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Abstract

   This draft describes the OPAQUE protocol, a secure asymmetric
   password authenticated key exchange (aPAKE) that supports mutual
   authentication in a client-server setting without reliance on PKI and
   with security against pre-computation attacks upon server compromise.
   Prior aPAKE protocols did not use salt and if they did, the salt was
   transmitted in the clear from server to user allowing for the
   building of targeted pre-computed dictionaries.  OPAQUE security has
   been proven by Jarecki et al.  (Eurocrypt 2018) in a strong and
   universally composable formal model of aPAKE security.  In addition,
   the protocol provides forward secrecy and the ability to hide the
   password from the server even during password registration.

   Strong security, versatility through modularity, good performance,
   and an array of additional features make OPAQUE a natural candidate
   for practical use and for adoption as a standard.  To this end, this
   draft presents several instantiations of OPAQUE and ways of
   integrating OPAQUE with TLS.

   This draft presents a high-level description of OPAQUE highlighting
   its components and modular design.  It also provides the basis for a
   specification for standardization but a detailed specification ready
   for implementation is beyond the current scope of this document
   (which may be expanded in future revisions or done separately).

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
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   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 16, 2020.

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   Password authentication is the prevalent form of authentication in
   the web and in most other applications.  In the most common
   implementation, a user authenticates to a server by entering its user
   id and password where both values are transmitted to the server under
   the protection of TLS.  This makes the password vulnerable to TLS
   failures, including many forms of PKI attacks, certificate
   mishandling, termination outside the security perimeter, visibility
   to middle boxes, and more.  Moreover, even under normal operation,
   passwords are always visible in plaintext form at the server upon TLS
   decryption (in particular, storage of plaintext passwords is not an
   uncommon security incident, even among security-conscious companies).

   Asymmetric (or augmented) Password Authenticated Key Exchange (aPAKE)
   protocols are designed to provide password authentication and
   mutually authenticated key exchange without relying on PKI (except
   during user/password registration) and without disclosing passwords
   to servers or other entities other than the client machine.  A secure
   aPAKE should provide the best possible security for a password
   protocol, namely, it should only be open to inevitable attacks:
   online impersonation attempts with guessed user passwords and offline
   dictionary attacks upon the compromise of a server and leakage of its
   password file.  In the latter case, the attacker learns a mapping of
   a user’s password under a one-way function and uses such a mapping to
   validate potential guesses for the password.  Crucially important is
   for the password protocol to use an unpredictable one-way mapping or
   otherwise the attacker can pre-compute a deterministic list of mapped
   passwords leading to almost instantaneous leakage of passwords upon
   server compromise.

   Quite surprisingly, in spite of the existence of multiple designs for
   (PKI-free) aPAKE protocols, none of these protocols is secure against
   pre-computation attacks.  In particular, none of these protocols can
   use the standard technique against pre-computation that combines
   _secret_ random values ("salt") into the one-way password mappings.
   Either these protocols do not use salt at all or, if they do, they
   transmit the salt from server to user in the clear, hence losing the
   secrecy of the salt and its defense against pre-computation.
   Furthermore, the transmission of salt may incur additional protocol
   messages.

   This draft describes OPAQUE, a PKI-free secure aPAKE that is secure
   against pre-computation attacks and capable of using secret salt.
   OPAQUE has been recently defined and studied by Jarecki et al.
   [OPAQUE] who prove the security of the protocol in a strong aPAKE
   model that ensures security against pre-computation attacks and is
   formulated in the Universal Composability (UC) framework [Canetti01]
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   under the random oracle model.  In contrast, very few aPAKE protocols
   have been proven formally and those proven were analyzed in a weak
   security model that allows for pre-computation attacks (e.g.,
   [GMR06]).  This is not just a formal issue: these protocols are
   actually vulnerable to such attacks.  This includes protocols that
   have recent analyses in the UC model such as AuCPace [AuCPace] and
   SPAKE2+ [SPAKE2plus].  We note that as shown in [OPAQUE], these
   protocols, and any aPAKE in the model from [GMR06], can be converted
   into an aPAKE secure against pre-computation attacks at the expense
   of an additional OPRF execution.

   It is worth noting that the currently most deployed (OKI-free) aPAKE
   is SRP [RFC2945] which is open to pre-computation attacks, is
   inefficient relative to OPAQUE, and does not have an elliptic-curve
   version (it works for RSA).  OPAQUE is therefore a suitable
   replacement.

   OPAQUE’s design builds on a line of work initiated in the seminal
   paper of Ford and Kaliski [FK00] and is based on the HPAKE protocol
   of Xavier Boyen [Boyen09] and the (1,1)-PPSS protocol from Jarecki et
   al.  [JKKX16].  None of these papers considered security against pre-
   computation attacks or presented a proof of aPAKE security (not even
   in a weak model).

   In addition to its proven resistance to pre-computation attacks,
   OPAQUE’s security features include forward secrecy (essential for
   protecting past communications in case of password leakage) and the
   ability to hide the password from the server - even during password
   registration.  Moreover, good performance and an array of additional
   features make OPAQUE a natural candidate for practical use and for
   adoption as a standard.  Such features include the ability to
   increase the difficulty of offline dictionary attacks via iterated
   hashing or other hardening schemes, and offloading these operations
   to the client (that also helps against online guessing attacks);
   extensibility of the protocol to support storage and retrieval of
   user’s secrets solely based on a password; and being amenable to a
   multi-server distributed implementation where offline dictionary
   attacks are not possible without breaking into a threshold of servers
   (such distributed solution requires no change or awareness on the
   client side relative to a single-server implementation).

