
Crypto Forum Research Group H. Krawczyk
Internet-Draft Algorand Foundation
Intended status: Informational May 15, 2020
Expires: November 16, 2020

 The OPAQUE Asymmetric PAKE Protocol
 draft-krawczyk-cfrg-opaque-04

Abstract

 This draft describes the OPAQUE protocol, a secure asymmetric
 password authenticated key exchange (aPAKE) that supports mutual
 authentication in a client-server setting without reliance on PKI and
 with security against pre-computation attacks upon server compromise.
 Prior aPAKE protocols did not use salt and if they did, the salt was
 transmitted in the clear from server to user allowing for the
 building of targeted pre-computed dictionaries. OPAQUE security has
 been proven by Jarecki et al. (Eurocrypt 2018) in a strong and
 universally composable formal model of aPAKE security. In addition,
 the protocol provides forward secrecy and the ability to hide the
 password from the server even during password registration.

 Strong security, versatility through modularity, good performance,
 and an array of additional features make OPAQUE a natural candidate
 for practical use and for adoption as a standard. To this end, this
 draft presents several instantiations of OPAQUE and ways of
 integrating OPAQUE with TLS.

 This draft presents a high-level description of OPAQUE highlighting
 its components and modular design. It also provides the basis for a
 specification for standardization but a detailed specification ready
 for implementation is beyond the current scope of this document
 (which may be expanded in future revisions or done separately).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Krawczyk Expires November 16, 2020 [Page 1]

Internet-Draft OPAQUE May 2020

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 16, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 6
 1.2. Notation . 6
 2. DH-OPRF . 6
 2.1. DH-OPRF instantiation and detailed specification 8
 2.2. Hardening OPRF via user iterations 8
 3. OPAQUE Specification . 8
 3.1. Password registration 9
 3.2. Online OPAQUE protocol (Login and key exchange)) 10
 3.3. Parties’ identities 10
 4. Specification of the EnvU envelope 11
 5. OPAQUE Instantiations . 13
 5.1. Instantiation of OPAQUE with HMQV and 3DH 14
 5.2. Instantiation of OPAQUE with SIGMA-I 17
 6. Integrating OPAQUE with TLS 1.3 17
 7. User enumeration . 21
 8. Security considerations 22
 9. Appendix A. Counter mode encryption 23
 10. Appendix B. Acknowledgments 24
 11. References . 24
 11.1. Normative References 24
 11.2. Informative References 24
 Author’s Address . 27

Krawczyk Expires November 16, 2020 [Page 2]

Internet-Draft OPAQUE May 2020

1. Introduction

 Password authentication is the prevalent form of authentication in
 the web and in most other applications. In the most common
 implementation, a user authenticates to a server by entering its user
 id and password where both values are transmitted to the server under
 the protection of TLS. This makes the password vulnerable to TLS
 failures, including many forms of PKI attacks, certificate
 mishandling, termination outside the security perimeter, visibility
 to middle boxes, and more. Moreover, even under normal operation,
 passwords are always visible in plaintext form at the server upon TLS
 decryption (in particular, storage of plaintext passwords is not an
 uncommon security incident, even among security-conscious companies).

 Asymmetric (or augmented) Password Authenticated Key Exchange (aPAKE)
 protocols are designed to provide password authentication and
 mutually authenticated key exchange without relying on PKI (except
 during user/password registration) and without disclosing passwords
 to servers or other entities other than the client machine. A secure
 aPAKE should provide the best possible security for a password
 protocol, namely, it should only be open to inevitable attacks:
 online impersonation attempts with guessed user passwords and offline
 dictionary attacks upon the compromise of a server and leakage of its
 password file. In the latter case, the attacker learns a mapping of
 a user’s password under a one-way function and uses such a mapping to
 validate potential guesses for the password. Crucially important is
 for the password protocol to use an unpredictable one-way mapping or
 otherwise the attacker can pre-compute a deterministic list of mapped
 passwords leading to almost instantaneous leakage of passwords upon
 server compromise.

 Quite surprisingly, in spite of the existence of multiple designs for
 (PKI-free) aPAKE protocols, none of these protocols is secure against
 pre-computation attacks. In particular, none of these protocols can
 use the standard technique against pre-computation that combines
 secret random values ("salt") into the one-way password mappings.
 Either these protocols do not use salt at all or, if they do, they
 transmit the salt from server to user in the clear, hence losing the
 secrecy of the salt and its defense against pre-computation.
 Furthermore, the transmission of salt may incur additional protocol
 messages.

