limit, not the former.
 The proposed multiplexing is aimed at alleviating this situation."

 A TMux message appears as:

 |IP hdr||TMux hdr|Transport segment||TMux hdr|Transport segment||...|

 Therefore, the Transport Segment is not an entire IP packet, since it
 does not include the IP header.

 TMux works "between a server and host pair," so it multiplexes a
 number of segments between the same pair of machines. However, there
 are scenarios where a number of low-efficiency flows share a common
 path, but they do not travel between the same pair of machines.

 o PPPMux [RFC3153]

 PPPMux "sends multiple PPP encapsulated packets in a single PPP
 frame. As a result, the PPP overhead per packet is reduced." Thus,
 it is able to multiplex complete IP packets, using separators.

 However, the use of PPPMux requires the use of PPP and L2TP in order
 to multiplex a number of packets together, as done in TCRTP
 [RFC4170]. Thus, it introduces more overhead and complexity.

 An IP packet including a number of them using PPPMux appears as:

 |IP hdr|L2TP hdr|PPP hdr||PPPMux hdr|packet||PPPMux hdr|packet||...|

 The scheme proposed by PPPMux is similar to the Compound-Frames of
 PPP LCP Extensions [RFC1570]. The key differences are that PPPMux is
 more efficient and that it allows concatenation of variable sized
 frames.

 The definition of a protocol able to multiplex complete packets,
 avoiding the need of other protocols as PPP is seen as convenient.
 The multiplexed packets can be of any kind, since a "Protocol Number"
 field can be added to each of them. Not all the packets multiplexed
 together must belong to the same protocol. The general scheme of
 Simplemux is:

 |tunnel hdr||Simplemux hdr|packet||Simplemux hdr|packet||...|

Saldana, et al. Expires March 4, 2018 [Page 4]

Internet-Draft Simplemux August 2017

 The Simplemux header includes the "Protocol Number" field, so it
 permits the multiplexing of different kinds of packets in the same
 bundle.

 We will also refer to the Simplemux header with the terms
 "separator," "Simplemux separator" or "mux separator". In the
 figures we will also use the abbreviation "Smux".

 When applied to IP packets, the scheme of a multiplexed packet
 becomes:

 |tunnel hdr||Simplemux hdr|IP packet||Simplemux hdr|IP packet||...|

1.3. Benefits of multiplexing

 The benefits of multiplexing are:

 - Tunneling a number of packets together. If a number of packets
 have to be tunneled through a network segment, they can be
 multiplexed and then sent together using a single external header.
 This will avoid the need for adding a tunneling header to each of the
 packets, thus reducing the overhead.

 - Reduction of the amount of packets per second in the network. It
 is desirable for two main reasons: first, network equipment has a
 limitation in terms of the number of packets per second it can
 manage, i.e. many devices are not able to send small packets back to
 back due to processing delay.

 - Bandwidth reduction. The presence of high rates of tiny packets
 translates into an inefficient usage of network resources, so there
 is a need for mechanisms able to reduce the overhead introduced by
 low-efficiency flows. When combined with header compression, as done
 in TCRTP [RFC4170] multiplexing may produce significant bandwidth
 savings, which are interesting for network operators, since they may
 alleviate the traffic load in their networks.

 - Energy savings: a lower amount of packets per second will reduce
 energy consumption in network equipment since, according to [Bolla],
 internal packet processing engines and switching fabric require 60%
 and 18% of the power consumption of high-end routers respectively.
 Thus, reducing the number of packets to be managed and switched will
 reduce the overall energy consumption. The measurements deployed in
 [Chabarek]on commercial routers corroborate this. A study using
 different packet sizes was presented, and the tests with big packets
 showed that energy consumption gets reduced, since a non-negligible
 amount of energy is associated to header processing tasks, and not
 only to the sending of the packet itself.

Saldana, et al. Expires March 4, 2018 [Page 5]

Internet-Draft Simplemux August 2017

2. Description of the scenario

 Simplemux works between a pair of machines. It creates a tunnel
 between an "ingress" and an "egress". They MAY be the endpoints of
 the communication, but they MAY also be middleboxes able to multiplex
 packets belonging to different flows. Different mechanisms MAY be
 used in order to classify flows according to some criteria (sharing a
 common path, kind of service, etc.) and to select the flows to be
 multiplexed and sent to the egress (see Figure 2).

 +-------+
 | | +---------+ +---------+
 | | ---> |Simplemux| _ _ |Simplemux| -->
 |classif| ---> | ingress | ===> (‘)_ ===> | egress | -->
 | | +---------+ (Network ‘) +---------+
 | | --------------------> (_ (_ . _) _) ----------------->
 +-------+
 <--------Simplemux-------->

 Figure 2

3. Protocol description

 A Simplemux packet consists of:

 - An external header that is used as the tunneling header for the
 whole packet.