   OPAQUE is defined and proven as the composition of two
   functionalities: An Oblivious PRF (OPRF) and a key-exchange protocol.
   It can be seen as a "compiler" for transforming any key-exchange
   protocol (with KCI security and forward secrecy - see below) into a
   secure aPAKE protocol.  In OPAQUE, the user stores a secret private
   key at the server during password registration and retrieves this key
   each time it needs to authenticate to the server.  The OPRF security
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   properties ensure that only the correct password can unlock the
   private key while at the same time avoiding potential offline
   guessing attacks.  This general composability property provides great
   flexibility and enables a variety of OPAQUE instantiations, from
   optimized performance to integration with TLS.  The latter aspect is
   of prime importance as the use of OPAQUE with TLS constitutes a major
   security improvement relative to the standard password-over-TLS
   practice.  At the same time, the combination with TLS builds OPAQUE
   as a fully functional secure communications protocol and can help
   provide privacy to account information sent by the user to the server
   prior to authentication.

   The KCI property required from KE protocols for use with OPAQUE
   states that knowledge of a party’s private key does not allow an
   attacker to impersonate others to that party.  This is an important
   security property achieved by most public-key based KE protocols,
   including protocols that use signatures or public key encryption for
   authentication.  It is also a property of many implicitly
   authenticated protocols (e.g., HMQV) but not all of them.  We also
   note that key exchange protocols based on shared keys do not satisfy
   the KCI requirement, hence they are not considered in the OPAQUE
   setting.  We note that KCI is needed to ensure a crucial property of
   OPAQUE: even upon compromise of the server, the attacker cannot
   impersonate the user to the server without first running an
   exhaustive dictionary attack.  Another essential requirement from KE
   protocols for use in OPAQUE is to provide forward secrecy (against
   active attackers).

   This draft presents a high-level description of OPAQUE highlighting
   its components and modular design.  It also provides the basis for a
   specification for standardization but a detailed specification ready
   for implementation is beyond the current scope of this document
   (which may be expanded in future revisions or done separately).

   We describe OPAQUE with a specific instantiation of the OPRF
   component over elliptic curves and with a few KE schemes, including
   the HMQV [HMQV], 3DH [SIGNAL] and SIGMA [SIGMA] protocols.
   We also present several strategies for integrating OPAQUE with TLS
   1.3 [RFC8446] offering different tradeoffs between simplicity,
   performance and user privacy.  In general, the modularity of OPAQUE’s
   design makes it easy to integrate with additional key-exchange
   protocols, e.g., IKEv2.

   The computational cost of OPAQUE is determined by the cost of the
   OPRF, the cost of a regular Diffie-Hellman exchange, and the cost of
   authenticating such exchange.  In our elliptic-curve implementation
   of the OPRF, the cost for the client is two exponentiations (one or
   two of which can be fixed base) and one hashing-into-curve operation
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   [I-D.irtf-cfrg-hash-to-curve]; for the server, it is just one
   exponentiation.  The cost of a Diffie-Hellman exchange is as usual
   two exponentiations per party (one of which is fixed-base).  Finally,
   the cost of authentication per party depends on the specific KE
   protocol: it is just 1/6 of an exponentiation with HMQV, two
   exponentiations for 3DH, and it is one signature generation and
   verification in the case of SIGMA and TLS 1.3.  These instantiations
   preserve the number of messages in the underlying KE protocol except
   in one of the TLS instantiations where user privacy may require an
   additional round trip.

1.1.  Terminology

   In this document, the key words "MUST", "MUST NOT", "REQUIRED",
   "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
   and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
   [RFC2119]

1.2.  Notation

   Throughout this document the first argument to a keyed function
   represents the key; separated by a semicolon are the function inputs
   typically implemented as an unambiguous concatenation of strings
   (details of encodings are left for a future, more detailed
   specification).

   Except if said otherwise, random choices in this specification refer
   to drawing with uniform distribution from a given set (i.e., "random"
   is short for "uniformly random").  Random choices can be replaced
   with fresh outputs from a cryptographically strong pseudorandom
   generator or pseudorandom function.

   The name OPAQUE: A homonym of O-PAKE where O is for Oblivious (the
   name OPAKE was taken).

2.  DH-OPRF

   OPAQUE uses in a fundamental way an Oblivious Pseudo Random Function
   (OPRF).

   An Oblivious PRF (OPRF) is an interactive protocol between a server S
   and a user U defined by a special pseudorandom function (PRF),
   denoted F.  The server’s input to the protocol is a key k for PRF F
   and the user’s input is a value x in the domain of F.  At the end of
   the protocol, U learns F(k; x) and nothing else while S learns
   nothing from the protocol execution (in particular nothing about x or
   the value F(k; x)).
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   OPAQUE uses a specific OPRF instantiation, called DH-OPRF, where the
   PRF, denoted F, is defined next, generically.

   Parameters: Hash function H (e.g., SHA2 or SHA3 function) with
   256-bit output at least, a cyclic group G of prime order q, a
   generator g of G, and hash function H’ mapping arbitrary strings into
   G (where H’ is modeled as a random oracle).

   o  DH-OPRF domain: Any string

   o  DH-OPRF range: The range of the hash function H

   o  DH-OPRF key: A random element k in [0..q-1]

   o  DH-OPRF Operation: F(k; x) = H(x, H’(x)^k)

   Protocol for computing DH-OPRF, U with input x and S with input k:

   o  U: choose random r in [0..q-1], send alpha=H’(x)^r to S

   o  S: upon receiving a value alpha, respond with beta=alpha^k

   o  U: upon receiving beta set the PRF output to H(x, beta^{1/r})

   Received values alpha, beta are checked to be elements in G other
   than the identity and the receiving party aborts if the check fails
   (alternatively, co-factor exponentiation can be applied to the
   received values).

   Note (fixed-base blinding): An alternative way of computing DH-OPRF
   is for U to choose random r in [0..q-1] and send alpha=H’(x)_g^r to
   S, who responds with beta=alpha^k as well as with the value v=g^k
   (that S may store together with k).  U then sets the OPRF output F(k;
   x) to H(x, beta_v^{-r}).  This reduces the computation at U from two
   variable-base exponentiations in the above protocol to one fixed-base
   and one variable-base exponentiation.  Moreover, if U stores g^k
   (e.g., for servers to which it logins frequently), then the
   computation takes two fixed-base exponentiations (with bases g and
   g^k).  The downside of fixed-base blinding is the need for the server
   to send g^k which is otherwise not necessary.  Applications can
   choose any of the blinding options as both compute the same function.