 This draft describes OPAQUE, a PKI-free secure aPAKE that is secure
 against pre-computation attacks and capable of using secret salt.
 OPAQUE has been recently defined and studied by Jarecki et al.
 [OPAQUE] who prove the security of the protocol in a strong aPAKE
 model that ensures security against pre-computation attacks and is
 formulated in the Universal Composability (UC) framework [Canetti01]

Krawczyk Expires November 16, 2020 [Page 3]

Internet-Draft OPAQUE May 2020

 under the random oracle model. In contrast, very few aPAKE protocols
 have been proven formally and those proven were analyzed in a weak
 security model that allows for pre-computation attacks (e.g.,
 [GMR06]). This is not just a formal issue: these protocols are
 actually vulnerable to such attacks. This includes protocols that
 have recent analyses in the UC model such as AuCPace [AuCPace] and
 SPAKE2+ [SPAKE2plus]. We note that as shown in [OPAQUE], these
 protocols, and any aPAKE in the model from [GMR06], can be converted
 into an aPAKE secure against pre-computation attacks at the expense
 of an additional OPRF execution.

 It is worth noting that the currently most deployed (OKI-free) aPAKE
 is SRP [RFC2945] which is open to pre-computation attacks, is
 inefficient relative to OPAQUE, and does not have an elliptic-curve
 version (it works for RSA). OPAQUE is therefore a suitable
 replacement.

 OPAQUE’s design builds on a line of work initiated in the seminal
 paper of Ford and Kaliski [FK00] and is based on the HPAKE protocol
 of Xavier Boyen [Boyen09] and the (1,1)-PPSS protocol from Jarecki et
 al. [JKKX16]. None of these papers considered security against pre-
 computation attacks or presented a proof of aPAKE security (not even
 in a weak model).

 In addition to its proven resistance to pre-computation attacks,
 OPAQUE’s security features include forward secrecy (essential for
 protecting past communications in case of password leakage) and the
 ability to hide the password from the server - even during password
 registration. Moreover, good performance and an array of additional
 features make OPAQUE a natural candidate for practical use and for
 adoption as a standard. Such features include the ability to
 increase the difficulty of offline dictionary attacks via iterated
 hashing or other hardening schemes, and offloading these operations
 to the client (that also helps against online guessing attacks);
 extensibility of the protocol to support storage and retrieval of
 user’s secrets solely based on a password; and being amenable to a
 multi-server distributed implementation where offline dictionary
 attacks are not possible without breaking into a threshold of servers
 (such distributed solution requires no change or awareness on the
 client side relative to a single-server implementation).

 OPAQUE is defined and proven as the composition of two
 functionalities: An Oblivious PRF (OPRF) and a key-exchange protocol.
 It can be seen as a "compiler" for transforming any key-exchange
 protocol (with KCI security and forward secrecy - see below) into a
 secure aPAKE protocol. In OPAQUE, the user stores a secret private
 key at the server during password registration and retrieves this key
 each time it needs to authenticate to the server. The OPRF security

Krawczyk Expires November 16, 2020 [Page 4]

Internet-Draft OPAQUE May 2020

 properties ensure that only the correct password can unlock the
 private key while at the same time avoiding potential offline
 guessing attacks. This general composability property provides great
 flexibility and enables a variety of OPAQUE instantiations, from
 optimized performance to integration with TLS. The latter aspect is
 of prime importance as the use of OPAQUE with TLS constitutes a major
 security improvement relative to the standard password-over-TLS
 practice. At the same time, the combination with TLS builds OPAQUE
 as a fully functional secure communications protocol and can help
 provide privacy to account information sent by the user to the server
 prior to authentication.

 The KCI property required from KE protocols for use with OPAQUE
 states that knowledge of a party’s private key does not allow an
 attacker to impersonate others to that party. This is an important
 security property achieved by most public-key based KE protocols,
 including protocols that use signatures or public key encryption for
 authentication. It is also a property of many implicitly
 authenticated protocols (e.g., HMQV) but not all of them. We also
 note that key exchange protocols based on shared keys do not satisfy
 the KCI requirement, hence they are not considered in the OPAQUE
 setting. We note that KCI is needed to ensure a crucial property of
 OPAQUE: even upon compromise of the server, the attacker cannot
 impersonate the user to the server without first running an
 exhaustive dictionary attack. Another essential requirement from KE
 protocols for use in OPAQUE is to provide forward secrecy (against
 active attackers).

