
MPTCP C. Paasch
Internet-Draft O. Bonaventure
Intended status: Experimental UCLouvain
Expires: August 15, 2014 February 11, 2014

 A generic control stream for Multipath TCP
 draft-paasch-mptcp-control-stream-00

Abstract

 Multipath TCP’s extensive use of TCP options to exchange control
 information consumes a significant part of the TCP option space.
 Extending MPTCP to add more control information into the session
 becomes cumbersome as the TCP option space is limited to 40 bytes.

 This draft introduces a control stream that allows to send control
 information as part of the subflow’s payload. The control stream is
 mapped into a separate sequence number space and uses a TLV-format
 for maximum extensibility. It is left to future documents to specify
 how the TLV-format might be used to exchange control information. As
 the control stream is sent as part of the subflow’s payload, it is
 not subject to the 40 bytes limitation of the TCP option space.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 15, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Paasch & Bonaventure Expires August 15, 2014 [Page 1]

Internet-Draft MPTCP Control Stream February 2014

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. The control stream . 3
 2.1. Window considerations 5
 3. Connection initiation . 5
 4. Starting a new subflow 8
 5. Examples of key negotiation through the control stream . . . 9
 5.1. Reusing the application’s TLS key 10
 5.2. TLS-like key exchange 10
 5.3. Tcpcrypt-like key exchange 10
 6. Other example use cases of the control stream 10
 6.1. Address signaling . 10
 7. Security Considerations 10
 8. Acknowledgments . 11
 9. Informative References 11
 Authors’ Addresses . 11

1. Introduction

 Multipath TCP [RFC6824] uses the TCP options to exchange control
 information between the communication hosts. [RFC6824] defines
 several new TCP options that are used during the three-way handshake
 and the data transfer. Using options is the standard method to
 extend the TCP protocol. Unfortunately, the maximum length of the
 TCP options field is 40 bytes. This severely limit the utilisation
 of options to exchange control information between communicating
 hosts. During the three-way handshake, the TCP options space is
 further limited by the other TCP options that are also included in
 the SYN and SYN+ACK segments. [RFC6824] did its best to minimize the
 size of the MP_CAPABLE option inside the SYN and SYN+ACK segments
 given the presence of other options (typically MSS, timestamp,
 selective acknowledgements and window scale). However, this has been
 at the cost of a reduced security due to the utilization of security
 keys that are too short.

 The security requirements for MPTCP ask for a strong authentication
 of additional subflows [RFC6181]. Given the restriction in the size
 of the MPTCP options, it seems very difficult to provide strong
 security by relying only on TCP options that cannot be longer than 40

Paasch & Bonaventure Expires August 15, 2014 [Page 2]

Internet-Draft MPTCP Control Stream February 2014

 bytes and are not exchanged reliably. Although a design to overcome
 these problems would probably be possible, it would add a lot of
 complexity to the protocol.

 Furthermore, today’s MPTCP control information is sent in an
 unreliable manner. This means that control information like MP_PRIO,
 ADD_ADDR or REMOVE_ADDRESS might get lost, resulting in potential
 suboptimal performance of Multipath TCP.

 In this document, we show that another design is possible. Instead
 of using only TCP options to exchange control information, we show
 how it is possible to define a control stream in parallel with the
 data stream that is used to exchange data over the established
 subflows. By using this control stream, two MPTCP hosts can reliably
 exchange control information without being restricted by TCP option
 space. The control stream can be used to exchange cryptographic
 material to authenticate the handshake of additional subflows or for
 any other purpose.

 Together with the control stream, we propose to modify the MPTCP-
 handshake so that no crypto information is exchanged within the TCP
 options. We suggest to use the control stream instead. Within the
 control stream, different key-negotiation schemes can be specified
 (e.g., reuse SSL-key, tcpcrypt-style, Diffie-Hellman,...)

 This document is structured as follows. First, we define how the
 control stream can be used within an MPTCP session. Section 3
 presents the modified MPTCP handshake of the initial subflow, while
 Section 4 specifies the handshake of additional subflows. Section 5
 gives some example use-cases for the key negotiation through the
 control stream. Finally, Section 6 gives another example on how to
 use the control stream to conduct the MPTCP session.

2. The control stream

 In contrast with SCTP [RFC4960], TCP and Multipath TCP [RFC6824] only
 support one data stream. SCTP uses chunks to allow the communicating
 hosts to exchange control information of almost unlimited size. As
 explained earlier, having a control stream in Multipath TCP would
 enable a reliable delivery of the control information without strict
 length limitations.

 This section defines a control stream that allows to exchange MPTCP
 control information of arbitrary length besides the regular data
 stream. The control stream holds data in a TLV-format and thus any
 type of data can be added to it. Further, the control stream
 provides a reliable and in-order delivery of the control data.