   We note that prior versions of this document defined the OPRF to
   include g^k under the hash function H in order to provide security
   for fixed-base blinding.  However, [Blinding] proved recently that
   fixed-base blinding is secure also without hashing g^k.
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2.1.  DH-OPRF instantiation and detailed specification

   The above description of DH-OPRF is generic and applicable to any
   cyclic group.  Detailed specification for concrete implementations of
   DH-OPEF can be found in [I-D.irtf-cfrg-voprf] which defines several
   instantiation suites for DH-OPRF, including the choice of hash-to-
   curve functions (denoted H’ above) as detailed in
   [I-D.irtf-cfrg-hash-to-curve].  OPAQUE will adopt some of these
   instantiation suites and their underlying elliptic curves.  The
   latter will determine implementation details for such curves
   including ways to check curve membership, the suitability of co-
   factor mechanisms, etc.

2.2.  Hardening OPRF via user iterations

   Protocol OPAQUE is strengthened against offline dictionary attacks by
   applying to the output of DH-OPRF a hardening procedure such as via
   repeated iterations, memory hard operations, etc.  This greatly
   increases the cost of an offline attack upon the compromise of the
   password file at the server.  For this purpose, we define the
   extended DH-OPRF F* as
   F*(k; x) = I^n( H(x, H’(x)^k) ) where I is a hardening function and n
   is a measure of hardness.  For example, I can represent the iterative
   function of PBKDF2 [RFC8018] and n the number of iterations; in the
   case of memory-hard functions such as Argon2 [I-D.irtf-cfrg-argon2]
   and scrypt [RFC7914], I is a more involved memory-hard function and n
   measures cost factors and other parameters.

   Parameters to the hardening function can be set to public values or
   set at the time of password registration and stored at the server.
   In this case, the server communicates these parameters to the user
   during OPAQUE executions together with the second OPRF message.  We
   note that the salt value typically input into the KDF can be set to a
   constant, e.g., all zeros.

3.  OPAQUE Specification

   OPAQUE consists of the concurrent run of an OPRF protocol and a key-
   exchange protocol KE (one that provides mutual authentication based
   on public keys and satisfies the KCI requirement discussed in the
   introduction).  We first define OPAQUE in a generic way based on any
   OPRF and any PK-based KE, and later show specific instantiation using
   DH-OPRF (defined in Section 2) and several KE protocols.  The user,
   running on a client machine, takes the role of initiator in these
   protocols and the server the responder’s.  The private-public keys
   for the user are denoted PrivU and PubU, and for the server PrivS and
   PubS.
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3.1.  Password registration

   Password registration is executed between a user U (running on a
   client machine) and a server S.  It is assumed the server can
   identify the user and the client can authenticate the server during
   this registration phase.  This is the only part in OPAQUE that
   requires an authenticated channel, either physical, out-of-band, PKI-
   based, etc.

   o  U chooses password PwdU and a pair of private-public keys PrivU
      and PubU for the given protocol KE.

   o  S chooses OPRF key kU (random and independent for each user),
      chooses its own pair of private-public keys PrivS and PubS for use
      with protocol KE (S can use the same pair of keys with multiple
      users), and sends PubS to the client.

   o  Client and S run the OPRF F(kU; PwdU) as defined in Section 2 with
      only the client learning the result.  The client then applies a
      hardening function, as described in Section 2.2, to this result
      obtaining a value denoted RwdU (for "Randomized PwdU").  The
      parameters of the hardening function can be public and known to
      client machines or they can be stored by S and communicated to the
      client during registration and login sessions.

   o  Client generates an "envelope" EnvU that contains PrivU and PubS
      protected under RwdU.  PrivU is encrypted and authenticated while
      PubS is authenticated and optionally encrypted.  EnvU may also
      include the user’s public key and parties’ identities.

      EnvU can be thought of as an authenticated encryption scheme with
      optional authenticated-only data.  However, for technical reasons,
      not all authenticated encryption schemes can be used for building
      EnvU, therefore we provide a precise specification of the
      enveloping function in Section 4.

   o  The client sends EnvU and PubU to S and erases PwdU, RwdU and all
      keys.  S stores (EnvU, PubS, PrivS, PubU, kU) in a user-specific
      record.  If PrivS and PubS are used for multiple users, S can
      store these values separately and omit them from the user’s
      record.

   Note (salt).  We note that in OPAQUE the OPRF key acts as the secret
   salt value that ensures the infeasibility of pre-computation attacks.
   No extra salt value is needed.

   Note (password rules).  The above procedure has the significant
   advantage that the user’s password is never disclosed to the server
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   even during registration.  Some sites require learning the user’s
   password for enforcing password rules.  Doing so voids this important
   security property of OPAQUE and is not recommended.  Moving the
   password check procedure to the client side is a more secure
   alternative (limited checks at the server are possible to implement,
   e.g., detecting repeated passwords).

3.2.  Online OPAQUE protocol (Login and key exchange))

   After registration, the user (through a client machine) and server
   can run the OPAQUE protocol as a password-authenticated key exchange.
   The protocol proceeds as follows:

   o  Client transmits user/account information to the server so that
      the server can retrieve the user’s record.

   o  Server and client execute the OPRF protocol as defined in
      Section 2; client sets RwdU to the result of this computation (if
      this computation includes a hardening function as in Section 2.2,
      the parameters of this function are either known to the client or
      communicated by the server).

   o  Server sends EnvU to client.

   o  Client authenticates/decrypts EnvU using RwdU to obtain PrivU,
      PubU, PubS.  If authentication fails, client aborts.

   o  Client and server run the specified KE protocol using their
      respective public and private keys.

   Note that the steps preceding the run of KE can be arranged in just
   two messages (one from the client and a response from the server).
   Furthermore, OPAQUE is optimized by running the OPRF and KE
   concurrently with interleaved and combined messages (while preserving
   the internal ordering of messages in each protocol).  In all cases,
   the client needs to obtain EnvU and RwdU (i.e., complete the OPRF
   protocol) before it can use its own private key PrivU and the
   server’s public key PubS in the run of KE.