 This draft presents a high-level description of OPAQUE highlighting
 its components and modular design. It also provides the basis for a
 specification for standardization but a detailed specification ready
 for implementation is beyond the current scope of this document
 (which may be expanded in future revisions or done separately).

 We describe OPAQUE with a specific instantiation of the OPRF
 component over elliptic curves and with a few KE schemes, including
 the HMQV [HMQV], 3DH [SIGNAL] and SIGMA [SIGMA] protocols.
 We also present several strategies for integrating OPAQUE with TLS
 1.3 [RFC8446] offering different tradeoffs between simplicity,
 performance and user privacy. In general, the modularity of OPAQUE’s
 design makes it easy to integrate with additional key-exchange
 protocols, e.g., IKEv2.

 The computational cost of OPAQUE is determined by the cost of the
 OPRF, the cost of a regular Diffie-Hellman exchange, and the cost of
 authenticating such exchange. In our elliptic-curve implementation
 of the OPRF, the cost for the client is two exponentiations (one or
 two of which can be fixed base) and one hashing-into-curve operation

Krawczyk Expires November 16, 2020 [Page 5]

Internet-Draft OPAQUE May 2020

 [I-D.irtf-cfrg-hash-to-curve]; for the server, it is just one
 exponentiation. The cost of a Diffie-Hellman exchange is as usual
 two exponentiations per party (one of which is fixed-base). Finally,
 the cost of authentication per party depends on the specific KE
 protocol: it is just 1/6 of an exponentiation with HMQV, two
 exponentiations for 3DH, and it is one signature generation and
 verification in the case of SIGMA and TLS 1.3. These instantiations
 preserve the number of messages in the underlying KE protocol except
 in one of the TLS instantiations where user privacy may require an
 additional round trip.

1.1. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119]

1.2. Notation

 Throughout this document the first argument to a keyed function
 represents the key; separated by a semicolon are the function inputs
 typically implemented as an unambiguous concatenation of strings
 (details of encodings are left for a future, more detailed
 specification).

 Except if said otherwise, random choices in this specification refer
 to drawing with uniform distribution from a given set (i.e., "random"
 is short for "uniformly random"). Random choices can be replaced
 with fresh outputs from a cryptographically strong pseudorandom
 generator or pseudorandom function.

 The name OPAQUE: A homonym of O-PAKE where O is for Oblivious (the
 name OPAKE was taken).

2. DH-OPRF

 OPAQUE uses in a fundamental way an Oblivious Pseudo Random Function
 (OPRF).

 An Oblivious PRF (OPRF) is an interactive protocol between a server S
 and a user U defined by a special pseudorandom function (PRF),
 denoted F. The server’s input to the protocol is a key k for PRF F
 and the user’s input is a value x in the domain of F. At the end of
 the protocol, U learns F(k; x) and nothing else while S learns
 nothing from the protocol execution (in particular nothing about x or
 the value F(k; x)).

Krawczyk Expires November 16, 2020 [Page 6]

Internet-Draft OPAQUE May 2020

 OPAQUE uses a specific OPRF instantiation, called DH-OPRF, where the
 PRF, denoted F, is defined next, generically.

 Parameters: Hash function H (e.g., SHA2 or SHA3 function) with
 256-bit output at least, a cyclic group G of prime order q, a
 generator g of G, and hash function H’ mapping arbitrary strings into
 G (where H’ is modeled as a random oracle).

 o DH-OPRF domain: Any string

 o DH-OPRF range: The range of the hash function H

 o DH-OPRF key: A random element k in [0..q-1]

 o DH-OPRF Operation: F(k; x) = H(x, H’(x)^k)

 Protocol for computing DH-OPRF, U with input x and S with input k:

 o U: choose random r in [0..q-1], send alpha=H’(x)^r to S

 o S: upon receiving a value alpha, respond with beta=alpha^k

 o U: upon receiving beta set the PRF output to H(x, beta^{1/r})

 Received values alpha, beta are checked to be elements in G other
 than the identity and the receiving party aborts if the check fails
 (alternatively, co-factor exponentiation can be applied to the
 received values).

 Note (fixed-base blinding): An alternative way of computing DH-OPRF
 is for U to choose random r in [0..q-1] and send alpha=H’(x)_g^r to
 S, who responds with beta=alpha^k as well as with the value v=g^k
 (that S may store together with k). U then sets the OPRF output F(k;
 x) to H(x, beta_v^{-r}). This reduces the computation at U from two
 variable-base exponentiations in the above protocol to one fixed-base
 and one variable-base exponentiation. Moreover, if U stores g^k
 (e.g., for servers to which it logins frequently), then the
 computation takes two fixed-base exponentiations (with bases g and
 g^k). The downside of fixed-base blinding is the need for the server
 to send g^k which is otherwise not necessary. Applications can
 choose any of the blinding options as both compute the same function.

