
Network Working Group O. Ohlsson
Internet-Draft Ericsson
Intended status: Informational January 22, 2012
Expires: July 25, 2012

 Support of SDES in WebRTC
 draft-ohlsson-rtcweb-sdes-support-00

Abstract

 Which key management protocols to support has been lively debated in
 WebRTC on several occasions. This document explains the benefits of
 SDES and argues why allowing it as an alternative option has little
 impact on security.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 25, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Ohlsson Expires July 25, 2012 [Page 1]

Internet-Draft Support of SDES in WebRTC January 2012

Table of Contents

 1. Introduction . 3
 2. Benefits of Supporting SDES 3
 2.1. Reduced Complexity of WebRTC-SIP Gateway 3
 2.2. Reduced Processing (Less SRTP Terminations) 3
 2.3. Reduced Call Setup Time 4
 3. Security Considerations 4
 3.1. SDES vs DTLS-SRTP in Case of Inside Attacker 5
 3.1.1. Extraction of Log Data 5
 3.1.2. Script Injection 5
 3.2. SDES vs DTLS-SRTP in Case of Inside Attacker 6
 3.2.1. Downgrade Attack 6
 3.2.2. Difficulties with Key Continuity 7
 3.2.3. 3rd Party Identity Assertion 8
 4. Discussion and Conclusion 9
 5. Informative References . 9
 Author’s Address . 10

Ohlsson Expires July 25, 2012 [Page 2]

Internet-Draft Support of SDES in WebRTC January 2012

1. Introduction

 Which key management protocols to support has been lively debated in
 WebRTC on several occasions. The main question is the following:
 Should applications be restricted to DTLS-SRTP or could SDES be
 allowed as an alternative option?

 In this document we identify and address the issues that have been
 raised. We explain the benefits of SDES and argue why allowing it as
 an alternative option has little impact on security.

2. Benefits of Supporting SDES

 Being able to communicate from WebRTC applications to existing SIP/
 RTP endpoints is a highly desirable use case. The SIP installed base
 is huge and contains millions of devices and a large number of
 applications (e.g. conferencing and voicemail). Even more important,
 nearly all mobile phones and landlines are reachable through SIP/RTP
 gateways deployed in service provider networks. The same can also be
 said for other signaling protocols, such as XMPP or H.323. As a
 sidenote, the recent work on the DTMF tone API in WebRTC proves that
 many members consider legacy interworking to be important.

2.1. Reduced Complexity of WebRTC-SIP Gateway

 Communication between the Browser and SIP/RTP endpoint will most
 likely require some form om media-plane gateway (due to the need to
 terminate ICE). The development and testing costs for such gateways
 are typically very high since they need to handle a large number of
 users and often contain special purpose hardware. It is definitely
 worthwhile to try to reduce costs by lowering the complexity and
 removing functionality that is not strictly required. This would
 result in lower prices which will lead to a higher degree of
 interconnectivity between WebRTC and existing SIP deployments.

 Already today there are SBCs that perform SRTP termination on behalf
 of endpoints with SDES based keying (there are SBCs that support
 DTLS-SRTP but this is uncommon). If the browser also supported SDES,
 the WebRTC gateway could simply forward all SRTP packets to the SBC
 and let it decide whether to terminate encryption or not (depending
 on the capabilities of the receiving endpoint).

2.2. Reduced Processing (Less SRTP Terminations)

 A large part of existing SIP/RTP devices support SRTP and most of
 them that do, use SDES based keying. This is confirmed in the report
 from the latest SIPit event which stated that:

Ohlsson Expires July 25, 2012 [Page 3]

Internet-Draft Support of SDES in WebRTC January 2012

 o 80 percent of the tested implementations supported SRTP

 o 100 percent of the SRTP implementations supported SDES

 o 0 percent of the SRTP implementations supported DTLS-SRTP

 Although these figures may not be entirely accurate, they at least
 provide an indication of the current situation. Assuming that SDES
 is supported by browsers, a major part of all calls (80 percent if
 the above figures were correct) would not need to be encrypted/
 decrypted by an intermediate gateway. This is a substantial
 reduction in processing cost for the gateway. Another benefit is
 that for those endpoints that support SDES the call will be protected
 end-to-end for free. Achieving this with DTLS-SRTP would require the
 gateway to first decrypt and then re-encrypt traffic.