3.3.  Parties’ identities

   Authenticated key-exchange protocols generate keys that need to be
   uniquely and verifiably bound to a pair of identities, in the case of
   OPAQUE a user and a server.  Thus, it is essential for the parties to
   agree on such identities, including an agreed bit representation of
   these identities as needed, for example, when inputting identities to
   a key derivation function.  When referring to identities IdU and IdS
   in this document, we refer to such agreed identities.  Applications
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   may have different policies about how and when identities are
   determined.  A natural approach is to tie IdU to the identity the
   server uses to fetch EnvU (hence determined during password
   registration) and to tie IdS to the server identity used by the
   client to initiate a password registration or login sessions.  IdS
   and IdU can also be part of EnvU or be tied to the parties’ public
   keys.  In principle, it is possible that identities change across
   different sessions as long as there is a policy that can establish if
   the identity is acceptable or not to the peer.  However, we note that
   the public keys of both the server and the user must always be those
   defined at time of password registration.

4.  Specification of the EnvU envelope

   In Section 3.1, EnvU was defined as an envelope containing the user’s
   private key PrivU and server’s public key PubS protected under RwdU.
   Optionally, EnvU may also contain PubU and identities IdS, IdU.  Part
   of this information, e.g., PrivU, requires secrecy and authentication
   while other values may only need authentication.  A natural way to
   build EnvU is using authenticated encryption with additional
   authenticated data.  However, as proven in [OPAQUE], the security of
   OPAQUE requires the authenticated encryption scheme, AuthEnc, used to
   build EnvU to satisfy the property of "random-key robustness".  That
   is, given a pair of random AuthEnc keys, it should be infeasible to
   create an authenticated ciphertext that successfully decrypts (i.e.,
   passes authentication) under the two keys.  Some natural AuthEnc
   schemes, including GCM, do not satisfy this property and therefore,
   here we specify a particular scheme for implementing EnvU that enjoys
   this property.  It is based on counter-mode encryption and HMAC.

   We define EnvU on the basis of two fields, AEenv and AOenv, one of
   which (but not both) can be empty.  AEenv contains information that
   needs to be protected under authenticated encryption while AOenv only
   requires authentication.  Typically, AEenv includes PrivU, and AOenv
   includes PubS and possibly PubU (PubU may be omitted if not needed
   for running the user side of the key exchange, or if it is re-
   computed by the client on the basis of PrivU).  On the other hand,
   some applications may want to hide the public key(s) from
   eavesdroppers in which case these keys would go under AEenv.  As
   noted below, there is also the possibility of omitting PrivU from
   EnvU and derive it from RwdU in which case AEenv may be empty.  In
   all cases, EnvU must include the authenticated PubS, either under
   AEenv or AOenv.  Additionally, EnvU may be used to transmit the user
   and/or server identities (see Section 3.3).

   EnvU is built by encrypting AEenv (if not empty), concatenating to it
   AOenv (if not empty), and computing HMAC on the concatenation (which
   must never be empty).  HMAC must use a hash of length 256 bits or
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   more to ensure collision resistance.  For the benefit of
   interoperability we specify the use of a block cipher (AES256) in
   counter mode as the encryption function, however, any secure (not
   necessarily authenticated) encryption scheme can be used for the
   encryption of AEenv.  HMAC can also be replaced but only by a
   collision resistant MAC (not all MAC functions are collision
   resistant!)

   We start by defining the key derivation function to derive three
   keys: a HMAC key HMACkey, an AES256 key EncKey and a third key KdKey
   for applications that choose to process user information beyond the
   OPAQUE functionality (e.g., additional secrets or credentials).  We
   specify KdKey to be of the same length as HMACkey so it can be used,
   if needed, with HKDF-Expand.

   Let L1, L2, L3 be the lengths in octets of HmacKey, EncKey and KdKey,
   respectively, where L3=L1.  If any one of EncKey or KdKey is omitted,
   its length is set to 0.  We define:

   KEYS = HKDF(salt=0, IKM=RwdU, info="EnvU", Length=L1+L2+L3)

   and set HmacKey to the most significant L1 bytes of KEYS, EncKey to
   the next significant L2 bytes, and KdKey to the next L3 bytes.  (For
   AES256 and HMAC-SHA256, the keys are of length 32 bytes each.)

   We define EnvU to be the concatenation of E and the authentication
   tag HMAC(HmacKey; E) where E is the concatenation of AES-CTR(EncKey;
   AEenv) and AOenv.

   Recall that EnvU is computed during password registration and is
   decrypted by the client during login.  Decryption proceeds by
   deriving HmacKey and EncKey, verifying the HMAC tag, and if this is
   successful, decrypting E.  If HMAC verification fails, the session is
   aborted.

   TBC: More precise specification needed here, such as default order of
   elements, their encodings, etc.

   In this specification, encryption of AEenv uses AES256 in counter
   mode with key EncKey and an initial counter value (that is part of
   the ciphertext) defined as the concatenation of a random 8-byte nonce
   chosen by the encrypting party (i.e., the client during password
   registration) and an 8-byte representation of 1 (7 zero bytes
   followed by 0x01).  We refer to this initial value as CTRBASE.

   For completeness, we specify AES-CTR in Appendix Section 9.
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   TBD: If an RFC defining this mode exists, we should refer to it
   instead.  The mode is defined in [RFC3686] but in the context of
   IPsec’s ESP, so having a distilled version as in the Appendix may be
   worthwhile, particularly as we use a different initial value (the
   above RFC assumes a given IV which we do not have here).

   Note (rationale of CTRBASE): The nonce used in defining CTRBASE is
   needed, for example, for the case where a user registers the same
   password repeatedly, choosing a fresh PrivU each time while the value
   of the server’s OPRF key kU stays fixed.  This results in the same
   encryption key but different plaintexts which requires a changing
   nonce.  Eight bytes are more than enough for this.