Paasch & Bonaventure Expires August 15, 2014 [Page 3]

Internet-Draft MPTCP Control Stream February 2014

 The control stream is sent within the payload of the TCP segments.
 This ensures a reliable delivery of the TLVs exchanged in the control
 stream. Further, a separate control-sequence number space is defined
 for the control stream to ensure in-order delivery of the control
 stream. The Initial Control stream Sequence Number (ICSN) is the
 same as the IDSN in the respective directions. A DSS-mapping is used
 within the TCP option space to signal the control stream sequence
 numbers as well as a control stream acknowledgement. This DSS-
 mapping option is the same as the one defined in [RFC6824]. To
 differentiate the control stream from the data stream, we use the
 last bit of the ’reserved’ field of the MPTCP DSS option. We call
 this bit the Stream (S) bit. When the DSS option is used to map
 regular data, this bit is set to 0. When the DSS option is used to
 map one TLV on the control stream, it is set to 1 (see Figure Figure
 1)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+----------------------+
 | Kind | Length |Subtype|(reserved)|S|F|m|M|a|A|
 +---------------+---------------+-------+----------------------+
 | Control ACK (4 or 8 octets, depending on flags) |
 +--+
 |Control sequence number (4 or 8 octets, depending on flags) |
 +--+
 | Subflow Sequence Number (4 octets) |
 +-------------------------------+------------------------------+
 |Control-Level Length (2 octets)| Checksum (2 octets) |
 +-------------------------------+------------------------------+

 The S bit of the ’reserved’ field is set to 1 when sending on the
 control stream.

 Figure 1

 The control information exchanged in the control stream is encoded by
 using a TLV format, where the type and length are 16-bit values.
 This allows for maximum extensibility and to use very long data
 within the control stream. The format of the TLV option is shown in
 Figure 2

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+----------------------+
 | Type | Length |
 +---------------+---------------+-------+----------------------+
 | Value (Length - 4) |
 +-------------------------------+------------------------------+

Paasch & Bonaventure Expires August 15, 2014 [Page 4]

Internet-Draft MPTCP Control Stream February 2014

 The TLV option format

 Figure 2

2.1. Window considerations

 MPTCP uses the receive-window to do flow-control at the receiver.
 The receive-window within MPTCP is being used at the data sequence
 level, however any segment sent on a subflow must obey to the last
 window-announcement received on this particular subflow with respect
 to the subflow-level sequence number.

 The control stream is no different with respect to this last point.
 The subflow-sequence numbers used for control stream data must fit
 within the window announced over this specific subflow. However, to
 avoid issues of receive-window handling at the control stream
 sequence number level, a host may never have more than one
 unacknowledged TLV-field in-flight. This effectively limits the
 amount of memory required to support the control-stream down to 64KB
 (the maximum size of a TLV-field).

 TCP uses the congestion-window to limit the amount of unacknowledged
 in-flight data within a TCP connection. The control stream must also
 obey to this limitation. As the control stream uses regular TCP
 sequence numbers, the congestion-window limitations apply too.

3. Connection initiation

 The control stream allows to negotiate the crypto material to
 authenticate new subflows. Thus, the handshake of the initial
 subflow does not need anymore to send the 64-bit key in plaintext.
 The suggested modification to the initial handshake is detailled in
 this section.

 MultiPath TCP uses the MP_CAPABLE option in the handshake for the
 initial subflow. This handshake was designed to meet several
 requirements. When designing another variant of the Multipath TCP
 handshake, it is important to have these requirements in mind. These
 requirements are :

 1. Detect whether the peer supports MultiPath TCP.

 2. Exchange locally unique tokens that unambiguously identify the
 Multipath TCP connection

 3. Agree on an Initial Data Sequence Number to initialize the MPTCP
 state on each direction of the Multipath TCP connection

Paasch & Bonaventure Expires August 15, 2014 [Page 5]

Internet-Draft MPTCP Control Stream February 2014

 Before discussing the proposed handshake, it is important to have in
 mind how [RFC6824] meets the three requirements above.

 The first requirement is simply met by using a Multipath TCP specific
 option, like all TCP extensions.

 To meet the second requirement, a simple solution would have been to
 encode the token inside the MP_CAPABLE option. However, this would
 have increased its size. This would have limited the possibility of
 extending Multipath TCP later by adding new TCP options that require
 space inside the SYN segments. To minimize the number of option
 bytes consummed in the SYN segment, [RFC6824] uses a hash function to
 compute the token based on the keys exchanged in clear. However,
 using hash functions implies that implementations must handle the
 possible collisions which increases the complexity of implementing
 the Multipath TCP handshake.