 Note that the important question is whether the gateway needs to
 terminate SRTP at all. Processing wise there is probably not that
 much difference in terminating an SRTP + SDES or an SRTP + DTLS-SRTP
 call.

2.3. Reduced Call Setup Time

 One common argument against SDES is its inability to handle early
 media (i.e. media that arrives at the SDP offerer before the SDP
 answer arrives). However, since at least one full signaling
 roundtrip is required to conclude ICE, this argument is not
 applicable in WebRTC. In fact, media starts to flow later with DTLS-
 SRTP than with SDES since additional time is required for the DTLS
 handshake to complete.

 Note that what is said above only applies to the first offer/answer
 exhange. If an additional media stream is added later in time and
 multiplexing is used (i.e. single 5-tuple carrying all flows
 established with a single run of ICE), then the problem with early
 media could arise when SDES is used (but never with DTLS-SRTP).

3. Security Considerations

 At this point most readers should agree that SDES is favourable from
 an interworking point of view. It is also clear that implementing
 SDES in WebRTC is a relatively straight forward task. What remains
 to be considered are its impacts on security.

 We distinguish between the following two types of attackers:

Ohlsson Expires July 25, 2012 [Page 4]

Internet-Draft Support of SDES in WebRTC January 2012

 Outside Attacker An external party attempts to intercept a call
 (e.g. a host located on the same WLAN as the
 user)

 Inside Attacker The web application itself (or the signaling
 server, in case the web server and signaling
 server are separated) attempts to intercept a
 call

3.1. SDES vs DTLS-SRTP in Case of Inside Attacker

 By requiring that signaling is secured using TLS, an outside attacker
 that monitors network traffic will not be able to extract the SDES
 keys. Therefore, in this scenario both SDES and DTLS-SRTP provide a
 sufficient level of protection.

 The two other types of attacks that have been mentioned in this
 context are extraction of log data and code injection, each of which
 are considered below.

3.1.1. Extraction of Log Data

 In this scenario the attacker manages to decrypt a previously
 recorded call by attacking the signaling server and extracting the
 SDES keys from the server log.

 First of all, if the attacker gets as far as reading the logging data
 then eavesdropping of past calls is probably not the only problem.
 The effort required to break into the server is also related to the
 amount of trust the user assigns to the web application: well trusted
 sites often have well protected servers.

 Secondly, it can be questioned how common this type of extensive
 logging really is. For example, user login via HTML forms is
 extremely common yet one seldom hear of passwords being extracted
 from server logs.

 Finally, SDES will primarily be used when interworking with existing
 SIP systems deployed within enterprises or service providers. These
 have been using SDES for a long time and know that it is critical to
 protect the plain text keys.

3.1.2. Script Injection

 In this scenario the attacker manages to inject his own piece of
 JavaScript into the WebRTC application. The next time a user
 downloads the application and places a call, the script will execute
 and start eavesdropping on the conversation.

Ohlsson Expires July 25, 2012 [Page 5]

Internet-Draft Support of SDES in WebRTC January 2012

 There are three major ways in which code can be injected into a web
 application:

 o The page itself or one of its included JavaScript files is
 downloaded over a non-HTTPS link and is modified en route

 o The web application intentionally includes JavaScript supplied by
 the attacker (e.g. a third-party library or advertisement)

 o HTML form input or URL parameters are not properly sanitized (i.e.
 classical XSS vulnerability)

 Modification en route can be ignored by requiring HTTPS to be used
 for all content. Whether the two other injection techniques are
 feasible or not largely depends on the application.