   Note (using GCM): Can one replace AES-CTR with GCM-AES for encrypting
   AEenv?  Yes, as long as one keeps the HMAC authentication.  As said,
   any secure encryption can be used for encrypting AEenv.  However, GCM
   also produces an authentication tag that is not needed here.  As a
   result, using GCM may tempt someone to drop the HMAC authentication
   which would be insecure since standalone GCM is not random-key
   robust.  For this reason it may be better not to replace plain AES-
   CTR with GCM or any other authenticated encryption.

   Note (storage/communication efficient authentication-only EnvU): It
   is possible to dispense with encryption in the construction of EnvU
   to obtain a shorter EnvU (resulting in less storage at the server and
   less communication from server to client).  The idea is to derive
   PrivU from RwdU.  However, for cases where PrivU is not a random
   string of a given length, we define a more general procedure.
   Namely, what’s derived from RwdU is a random seed used as an input to
   a key generation procedure that generates the pair (PrivU, PubU).  In
   this case, AEenv is empty and AOenv contains PubS.  The random key
   generation seed is defined as HKDF-Expand(KdKey; info="KG seed", L)
   where L is the required seed length.  We note that in this
   encryption-less scheme, the authentication still needs to be random-
   key robust which HMAC satisfies.

   To further minimize storage space, the server can derive per-user
   OPRF keys kU from a single global secret key, and it can use the same
   pair (PrivS,PubS) for all users.  In this case, the per-user OPAQUE
   storage consists of PubU and HMAC(Khmac; Pubs), a total of 64-byte
   overhead with a 256-bit curve and hash.  EnvU communicated to the
   user is of the same length, consisting of PubS and HMAC(Khmac; Pubs).

5.  OPAQUE Instantiations

   We present several instantiations of OPAQUE using DH-OPRF and
   different KE protocols.  For the sake of concreteness we focus on KE
   protocols consisting of three messages, denoted KE1, KE2, KE3, and
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   such that KE1 and KE2 include DH values sent by user and server,
   respectively, and KE3 provides explicit user authentication.  As
   shown in [OPAQUE], OPAQUE cannot use less than three messages so the
   3-message instantiations presented here are optimal in terms of
   number of messages.  On the other hand, there is no impediment of
   using OPAQUE with protocols with more than 3 messages as in the case
   of IKEv2 (or the underlying SIGMA-R protocol [SIGMA]).

   OPAQUE generic outline with 3-message KE:

   o  C to S: IdU, alpha=H’(PwdU)^r, KE1

   o  S to C: beta=alpha^kU, EnvU, KE2

   o  C to S: KE3

   Key derivation and other details of the protocol are specified by the
   KE scheme.  We do note that by the results in [OPAQUE], KE2 and KE3
   should include authentication of the OPRF messages (or at least of
   the value alpha) for binding between the OPRF run and the KE session.

   Next, we present three instantiations of OPAQUE - with HMQV, 3DH and
   SIGMA-I.  In Section 6 we discuss integration with TLS 1.3 [RFC8446].

5.1.  Instantiation of OPAQUE with HMQV and 3DH

   The integration of OPAQUE with HMQV [HMQV] leads to the most
   efficient instantiation of OPAQUE in terms of exponentiations count.
   Performance is close to optimal due to the low cost of authentication
   in HMQV: Just 1/6 of an exponentiation for each party over the cost
   of a regular DH exchange.  However, HMQV is encumbered by an IBM
   patent, hence we also present OPAQUE with 3DH which only differs in
   the key derivation function at the cost of an extra exponentiation
   (and less resilience to the compromise of ephemeral exponents).  We
   note that 3DH serves as a basis for the key-exchange protocol of
   [SIGNAL].

   Importantly, many other protocols follow a similar format with
   differences mainly in the key derivation function.  This includes the
   Noise family of protocols.  Extension may also apply to KEM-based KE
   protocols as in many post-quantum candidates.

   The private and public keys of the parties in these examples are
   Diffie-Hellman keys, namely, PubU=g^PrivU and PubS=g^PrivS.

   Specification/implementation details that are specific to the choice
   of group G will be adapted from the corresponding standards for
   different elliptic curves.
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   PROTOCOL MESSAGES.  OPAQUE with HMQV and OPAQUE with 3DH comprises:

   o  KE1 = OPRF1, nonceU, info1_, IdU_, ePubU

   o  KE2 = OPRF2, EnvU, nonceS, info2_, ePubS, Einfo2_, Mac(Km3;
      xcript2),

   o  KE3 = info3_, Einfo3_, Mac(Km3; xcript3)}

   where:

   o  * denotes optional elements;

   o  OPRF1, OPRF2 denote the DH-OPRF values alpha, beta sent by user
      and server, respectively, as defined in Section 2;

   o  EnvU is the OPAQUE’s envelope stored by the server containing
      keying information for the client to run the AKE with the server;

   o  nonceU, nonceS are fresh random nonces chosen by client and
      server, respectively;

   o  info1, info2, info3 denote optional application-specific
      information sent in the clear (e.g., they can include parameter
      negotiation, parameters for a hardening function, etc.);

   o  Einfo2, Einfo3 denotes optional application-specific information
      sent encrypted under keys Ke2, Ke3 defined below;

   o  IdU is the user’s identity used by the server to fetch the
      corresponding user record, including EnvU, OPRF key, etc. (it can
      be omitted from message KE1 if the information is available to the
      server in some other way);

   o  IdS, the server’s identity, is not shown explicitly, it can be
      part of an info field (encrypted or not), part of EnvU, or can be
      known from other context (see Section 3.3); it is used crucially
      for key derivation (see below);

   o  ePubU, ePubS are Diffie-Hellman ephemeral public keys chosen by
      user and server, respectively;

   o  xcript2 includes the concatenation of the values OPRF1, nonceU,
      info1_, IdU_, ePubU, OPRF2, EnvU, nonceS, info2_, ePubS, Einfo2_;

   o  xscript3 includes the concatenation of all elements in xscript2
      followed by info3_, Einfo3_;
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   Notes:

   o  The explicit concatenation of elements under xscript2 and xscript3
      can be replaced with hashed values of these elements, or their
      combinations, using a collision-resistant hash (e.g., as in the
      transcript-hash of TLS 1.3).

   o  The inclusion of the values OPRF1 and OPRF2 under xscript2 is
      needed for binding the OPRF execution to that of the KE session.
      On the other hand, including EnvU in xscript2 is not mandatory.

   o  The ephemeral keys ePubU, ePubS, can be exchanged prior to the
      above 3 messages, e.g., when running these protocols under TLS
      1.3.