 In this document we suggest a simplified handshake that meets the
 above three goals. This simplified handshake avoids negotiating the
 crypto-material during the three-way handshake. Instead, security
 information is exchanged reliably by relying on the control stream.
 The figure below provides an overview of the proposed handshake.

 Host A Host B
 ---------- ----------
 Address A1 Address B1
 ---------- ----------
 | |
 | SYN+MP_CAPABLE(Token-A) |
 |----------------------------------->|
 | |
 |SYN/ACK+MP_CAPABLE(Token-B) |
 |<-----------------------------------|
 | |
 | ACK+MP_CAPABLE(Token-A, Token-B) |
 | |
 |----------------------------------->|

 Handshake of the initial subflow.

 Figure 3

 MPTCP’s establishment of the initial subflow follows TCP’s regular
 3-way handshake, but the SYN, SYN/ACK and ACK packets contain the
 MP_CAPABLE-option. The proposed MP_CAPABLE option contains one 32
 bits token in the SYN and SYN/ACK segments. The third ACK includes
 an MP_CAPABLE option that contains the two tokens. Echoing all the
 information back in the third ACK allows stateless operation of the

Paasch & Bonaventure Expires August 15, 2014 [Page 6]

Internet-Draft MPTCP Control Stream February 2014

 server. The tokens are used to explicitly exchange the identifiers
 of the Multipath TCP connection.

 It is required that the server, upon reception of the SYN generates a
 token different from the client’s token. This is necessary to
 protect against reflection attacks when establishing additional
 subflows.

 The format of the proposed MP_CAPABLE option is proposed in the
 figures below.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype|Version|A|B|C|D|E|F|G|H|
 +---------------+---------------+-------+-------+---------------+
 | Sender’s Token (32 bits) |
 +---+

 Format of the MP_CAPABLE-option in the SYN and SYN/ACK packets

 Figure 4

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype|Version|A|B|C|D|E|F|G|H|
 +---------------+---------------+-------+-------+---------------+
 | Sender’s Token (32 bits) |
 +---+
 | Receiver’s Token (32 bits) |
 +---+

 Format of the MP_CAPABLE-option in the third ACK of the handshake

 Figure 5

 The format of the MP_CAPABLE option is shown in Figure 4. To
 indicate that this MP_CAPABLE contains tokens numbers and not keys
 (as in [RFC6824]), the Version-field is set to 1. The message format
 of the third ACK’s MP_CAPABLE option is show in Figure 5.

 The Initial Data Sequence Number (IDSN) serves to initialize the
 MPTCP state on the end-hosts in the same way as TCP’s sequence
 numbers do during the 3-way handshake. There is one IDSN for each
 direction of the data-stream. The IDSN for the data from the client
 to the server is the 64 low-order bits of the hash (SHA1) of the
 concatenation of the tokens (Token-A || Token-B). For the data from

Paasch & Bonaventure Expires August 15, 2014 [Page 7]

Internet-Draft MPTCP Control Stream February 2014

 server to client, the IDSN is 64 low-order bits of the hash (SHA1) of
 the reverse concatenation (Token-B || Token-A). The tokens should be
 generated with sufficient randomness so that they are hard to guess.
 Recommendations for generating random numbers are given in [RFC4086].

 The meaning of the other fields and behavior of the end-hosts during
 the MP_CAPABLE exchange is the same as specified in [RFC6824].

4. Starting a new subflow

 The handshake for the establishment of a new subflow is similar to
 the one specified in [RFC6824]. There are three important
 differences. First, the HMAC is computed by using the keys
 negotiated over the control stream. Second, the token and the
 client’s random numbers are included inside the third ack to allow
 stateless operation of the passive opener of an additional subflow.
 Finally, the token is used within the message of the HMAC. This
 protects against reflection attacks, as the HMAC cannot be sent in
 the reverse direction anymore, because the tokens are ensured to be
 different on both end-hosts.

 Host A Host B
 ---------- ----------
 Address A2 Address B2
 ---------- ----------
 | |
 | SYN + MP_JOIN(Token-B, R-A) |
 |------------------------------------->|
 | |
 | SYN/ACK + MP_JOIN(HMAC-B, R-B) |
 |<-------------------------------------|
 | |
 | ACK + MP_JOIN(Token-B, R-A, HMAC-A) |
 |------------------------------------->|

 HMAC-A = HMAC(Key, Msg=(Token-B+R-A+R-B))
 HMAC-B = HMAC(Key, Msg=(Token-B+R-B+R-A))

 Handshake of a new subflow.