 - A series of pairs "Simplemux header" + "packet" of the multiplexed
 protocol.

 This is the scheme of a Simplemux packet:

 |tun hdr||Simplemux hdr|packet||Simplemux hdr|packet||...|

 The Simplemux header has two different forms: one for the "First
 Simplemux header," and another one for the rest of the Simplemux
 headers (called "Non-first Simplemux headers"):

 o First Simplemux header (after the tunneling header, and before the
 first multiplexed packet):

 In order to allow the multiplexing of packets of any length, the
 number of bytes expressing the length is variable, and a field called
 "Length Extension" (LXT, one bit) is used to flag if the current byte
 is the last one including length information. This is the structure
 of a First Simplemux header:

Saldana, et al. Expires March 4, 2018 [Page 6]

Internet-Draft Simplemux August 2017

 |SPB(1 bit)|LXT(1 bit)|length (6 bits)||LXT(1 bit)|length (7
 bits)||...||Protocol (8 bits)|

 - Single Protocol Bit (SPB, one bit) only appears in the first
 Simplemux header. It is set to 1 if all the multiplexed packets
 belong to the same protocol (in this case, the "Protocol" field will
 only appear in the first Simplemux header). It is set to 0 when each
 packet MAY belong to a different protocol.

 - Length Extension (LXT, one bit) is 0 if the current byte is the
 last byte where the length of the first packet is included, and 1 in
 other case.

 - Length (LEN, 6, 13, 20, etc. bits): This is the length of the
 multiplexed packet (in bytes), not including the length field. If
 the length of the multiplexed packet is less than 64 bytes (less than
 or equal to 63 bytes), the first LXT is set to 0 and the 6 bits of
 the length field are the length of the multiplexed packet. If the
 length of the multiplexed packet is equal or greater than 64 bytes,
 additional bytes are added. The first bit of each of the added bytes
 is the LXT. If LXT is set to 1, it means that there is an additional
 byte for expressing the length. This allows to multiplex packets of
 any length (see the next figures).

 - Protocol (8 bits) is the Protocol field of the multiplexed packet,
 according to IANA "Assigned Internet Protocol Numbers."

 As an example, a First Simplemux header before a packet smaller than
 64 (2^6) bytes would be 2 bytes long:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |S|L| | |
 |P|X| Length | Protocol |
 |B|T| (6 bits) | (8 bits) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ^
 0

 Figure 3

 A First Simplemux header before a packet with a length greater or
 equal to 64 bytes, and smaller than 8192 bytes (2^13) will be 3 bytes
 long:

Saldana, et al. Expires March 4, 2018 [Page 7]

Internet-Draft Simplemux August 2017

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 |S|L| |L| | |
 |P|X| Length 1 |X| Length 2 | Protocol |
 |B|T| (6 bits) |T| (7 bits) | (8 bits) |
 +-+
 ^ ^
 1 0

 Figure 4

 In this case, the length of the packet will be the number expressed
 by the concatenation of the bits of Length 1 - Length 2 (total 13
 bits). Length 1 includes the 6 most significant bits and Length 2
 the 7 less significant bits.

 A First Simplemux header before a packet with a length greater of
 equal to 8192 bytes, and smaller than 1048576 bytes (2^20) would be 4
 bytes long:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |S|L| |L| |L| | |
 |P|X| Length 1 |X| Length 2 |X| Length 3 | Protocol |
 |B|T| (6 bits) |T| (7 bits) |T| (7 bits) | (8 bits) |
 +-+
 ^ ^ ^
 1 1 0

 Figure 5

 In this case, the length of the packet will be the number expressed
 by the concatenation of the bits of Length 1 - Length 2 - Length 3
 (total 20 bits). Length 1 includes the 6 most significant bits and
 Length 3 the less 7 significant bits.

 More bytes can be added to the length if required, using the same
 scheme: 1 LXT byte plus 7 bits for expressing the length.

 o Subsequent (Non-first) Simplemux headers (before the other
 packets):

 The Non-first Simplemux headers also employ a format allowing the
 multiplexing of packets of any length, so the number of bytes
 expressing the length is variable, and the field Length Extension

Saldana, et al. Expires March 4, 2018 [Page 8]

Internet-Draft Simplemux August 2017

 (LXT, one bit) is used to flag if the current byte is the last one
 including length information. This is the structure of a Non-first
 Simplemux header:

 |LXT(1 bit)|length (7 bits)||LXT(1 bit)|length (7
 bits)||...||Protocol (8 bits, optional)|

 - Length Extension (LXT, one bit) is 0 if the current byte is the
 last byte where the length of the packet is included, and 1 in other
 case.