   KEY DERIVATION.  The above protocol requires MAC keys Km2, Km3, and
   optional encryption keys Ke2, Ke3, as well as generating a session
   key SK which is the AKE output for protecting subsequent traffic (or
   for generating further key material).  Key derivation uses HKDF
   [RFC5869] with a combination of the parties static and ephemeral
   private-public key pairs and the parties’ identities IdU, IdS.  See
   Section 3.3.

   SK, Km2, Km3, Ke2, Ke3 = HKDF(salt=0, IKM, info, L)

   where L is the sum of lengths of SK, Km2, Km3, Ke2, Ke3, and SK gets
   the most significant bytes of the key stream, Km2 the next bunch,
   etc.

   Values IKM and info are defined for each protocol:

    FOR HMQV: Info="HMQV keys" and IKM = Khmqv | IdU | IdS

    where Khmqv is computed:

    - by the client as: Khmqv = (ePubS * PubS^b)^{ePrivU + a*PrivU}

    - by the server as: Khmqv = (ePubU * PubU^a)^{ePrivS + b*PrivS}

    with a = H(ePubU, IdS) and b = H(ePubS, IdU)

    FOR 3DH: Info="3DH keys" and IKM = K3dh | IdU | IdS

    where K3dh is the concatenation of 3 DH values computed

    - by the client as: K3dh = ePubS^ePrivU | PubS^ePrivU | ePubS^PrivU

    - by the server as: K3dh = ePubU^ePrivS | PubU^ePrivS | ePubU^PrivS

Krawczyk                Expires November 16, 2020              [Page 16]



Internet-Draft                   OPAQUE                         May 2020

5.2.  Instantiation of OPAQUE with SIGMA-I

   We show how OPAQUE is built around the 3-message SIGMA-I protocol
   [SIGMA].  This is an example of a signature-based protocol and also
   serves as a basis for integration of OPAQUE with TLS 1.3, as the
   latter follows the design of SIGMA-I (see Section 6.  This
   specification can be extended to the 4-message SIGMA-R protocol as
   used in IKEv2.

   PROTOCOL MESSAGES.  OPAQUE with SIGMA-I comprises:

   o  KE1 = OPRF1, nonceU, info1_, IdU_, ePubU

   o  KE2 = OPRF2, EnvU, nonceS, info2_, ePubS, Einfo2_, Sign(PrivS;
      xcript2-), Mac(Km2; IdU),

   o  KE3 = info3_, Einfo3_, Sign(PrivU; xcript3-), Mac(Km3; IdS)}

   See explanation of fields above.  In addition, for the signed
   material, xscript2- is defined similarly to xscript2, however if
   xscript2 includes information that identifies the user, such
   information can be eliminated in xscript2- (this is advised if
   signing user’s identification information by the server is deemed to
   have adverse privacy consequences).  In SIGMA, including the peer’s
   identity under the MAC is necessary and sufficient for security, but
   including it under the signature is not necessary.  Similarly,
   xscript3- is defined as xcript3 with server identification
   information removed if so desired.

   KEY DERIVATION.  Key in SIGMA-I are derived as

   SK, Km2, Km3, Ke2, Ke3 = HKDF(salt=0, IKM, info, L)

   where L is the sum of lengths of SK, Km2, Km3, Ke2, Ke3, and SK gets
   the most significant bytes of the stream, Km2 the next bunch, etc.

   info = "SIGMA-I keys" and IKM is computed

   o  by the client as IKM = ePubS^ePrivU

   o  by the server as IKM = ePubU^ePrivS

6.  Integrating OPAQUE with TLS 1.3

   This section is intended as a discussion of ways to integrate OPAQUE
   with TLS 1.3.  Precise protocol details are left for a future
   separate specification.  A very preliminary draft is
   [I-D.sullivan-tls-opaque].
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   As stated in the introduction, the security of the standard password-
   over-TLS mechanism for password authentication suffers from its
   essential reliance on PKI and the exposure of passwords to the server
   (and possibly others) upon TLS decryption.  Integrating OPAQUE with
   TLS removes these vulnerabilities while at the same time it armors
   TLS itself against PKI failures.  Such integration also benefits
   OPAQUE by leveraging the standardized negotiation and record-layer
   security of TLS.  Furthermore, TLS offers an initial PKI-
   authenticated channel to protect the privacy of account information
   such as user name transmitted between client and server.

   If one is willing to forgo protection of user account information
   transmitted between user and server, integrating OPAQUE with TLS 1.3
   is relatively straightforward and follows essentially the same
   approach as with SIGMA-I in Section 5.2.  Specifically, one reuses
   the Diffie-Hellman exchange from TLS and uses the user’s private key
   PrivU retrieved from the server as a signature key for TLS client
   authentication.  The integrated protocol will have as its first
   message the TLS’s Client Hello augmented with user account
   information and with the DH-OPRF first message (the value alpha).
   The server’s response includes the regular TLS 1.3 second flight
   augmented with the second OPRF message which includes the values beta
   and EnvU.  For its TLS signature, the server uses the private key
   PrivS whose corresponding public key PubS is authenticated as part of
   the user envelope EnvU (there is no need to send a regular TLS
   certificate in this case).  Finally, the third flight consists of the
   standard client Finish message with client authentication where the
   client’s signature is produced with the user’s private key PrivU
   retrieved from EnvU and verified by the server using public key PubU.