 If script injection occurs then there are other methods to intercept
 a call, like establishing additional PeerConnection objects or use a
 recording interface and send the data using WebSocket. As long as
 these methods are available it does not matter much whether the
 application uses SDES or DTLS-SRTP.

 In general, if an attacker manages to execute even a small piece of
 JavaScript then he has effectively gained full control of the
 application (additional code can be included and HTML elements
 removed/inserted). Since this situation is exactly the same as the
 situation with an inside attacker, script injection will not be
 discussed further.

3.2. SDES vs DTLS-SRTP in Case of Inside Attacker

 First of all, it can be questioned if we really want to protect
 ourselves against an inside attacker. If consent is required every
 time the application wants to record or forward media then the user
 experience will suffer. One could also imagine future applications
 that want to use their own codecs or filters (for example a voice
 scrambler or face detection software), something which is difficult
 to achieve without access to the underlying bitstreams.

 We ignore this problem for now and simply assume that the application
 cannot access the media from within the browser. In other words, we
 only consider protection of the media during transport.

3.2.1. Downgrade Attack

 The major argument against SDES is that it would make it trivial for
 the application to perform interception. Let us compare what would
 be required in both cases.

Ohlsson Expires July 25, 2012 [Page 6]

Internet-Draft Support of SDES in WebRTC January 2012

 Interception of SDES call:

 1. Copy and store the ’a=crypto:’ lines in the offer/answer SDP

 2. Force media to pass through TURN server by deleting all
 candidates except the relayed one

 3. Store all SRTP packets that pass through the TURN server and
 decrypt them later on (using the keys from step 1)

 Interception of DTLS-SRTP call:

 1. Replace the ’a=fingerprint:’ lines in the offer/answer SDP with
 the fingerprint of a public key generated by the application

 2. Force the media to go through the TURN server by deleting all ICE
 candidates except the relayed one

 3. Modify an existing TURN server implementation so that it decrypts
 and re-encrypts the DTLS traffic (using the public-private key
 pair from step 1)

 Putting the modified TURN server into place is the hardest part of
 intercepting a DTLS-SRTP call. Once this is done however, the
 remaining steps are fairly straightforward. This shows that neither
 DTLS-SRTP nor SDES provides any significant protection against an
 inside attacker.

 There is one benefit of DTLS-SRTP that is not directly apparent from
 the above description. If both users read their respective
 fingerprint values over the voice channel then they can detect if the
 conversation is being intercepted. However, it is very unlikely that
 the average user would bother doing this.

3.2.2. Difficulties with Key Continuity

 The comparison in the previous section is somewhat simplified since
 it does not consider DTLS-SRTP key continuity. The way this
 mechanism works is that the browser will notify the user whenever it
 receives a certificate which has not previously been seen (i.e. not
 present in the browser cache). Since the user will receive this
 notification every time he calls someone new and whenever someone
 changes browser, it is very likely that he/she will simply ignore it.

 Reuse of public keys also has privacy implications as it enables user
 tracking. A user that wants to remain anonymous towards a service
 provider would need to generate a fresh key for each interaction.
 Furthermore, in order to avoid colluding service providers (e.g.

Ohlsson Expires July 25, 2012 [Page 7]

Internet-Draft Support of SDES in WebRTC January 2012

 medical clinics and insurance agencies) from linking a user’s
 activities, separate certificates are needed for different domains.
 However, storing domain names together with the certificates would
 allow the next browser user (e.g. a family member) to see which sites
 the previous user visited. All of this leads to more certificates
 being generated which in turn results in even more "new key"
 notifications.

 It is also important to understand that the cached certificates are
 not bound to any identity (the certificates are simple containers for
 the public key without any additional information). This means that
 if just one of the cached keys is compromised any user call can be
 intercepted without causing the "new key" notification to be
 displayed. Note that the risk of this happening is directly related
 to the size of the cache, which grows over time.