 - Length (LEN, 7, 14, 21, etc. bits): This is the length of the
 multiplexed packet (in bytes), not including the length field. If
 the length of the multiplexed packet is less than 128 bytes (less
 than or equal to 127 bytes), LXT is set to 0 and the 7 bits of the
 length field represent the length of the multiplexed packet. If the
 length of the multiplexed packet is greater than 127 bytes,
 additional bytes are added. The first bit of each of the added bytes
 is the LXT. If LXT is set to 1, it means that there is an additional
 byte for expressing the length. This allows to multiplex packets of
 any length (see the next figures).

 - Protocol (8 bits) is the Protocol field of the multiplexed packet,
 according to IANA "Assigned Internet Protocol Numbers". It only
 appears in Non-first headers if the Single Protocol Bit (SPB) of the
 First Simplemux header is set to 1.

 As an example, a Non-first Simplemux header before a packet smaller
 than 128 bytes, when the protocol bit has been set to 0 in the first
 header, would be 1 byte long:

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |L| |
 |X| Length |
 |T| (7 bits) |
 +-+-+-+-+-+-+-+-+
 ^
 0

 SPB = 0 in the first header

 Figure 6

 A Non-first Simplemux header before a packet witha a length greater
 or equal to 128 bytes, and smaller than 16384 (2^14), when the

Saldana, et al. Expires March 4, 2018 [Page 9]

Internet-Draft Simplemux August 2017

 protocol bit has been set to 0 in the first header, will be 2 bytes
 long:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |L| |L| |
 |X| Length 1 |X| Length 2 |
 |T| (7 bits) |T| (7 bits) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ^ ^
 1 0

 SPB = 0 in the first header

 Figure 7

 A Non-first Simplemux header before a packet with a length greater or
 equal to 16384 bytes, and smaller than 2097152 bytes (2^21), when the
 protocol bit has been set to 0 in the first header, will be 3 bytes
 long:

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 |L| |L| |L| |
 |X| Length 1 |X| Length 2 |X| Length 3 |
 |T| (7 bits) |T| (7 bits) |T| (7 bits) |
 +-+
 ^ ^ ^
 1 1 0

 SPB = 0 in the first header

 Figure 8

 In this case, the length of the packet will be the number expressed
 by the concatenation of the bits of Length 1 - Length 2 - Length 3
 (total 21 bits). Length 1 includes the 7 most significant bits and
 Length 3 the 7 less significant bits.

 More bytes can be added to the length if required, using the same
 scheme: 1 LXT byte plus 7 bits for expressing the length.

Saldana, et al. Expires March 4, 2018 [Page 10]

Internet-Draft Simplemux August 2017

 A Non-first Simplemux header before a packet smaller than 128 bytes,
 when the protocol bit has been set to 1 in the first header, will be
 2 bytes long:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |L| | |
 |X| Length | Protocol |
 |T| (7 bits) | (8 bits) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ^
 0

 SPB = 1 in the first header

 Figure 9

 A Non-first Simplemux header before a packet with a length greater or
 equal to 128 bytes, and smaller than 16384 (2^14), when the protocol
 bit has been set to 1 in the first header, will be 3 bytes long:

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 |L| |L| | |
 |X| Length 1 |X| Length 2 | Protocol |
 |T| (7 bits) |T| (7 bits) | (8 bits) |
 +-+
 ^ ^
 1 0

 SPB = 1 in the first header

 Figure 10

 A Non-first Simplemux header before a packet with a length greater of
 equal to 16384 bytes, and smaller than 2097152 bytes (2^21), when the
 protocol bit has been set to 1 in the first header, will be 4 bytes
 long:

Saldana, et al. Expires March 4, 2018 [Page 11]

Internet-Draft Simplemux August 2017

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |L| |L| |L| | |
 |X| Length 1 |X| Length 2 |X| Length 3 | Protocol |
 |T| (7 bits) |T| (7 bits) |T| (7 bits) | (8 bits) |
 +-+
 ^ ^ ^
 1 1 0

 SPB = 1 in the first header

 Figure 11

 In this case, the length of the packet will be the number expressed
 by the concatenation of the bits of Length 1 - Length 2 - Length 3
 (total 21 bits). Length 1 includes the 7 most significant bits and
 Length 3 the 7 less significant bits.

 More bytes can be added to the length if required, using the same
 scheme: 1 LXT byte plus 7 bits for expressing the length.