   The above scheme is depicted in Figure 1 where the sign + indicates
   fields added by OPAQUE, and OPRF1, OPRF2 denote the two DH-OPRF
   messages.  Other messages in the figure are the same as in TLS 1.3.
   Notation {...} indicates encryption under handshake keys.  Note that
   ServerSignature and ClientSignature are performed with the private
   keys defined by OPAQUE and they replace signatures by traditional TLS
   certificates.
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           Client                                               Server

           ClientHello
           key_share
           + userid + OPRF1        -------->
                                                           ServerHello
                                                             key_share
                                                   {+    OPRF2 + EnvU}
                                                     {ServerSignature}
                                   <--------          {ServerFinished}

           {ClientSignature}
           {ClientFinished}        -------->

           Figure 1: Integration of OPAQUE in TLS 1.3 (no userid
                             confidentiality)

   Note that in order to send OPRF1 in the first message, the client
   needs to know the DH group the server uses for OPRF, or it needs to
   "guess" it.  This issue already appears in TLS 1.3 where the client
   needs to guess the key_share group and it should be handled similarly
   in OPAQUE (e.g., the client may try one or more groups in its first
   message).

   Protection of user’s account information can be added through TLS 1.3
   pre-shared/resumption mechanisms where the account information
   appended to the ClientHello message would be encrypted under the pre-
   shared key.

   When a resumable session or pre-shared key between the client and the
   server do not exist, user account protection requires a server
   certificate.  One option that does not add round trips is to use a
   mechanism similar to the proposed ESNI extension [I-D.ietf-tls-esni]
   or a semi-static TLS exchange as in [I-D.ietf-tls-semistatic-dh].
   Without such extensions, one would run a TLS 1.3 handshake augmented
   with the two first OPAQUE messages interleaved between the second and
   third flight of the regular TLS handshake.  That is, the protocol
   consists of five flights as follows: (i) A regular 2-flight 1-RTT
   handshake to produce handshake traffic keys authenticated by the
   server’s TLS certificate; (ii) two OPAQUE messages that include user
   identification information, the DH-OPRF messages exchanged between
   client and server, and the retrieved EnvU, all encrypted under the
   handshake traffic keys (thus providing privacy to user account
   information); (iii) the TLS 1.3 client authentication flight where
   client authentication uses the user’s private signature key PrivU
   retrieved from the server in step (ii).
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   Note that server authentication in step (i) uses TLS certificates
   hence PKI is used for user account privacy but not for user
   authentication or other purposes.  (In some applications, PKI may be
   trusted also for server authentication in which case server
   authentication through OPAQUE may be forgone).  In OPAQUE the server
   authenticates using the private key PrivS whose corresponding public
   key PubS is sent to the user as part of EnvU.  There are two options:
   If PubS is the same as the public key the server used in the 1-RTT
   authentication (step (i)) then there is no need for further
   authentication.  Otherwise, the server needs to send a signature
   under PrivS that is piggybacked to the second OPAQUE message in (ii).
   In this case, the signature would cover the running transcript hash
   as is standard in TLS 1.3.  The client signature in the last message
   also covers the transcript hash including the regular handshake and
   OPAQUE messages.

   The described scheme is depicted in Figure 2.  Please refer to the
   text before Figure 1 describing notation.  Note the asterisk in the
   ServerSignature message.  This indicates that this message is
   optional as it is used only if the server’s key PubS in OPAQUE is
   different than the one in the server’s certificate (transmitted in
   the second protocol flight).

           Client                                               Server

           ClientHello
           key_share               -------->
                                                            ServerHello
                                                              key_share
                                                          {Certificate}
                                                    {CertificateVerify}
                                   <--------           {ServerFinished}

           {+ userid + OPRF1}      -------->

                                                       {+ OPRF2 + EnvU}
                                   <--------       {+ ServerSignature*}

           {ClientSignature}
           {ClientFinished}        -------->

          Figure 2: Integration of OPAQUE in TLS 1.3 (with userid
                             confidentiality)

   We note that the above approaches for integration of OPAQUE with TLS
   may benefit from the post-handshake client authentication mechanism
   of TLS 1.3 and the exported authenticators from
   [I-D.ietf-tls-exported-authenticator].  Also, formatting of messages
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   and negotiation information suggested in [I-D.barnes-tls-pake] can be
   used in the OPAQUE setting.

7.  User enumeration

   User enumeration refers to attacks where the attacker tries to learn
   whether a given user identity is registered with a server.
   Preventing such attack requires the server to act with unknown user
   identities in a way that is indistinguishable from its behavior with
   existing users.  Here we suggest a way to implement such defense,
   namely, a way for simulating the values beta and EnvU for non-
   existing users.  Note that if the same pair of user identity IdU and
   value alpha is received twice by the server, the response needs to be
   the same in both cases (since this would be the case for real users).
   For protection against this attack, one would apply the encryption
   function in the construction of EnvU (Section 4) to all the key
   material in EnvU, namely, AOenv will be empty.  The server S will
   have two keys MK, MK’ for a PRF f (this refers to a regular PRF such
   as HMAC or CMAC).  Upon receiving a pair of user identity IdU and
   value alpha for a non-existing user IdU, S computes kU=f(MK; IdU) and
   kU’=f(MK’; IdU) and responds with values beta=alpha^kU and EnvU,
   where the latter is computed as follows.  RwdU is set to kU’ and
   AEenv is set to the all-zero string (of the length of a regular EnvU
   plaintext).  Care needs to be taken to avoid side channel leakage
   (e.g., timing) from helping differentiate these operations from a
   regular server response.  The above requires changes to the server-
   side implementation but not to the protocol itself or the client
   side.