3.2.3. 3rd Party Identity Assertion

 [I-D.ietf-rtcweb-security] suggests a way to strengthen the security
 of DTLS-SRTP by validating the received fingerprint via an identity
 provider. At the time of writing the proposal is still a bit vague
 (for example, it is not clear how the identity provider is selected
 in practice) but it definitely seems promising. Such a mechanism
 (including the necessary browser chrome) would make it significantly
 harder for the application to act as man-in-the-middle.

 The question is whether the identity mechanism is optional or not,
 i.e. will it be possible for an application to use "plain" DTLS-SRTP.
 The answer is most likely "yes" due to the following reasons:

 o Many applications are already trusted by the user

 o Some applications do not want to depend on third parties

 o Some users do not have any identity provider account

 o Users may not always want to reveal their identity

 o Working out all the details of the identity mechanism will take
 time (and if it is not mandatory from start there are backward
 compatibility issues)

 Note that allowing an application to be its own identity provider is
 effectively the same as allowing plain DTLS-SRTP (the user trusts the
 application) only more complicated.

Ohlsson Expires July 25, 2012 [Page 8]

Internet-Draft Support of SDES in WebRTC January 2012

4. Discussion and Conclusion

 We are not looking to replace DTLS-SRTP with SDES. The 20-line
 WebRTC developer will continue to use the default option which is
 DTLS-SRTP, while others who are interested in interworking will
 select SDES. The latter group will be required to use HTTPS for all
 content and can be informed of the necessary precautions (secure
 storage of log files or otherwise no extensive logging).

 The main issue that appears to concern members is the application’s
 ability to downgrade security. But as we have seen it is not
 significantly harder for the application to attack DTLS-SRTP. The
 main advantage of DTLS-SRTP is the possibility to detect when a call
 is being intercepted. However, doing so requires an effort from the
 user and a certain degree of technical skill. It can also be
 questioned to what extent the application should be restricted from
 accessing media since this limits usability and innovativity.

 Finally, it has been suggested that additional identity mechanisms
 could prevent the application from listening in on calls. While this
 is certainly true, any such mechanism would most likely be made
 optional. If that is the case or if an application can be its own
 identity provider, then we are back at the situation where the user
 has to decide which sites to trust.

5. Informative References

 [I-D.ietf-rtcweb-overview]
 Alvestrand, H., "Overview: Real Time Protocols for Brower-
 based Applications", draft-ietf-rtcweb-overview-02 (work
 in progress), September 2011.

 [I-D.ietf-rtcweb-security]
 Rescorla, E., "Security Considerations for RTC-Web",
 draft-ietf-rtcweb-security-01 (work in progress),
 October 2011.

 [I-D.ietf-rtcweb-use-cases-and-requirements]
 Holmberg, C., Hakansson, S., and G. Eriksson, "Web Real-
 Time Communication Use-cases and Requirements",
 draft-ietf-rtcweb-use-cases-and-requirements-06 (work in
 progress), October 2011.

 [I-D.kaplan-rtcweb-sip-interworking-requirements]
 Kaplan, H., "Requirements for Interworking WebRTC with
 Current SIP Deployments",
 draft-kaplan-rtcweb-sip-interworking-requirements-02 (work

Ohlsson Expires July 25, 2012 [Page 9]

Internet-Draft Support of SDES in WebRTC January 2012

 in progress), November 2011.

 [RFC4568] Andreasen, F., Baugher, M., and D. Wing, "Session
 Description Protocol (SDP) Security Descriptions for Media
 Streams", RFC 4568, July 2006.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763, May 2010.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764, May 2010.

 [SIPit] "SIPit27 Summary",
 <https://www.sipit.net/SIPit27_Summary>.

Author’s Address

 Oscar Ohlsson
 Ericsson
 Farogatan 6
 SE-164 80 Kista
 Sweden

 Email: oscar.ohlsson@ericsson.com

Ohlsson Expires July 25, 2012 [Page 10]