 These would be some examples of the whole bundles:

 Case 1: All the packets belong to the same protocol: The first
 Simplemux header would be 2 or 3 bytes (for usual packet sizes), and
 the other Simplemux headers would be 1 or 2 bytes. For small packets
 (< 128 bytes), the Simplemux header would only require one byte.

 |tun||1|0|len|Protocol|pkt||0|len|pkt||1|len|0|len|pkt||...|
 | | | |
 v v v v
 (6 bits) (7 bits) (14 bits)

 |tun||1|1|len|0|len|Protocol|pkt||0|len|pkt||1|len|0|len|pkt||...|
 | | | | |
 v v v v v
 (13 bits) (7 bits) (14 bits)

 Figure 12

 Case 2: Each packet may belong to a different protocol: All the
 Simplemux headers would be 2 or 3 bytes (for usual packet sizes).

Saldana, et al. Expires March 4, 2018 [Page 12]

Internet-Draft Simplemux August 2017

|tun||0|0|len|Prot|pkt||0|len|Prot|pkt||1|len|0|len|Prot|pkt||...|
 | | | |
 v v v v
 (6 bits) (7 bits) (14 bits)

|tun||0|1|len|0|len|Prot|pkt||0|len|Prot|pkt||1|len|0|len|Prot|pkt||...|
 | | | | |
 v v v v v
 (13 bits) (7 bits) (14 bits)

 Figure 13

4. Acknowledgements

 This work has been partially funded by the EU H2020 Wi-5 project
 (Grant Agreement no: 644262) and the Spanish Ministry of Economy and
 Competitiveness project TIN2015-64770-R, in cooperation with the
 European Regional Development Fund.

5. IANA Considerations

 A protocol number for Simplemux should be requested to IANA.

 As a provisional solution for IP networks, the ingress and the egress
 optimizers may agree on a UDP port, and use IP/UDP as the
 multiplexing protocol.

6. Security Considerations

7. References

7.1. Normative References

 [RFC1570] Simpson, W., Ed., "PPP LCP Extensions", RFC 1570,
 DOI 10.17487/RFC1570, January 1994, <https://www.rfc-
 editor.org/info/rfc1570>.

 [RFC1692] Cameron, P., Crocker, D., Cohen, D., and J. Postel,
 "Transport Multiplexing Protocol (TMux)", RFC 1692,
 DOI 10.17487/RFC1692, August 1994, <https://www.rfc-
 editor.org/info/rfc1692>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

Saldana, et al. Expires March 4, 2018 [Page 13]

Internet-Draft Simplemux August 2017

 [RFC3153] Pazhyannur, R., Ali, I., and C. Fox, "PPP Multiplexing",
 RFC 3153, DOI 10.17487/RFC3153, August 2001,
 <https://www.rfc-editor.org/info/rfc3153>.

 [RFC4170] Thompson, B., Koren, T., and D. Wing, "Tunneling
 Multiplexed Compressed RTP (TCRTP)", BCP 110, RFC 4170,
 DOI 10.17487/RFC4170, November 2005, <https://www.rfc-
 editor.org/info/rfc4170>.

7.2. Informative References

 [Bolla] Bolla, R., Bruschi, R., Davoli, F., and F. Cucchietti,
 "Energy Efficiency in the Future Internet: A Survey of
 Existing Approaches and Trends in Energy-Aware Fixed
 Network Infrastructures", IEEE Communications Surveys and
 Tutorials vol.13, no.2, pp.223,244, 2011.

 [Chabarek]
 Chabarek, J., Sommers, J., Barford, P., Estan, C., Tsiang,
 D., and S. Wright, "Power Awareness in Network Design and
 Routing", INFOCOM 2008. The 27th Conference on Computer
 Communications. IEEE pp.457,465, 2008.

Authors’ Addresses

 Jose Saldana
 University of Zaragoza
 Dpt. IEC Ada Byron Building
 Zaragoza 50018
 Spain

 Phone: +34 976 762 698
 Email: jsaldana@unizar.es

 Julian Fernandez Navajas
 University of Zaragoza
 Dpt. IEC Ada Byron Building
 Zaragoza 50018
 Spain

 Phone: +34 976 761 963
 Email: navajas@unizar.es

Saldana, et al. Expires March 4, 2018 [Page 14]

Internet-Draft Simplemux August 2017

 Jose Ruiz Mas
 University of Zaragoza
 Dpt. IEC Ada Byron Building
 Zaragoza 50018
 Spain

 Phone: +34 976 762 158
 Email: jruiz@unizar.es

Saldana, et al. Expires March 4, 2018 [Page 15]