 Figure 6

 In order to allow the Token-B and R-A inside the third ack, the
 HMAC-A must also be a truncated version of the 160-bit HMAC-SHA1.
 Thus, HMAC-A is the truncated (leftmost 128 bits) of the HMAC as
 shown in Figure 6.

Paasch & Bonaventure Expires August 15, 2014 [Page 8]

Internet-Draft MPTCP Control Stream February 2014

 The message-format of the MP_JOIN-option in the SYN and the SYN/ACK
 is the same as in [RFC6824]. As the third ACK includes the Token and
 the random nonce, the MP_JOIN message format of the third ack is as
 shown in Figure 7. The length of the MP_JOIN-option in the third ACK
 is 28 bytes. Thus, there remains enough space to insert the
 timestamp option in the third ACK.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype| |B| Address ID |
 +---------------+---------------+-------+-------+---------------+
 | |
 | Sender’s Truncated HMAC (128 bits) |
 | |
 +---+
 | Sender’s Random Number (32 bits) |
 +---+
 | Receiver’s Token (32 bits) |
 +---+

 Format of the MP_JOIN-option

 Figure 7

 The semantics of the backup-bit "B" and the Address ID are the same
 as in [RFC6824].

5. Examples of key negotiation through the control stream

 The control stream’s primary goal is to negotiate the crypto-material
 to authenticate additional subflows. Both hosts must agree on which
 key-negotiation scheme to use over the control stream. The option
 "key select" of the control stream is of type 1 and it negotiates the
 available key-negotiation schemes. The value-field of the "key
 select"-option contains a bitmask of available key-negotiation
 schemes. The bitmask remains to be defined as the schemes are being
 defined. The bits within the bitmask are numbered, starting from the
 leftmost as being ’1’.

 The key-select must be initiated by one host and answered by the
 other one. During the initiation, the host offers the available
 schemes, and the answering host selects one of the offered ones. The
 hosts need thus to ensure an order among themself of who initiates
 the "key select" option. A possibility would be that the host with
 the smaller token initiates the "key select" option.

Paasch & Bonaventure Expires August 15, 2014 [Page 9]

Internet-Draft MPTCP Control Stream February 2014

 The following are examples of how the control stream could be used to
 negotiate the cryptographic material. A proper specification is
 probably needed for each of them.

5.1. Reusing the application’s TLS key

 Within the "key select"-option, this negotiation scheme takes the bit
 number 1. It signals to the peer that the connection should use a
 derivate of TLS’s master key to authenticate new subflows with this
 "MPTCP key". It is required that indeed TLS is being used within the
 data stream.

 As TLS allows to modify the key being used during a TLS session, the
 control stream might be used to ensure that both end hosts agree on
 the "MPTCP key" being used at a specific moment in time through the
 exchange of the hash of the "MPTCP key".

5.2. TLS-like key exchange

 It enables a key-negotiation in an TLS-like manner, thus
 authenticating the client/server through a certificate.

5.3. Tcpcrypt-like key exchange

 It uses the control stream, to exchange a secret key in a tcpcrypt-
 like manner. Optionally, it may include a data-sequence number to
 define from which moment on the data stream should be encrypted.

6. Other example use cases of the control stream

 This shows one example of how the control stream can be used within
 MPTCP.

6.1. Address signaling

 In RFC6824, the address-signaling is achieved through the ADD_ADDRESS
 and REMOVE_ADDRESS options. These options are sent within the TCP
 options-space and thus do not benefit from reliable delivery.
 Further, security-concerns have rosen concerning the ADD_ADDRESS-
 option. Using the control stream to signal the addition or removal
 of addresses allows to make these options reliable and provides the
 space to add any kind of cryptographic material to enhance their
 security.

7. Security Considerations

 TBD

Paasch & Bonaventure Expires August 15, 2014 [Page 10]

Internet-Draft MPTCP Control Stream February 2014

8. Acknowledgments

 This work is supported by the European FP7 Project "Trilogy2" under
 grant agreement 317756.

9. Informative References

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol", RFC
 4960, September 2007.

 [RFC6181] Bagnulo, M., "Threat Analysis for TCP Extensions for
 Multipath Operation with Multiple Addresses", RFC 6181,
 March 2011.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

Authors’ Addresses

 Christoph Paasch
 UCLouvain
 Place Sainte Barbe, 2
 Louvain-la-Neuve 1348
 BE

 Email: christoph.paasch@uclouvain.be

 Olivier Bonaventure
 UCLouvain
 Place Sainte Barbe, 2
 Louvain-la-Neuve 1348
 BE

 Email: olivier.bonaventure@uclouvain.be

Paasch & Bonaventure Expires August 15, 2014 [Page 11]