 We note that prior versions of this document defined the OPRF to
 include g^k under the hash function H in order to provide security
 for fixed-base blinding. However, [Blinding] proved recently that
 fixed-base blinding is secure also without hashing g^k.

Krawczyk Expires November 16, 2020 [Page 7]

Internet-Draft OPAQUE May 2020

2.1. DH-OPRF instantiation and detailed specification

 The above description of DH-OPRF is generic and applicable to any
 cyclic group. Detailed specification for concrete implementations of
 DH-OPEF can be found in [I-D.irtf-cfrg-voprf] which defines several
 instantiation suites for DH-OPRF, including the choice of hash-to-
 curve functions (denoted H’ above) as detailed in
 [I-D.irtf-cfrg-hash-to-curve]. OPAQUE will adopt some of these
 instantiation suites and their underlying elliptic curves. The
 latter will determine implementation details for such curves
 including ways to check curve membership, the suitability of co-
 factor mechanisms, etc.

2.2. Hardening OPRF via user iterations

 Protocol OPAQUE is strengthened against offline dictionary attacks by
 applying to the output of DH-OPRF a hardening procedure such as via
 repeated iterations, memory hard operations, etc. This greatly
 increases the cost of an offline attack upon the compromise of the
 password file at the server. For this purpose, we define the
 extended DH-OPRF F* as
 F*(k; x) = I^n(H(x, H’(x)^k)) where I is a hardening function and n
 is a measure of hardness. For example, I can represent the iterative
 function of PBKDF2 [RFC8018] and n the number of iterations; in the
 case of memory-hard functions such as Argon2 [I-D.irtf-cfrg-argon2]
 and scrypt [RFC7914], I is a more involved memory-hard function and n
 measures cost factors and other parameters.

 Parameters to the hardening function can be set to public values or
 set at the time of password registration and stored at the server.
 In this case, the server communicates these parameters to the user
 during OPAQUE executions together with the second OPRF message. We
 note that the salt value typically input into the KDF can be set to a
 constant, e.g., all zeros.

3. OPAQUE Specification

 OPAQUE consists of the concurrent run of an OPRF protocol and a key-
 exchange protocol KE (one that provides mutual authentication based
 on public keys and satisfies the KCI requirement discussed in the
 introduction). We first define OPAQUE in a generic way based on any
 OPRF and any PK-based KE, and later show specific instantiation using
 DH-OPRF (defined in Section 2) and several KE protocols. The user,
 running on a client machine, takes the role of initiator in these
 protocols and the server the responder’s. The private-public keys
 for the user are denoted PrivU and PubU, and for the server PrivS and
 PubS.

Krawczyk Expires November 16, 2020 [Page 8]

Internet-Draft OPAQUE May 2020

3.1. Password registration

 Password registration is executed between a user U (running on a
 client machine) and a server S. It is assumed the server can
 identify the user and the client can authenticate the server during
 this registration phase. This is the only part in OPAQUE that
 requires an authenticated channel, either physical, out-of-band, PKI-
 based, etc.

 o U chooses password PwdU and a pair of private-public keys PrivU
 and PubU for the given protocol KE.

 o S chooses OPRF key kU (random and independent for each user),
 chooses its own pair of private-public keys PrivS and PubS for use
 with protocol KE (S can use the same pair of keys with multiple
 users), and sends PubS to the client.

 o Client and S run the OPRF F(kU; PwdU) as defined in Section 2 with
 only the client learning the result. The client then applies a
 hardening function, as described in Section 2.2, to this result
 obtaining a value denoted RwdU (for "Randomized PwdU"). The
 parameters of the hardening function can be public and known to
 client machines or they can be stored by S and communicated to the
 client during registration and login sessions.

 o Client generates an "envelope" EnvU that contains PrivU and PubS
 protected under RwdU. PrivU is encrypted and authenticated while
 PubS is authenticated and optionally encrypted. EnvU may also
 include the user’s public key and parties’ identities.