   There is one form of leakage that the above allows and whose
   prevention would require a change in OPAQUE.  Note that an attacker
   that tests a IdU (and same alpha) twice and receives different
   responses can conclude that either the user registered with the
   service between these two activations or that the user was registered
   before but changed its password in between the activations (assuming
   the server changes kU at the time of a password change).  In any
   case, this indicates that IdU is a registered user at the time of the
   second activation.  To conceal this information, S can implement the
   derivation of kU as kU=f(MK; IdU) also for registered users.  Hiding
   changes in EnvU, however, requires a change in the protocol.  Instead
   of sending EnvU as is, S would send an encryption of EnvU under a key
   that the user derives from the OPRF result (similarly to RwdU) and
   that S stores during password registration.  During login, the user
   will derive this key from the OPRF result, will use it to decrypt
   EnvU, and continue with the regular protocol.  If S uses a randomized
   encryption, the encrypted EnvU will look each time as a fresh random
   string, hence S can simulate the encrypted EnvU also for non-existing
   users.
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   Note that the first case above does not change the protocol so its
   implementation is a server’s decision (the client side is not
   changed).  The second case, requires changes on the client side so it
   changes OPAQUE itself.
   TBC: Should this variant be documented/standardized?

8.  Security considerations

   This is an early draft presenting the OPAQUE concept and its
   potential instantiations.  More precise details and security
   considerations will be provided in future drafts.  We note that the
   security of OPAQUE is formally proved in [OPAQUE] under a strong
   model of aPAKE security assuming the security of the OPRF function
   and of the underlying key-exchange protocol.  In turn, the security
   of DH-OPRF is proven in the random oracle model under the One-More
   Diffie-Hellman assumption [JKKX16].

   Best practices regarding implementation of cryptographic schemes
   apply to OPAQUE.  Particular care needs to be given to the
   implementation of the OPRF regarding testing group membership and
   avoiding timing and other side channel leakage in the hash-to-curve
   mapping.  Drafts [I-D.irtf-cfrg-hash-to-curve] and
   [I-D.irtf-cfrg-voprf] have detailed instantiation and implementation
   guidance.

   While one can expect the practical security of the OPRF function
   (namely, the hardness of computing the function without knowing the
   key) to be in the order of computing discrete logarithms or solving
   Diffie-Hellman, Brown and Gallant [BG04] and Cheon [Cheon06] show an
   attack that slightly improves on generic attacks.  For the case that
   q-1 or q+1, where q is the order of the group G, has a t-bit divisor,
   they show an attack that calls the OPRF on 2^t chosen inputs and
   reduces security by t/2 bits, i.e., it can find the OPRF key in time
   2^{q/2-t/2} and 2^{q/2-t/2} memory.  For typical curves, the attack
   requires an infeasible number of calls and/or results in
   insignificant security loss (*).  Moreover, in the OPAQUE
   application, these attacks are completely impractical as the number
   of calls to the function translates to an equal number of failed
   authentication attempts by a _single_ user.  For example, one would
   need a billion impersonation attempts to reduce security by 15 bits
   and a trillion to reduce it by 20 bits - and most curves will not
   even allow for such attacks in the first place (note that this
   theoretical loss of security is with respect to computing discrete
   logarithms, not in reducing the password strength).

   (*) Some examples (courtesy of Dan Brown): For P-384, 2^90 calls
   reduce security from 192 to 147 bits; for NIST P-256 the options are
   6-bit reduction with 2153 OPRF calls, about 14 bit reduction with 187
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   million calls and 20 bits with a trillion calls.  For Curve25519,
   attacks are completely infeasible (require over 2^100 calls) but its
   twist form allows an attack with 25759 calls that reduces security by
   7 bits and one with 117223 calls that reduces security by 8.4 bits.

   Note on user authentication vs. authenticated key exchange.  OPAQUE
   provides PAKE (password-based authenticated key exchange)
   functionality in the client-server setting.  While in the case of
   user identification, focus is often on the authentication part, we
   stress that the key exchange element is not less crucial.  Indeed, in
   most cases user authentication is performed to enforce some policy,
   and the key exchange part is essential for binding this enforcement
   to the authentication step.  Skipping the key exchange part is
   analogous to carefully checking a visitor’s credential at the door
   and then leaving the door open for others to enter freely.

   This draft complies with the requirements for PAKE protocols set
   forth in [RFC8125].

9.  Appendix A.  Counter mode encryption

   We define counter mode encryption to be used with EnvU (Section 4).
   The specification is based on [RFC3686] with a different initial
   value of CTRBLK.  The description refers to AES but it applies to any
   block cipher (with its corresponding block size).

   Let PT be the plaintext to be encrypted and CTRBASE a 128-bit initial
   value (see Section 4 for the OPAQUE-specific CTRBASE value).
   Partition PT into 128-bit blocks PT = PT[1] PT[2] ... PT[n] where the
   final block can be shorter than 128 bits.  To compute the ciphertext
   CT, each block PT[i] is XORed with a block KS[i] of a key stream KS
   obtained by applying AES to a 128-bit counter CTRBLK initialized to
   CTRBASE and incremented for each block KS[i].  The last value KS[n]
   is truncated, if necessary, to the length of PT[n].  The ciphertext
   CT includes n+1 blocks defined as CT[0]=CTRBASE and CT[i]=PT[i] xor
   KS[i], for i=1,...,n, with the final block possibly shorter than 128
   bits.

   The encryption of n plaintext blocks can be summarized as:

     CT[0] := CTRBASE
     CTRBLK := CTRBASE
     FOR i := 1 to n-1 DO
       CT[i] := PT[i] XOR AES(CTRBLK)
       CTRBLK := CTRBLK + 1
     END
     CT[n] := PT[n] XOR TRUNC(AES(CTRBLK))

Krawczyk                Expires November 16, 2020              [Page 23]



Internet-Draft                   OPAQUE                         May 2020

   The AES() function performs AES encryption with key EncKey.  The
   TRUNC() function truncates the output of the AES encrypt operation to
   the same length as the final plaintext block, returning the most
   significant bits.

   Decryption is similar.  The decryption of ciphertext CT= CT[0] ...
   CT[n] summarized as:

     CTRBLK := C[0]
     FOR i := 1 to n-1 DO
       PT[i] := CT[i] XOR AES(CTRBLK)
       CTRBLK := CTRBLK + 1
     END
     PT[n] := CT[n] XOR TRUNC(AES(CTRBLK))
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