 EnvU can be thought of as an authenticated encryption scheme with
 optional authenticated-only data. However, for technical reasons,
 not all authenticated encryption schemes can be used for building
 EnvU, therefore we provide a precise specification of the
 enveloping function in Section 4.

 o The client sends EnvU and PubU to S and erases PwdU, RwdU and all
 keys. S stores (EnvU, PubS, PrivS, PubU, kU) in a user-specific
 record. If PrivS and PubS are used for multiple users, S can
 store these values separately and omit them from the user’s
 record.

 Note (salt). We note that in OPAQUE the OPRF key acts as the secret
 salt value that ensures the infeasibility of pre-computation attacks.
 No extra salt value is needed.

 Note (password rules). The above procedure has the significant
 advantage that the user’s password is never disclosed to the server

Krawczyk Expires November 16, 2020 [Page 9]

Internet-Draft OPAQUE May 2020

 even during registration. Some sites require learning the user’s
 password for enforcing password rules. Doing so voids this important
 security property of OPAQUE and is not recommended. Moving the
 password check procedure to the client side is a more secure
 alternative (limited checks at the server are possible to implement,
 e.g., detecting repeated passwords).

3.2. Online OPAQUE protocol (Login and key exchange))

 After registration, the user (through a client machine) and server
 can run the OPAQUE protocol as a password-authenticated key exchange.
 The protocol proceeds as follows:

 o Client transmits user/account information to the server so that
 the server can retrieve the user’s record.

 o Server and client execute the OPRF protocol as defined in
 Section 2; client sets RwdU to the result of this computation (if
 this computation includes a hardening function as in Section 2.2,
 the parameters of this function are either known to the client or
 communicated by the server).

 o Server sends EnvU to client.

 o Client authenticates/decrypts EnvU using RwdU to obtain PrivU,
 PubU, PubS. If authentication fails, client aborts.

 o Client and server run the specified KE protocol using their
 respective public and private keys.

 Note that the steps preceding the run of KE can be arranged in just
 two messages (one from the client and a response from the server).
 Furthermore, OPAQUE is optimized by running the OPRF and KE
 concurrently with interleaved and combined messages (while preserving
 the internal ordering of messages in each protocol). In all cases,
 the client needs to obtain EnvU and RwdU (i.e., complete the OPRF
 protocol) before it can use its own private key PrivU and the
 server’s public key PubS in the run of KE.

3.3. Parties’ identities

 Authenticated key-exchange protocols generate keys that need to be
 uniquely and verifiably bound to a pair of identities, in the case of
 OPAQUE a user and a server. Thus, it is essential for the parties to
 agree on such identities, including an agreed bit representation of
 these identities as needed, for example, when inputting identities to
 a key derivation function. When referring to identities IdU and IdS
 in this document, we refer to such agreed identities. Applications

Krawczyk Expires November 16, 2020 [Page 10]

Internet-Draft OPAQUE May 2020

 may have different policies about how and when identities are
 determined. A natural approach is to tie IdU to the identity the
 server uses to fetch EnvU (hence determined during password
 registration) and to tie IdS to the server identity used by the
 client to initiate a password registration or login sessions. IdS
 and IdU can also be part of EnvU or be tied to the parties’ public
 keys. In principle, it is possible that identities change across
 different sessions as long as there is a policy that can establish if
 the identity is acceptable or not to the peer. However, we note that
 the public keys of both the server and the user must always be those
 defined at time of password registration.

4. Specification of the EnvU envelope

 In Section 3.1, EnvU was defined as an envelope containing the user’s
 private key PrivU and server’s public key PubS protected under RwdU.
 Optionally, EnvU may also contain PubU and identities IdS, IdU. Part
 of this information, e.g., PrivU, requires secrecy and authentication
 while other values may only need authentication. A natural way to
 build EnvU is using authenticated encryption with additional
 authenticated data. However, as proven in [OPAQUE], the security of
 OPAQUE requires the authenticated encryption scheme, AuthEnc, used to
 build EnvU to satisfy the property of "random-key robustness". That
 is, given a pair of random AuthEnc keys, it should be infeasible to
 create an authenticated ciphertext that successfully decrypts (i.e.,
 passes authentication) under the two keys. Some natural AuthEnc
 schemes, including GCM, do not satisfy this property and therefore,
 here we specify a particular scheme for implementing EnvU that enjoys
 this property. It is based on counter-mode encryption and HMAC.

 We define EnvU on the basis of two fields, AEenv and AOenv, one of
 which (but not both) can be empty. AEenv contains information that
 needs to be protected under authenticated encryption while AOenv only
 requires authentication. Typically, AEenv includes PrivU, and AOenv
 includes PubS and possibly PubU (PubU may be omitted if not needed
 for running the user side of the key exchange, or if it is re-
 computed by the client on the basis of PrivU). On the other hand,
 some applications may want to hide the public key(s) from
 eavesdroppers in which case these keys would go under AEenv. As
 noted below, there is also the possibility of omitting PrivU from
 EnvU and derive it from RwdU in which case AEenv may be empty. In
 all cases, EnvU must include the authenticated PubS, either under
 AEenv or AOenv. Additionally, EnvU may be used to transmit the user
 and/or server identities (see Section 3.3).

 EnvU is built by encrypting AEenv (if not empty), concatenating to it
 AOenv (if not empty), and computing HMAC on the concatenation (which
 must never be empty). HMAC must use a hash of length 256 bits or

Krawczyk Expires November 16, 2020 [Page 11]

Internet-Draft OPAQUE May 2020

 more to ensure collision resistance. For the benefit of
 interoperability we specify the use of a block cipher (AES256) in
 counter mode as the encryption function, however, any secure (not
 necessarily authenticated) encryption scheme can be used for the
 encryption of AEenv. HMAC can also be replaced but only by a
 collision resistant MAC (not all MAC functions are collision
 resistant!)

 We start by defining the key derivation function to derive three
 keys: a HMAC key HMACkey, an AES256 key EncKey and a third key KdKey
 for applications that choose to process user information beyond the
 OPAQUE functionality (e.g., additional secrets or credentials). We
 specify KdKey to be of the same length as HMACkey so it can be used,
 if needed, with HKDF-Expand.

 Let L1, L2, L3 be the lengths in octets of HmacKey, EncKey and KdKey,
 respectively, where L3=L1. If any one of EncKey or KdKey is omitted,
 its length is set to 0. We define:

 KEYS = HKDF(salt=0, IKM=RwdU, info="EnvU", Length=L1+L2+L3)

 and set HmacKey to the most significant L1 bytes of KEYS, EncKey to
 the next significant L2 bytes, and KdKey to the next L3 bytes. (For
 AES256 and HMAC-SHA256, the keys are of length 32 bytes each.)

 We define EnvU to be the concatenation of E and the authentication
 tag HMAC(HmacKey; E) where E is the concatenation of AES-CTR(EncKey;
 AEenv) and AOenv.

 Recall that EnvU is computed during password registration and is
 decrypted by the client during login. Decryption proceeds by
 deriving HmacKey and EncKey, verifying the HMAC tag, and if this is
 successful, decrypting E. If HMAC verification fails, the session is
 aborted.

 TBC: More precise specification needed here, such as default order of
 elements, their encodings, etc.

 In this specification, encryption of AEenv uses AES256 in counter
 mode with key EncKey and an initial counter value (that is part of
 the ciphertext) defined as the concatenation of a random 8-byte nonce
 chosen by the encrypting party (i.e., the client during password
 registration) and an 8-byte representation of 1 (7 zero bytes
 followed by 0x01). We refer to this initial value as CTRBASE.

 For completeness, we specify AES-CTR in Appendix Section 9.

Krawczyk Expires November 16, 2020 [Page 12]

Internet-Draft OPAQUE May 2020

 TBD: If an RFC defining this mode exists, we should refer to it
 instead. The mode is defined in [RFC3686] but in the context of
 IPsec’s ESP, so having a distilled version as in the Appendix may be
 worthwhile, particularly as we use a different initial value (the
 above RFC assumes a given IV which we do not have here).

 Note (rationale of CTRBASE): The nonce used in defining CTRBASE is
 needed, for example, for the case where a user registers the same
 password repeatedly, choosing a fresh PrivU each time while the value
 of the server’s OPRF key kU stays fixed. This results in the same
 encryption key but different plaintexts which requires a changing
 nonce. Eight bytes are more than enough for this.

 Note (using GCM): Can one replace AES-CTR with GCM-AES for encrypting
 AEenv? Yes, as long as one keeps the HMAC authentication. As said,
 any secure encryption can be used for encrypting AEenv. However, GCM
 also produces an authentication tag that is not needed here. As a
 result, using GCM may tempt someone to drop the HMAC authentication
 which would be insecure since standalone GCM is not random-key
 robust. For this reason it may be better not to replace plain AES-
 CTR with GCM or any other authenticated encryption.

 Note (storage/communication efficient authentication-only EnvU): It
 is possible to dispense with encryption in the construction of EnvU
 to obtain a shorter EnvU (resulting in less storage at the server and
 less communication from server to client). The idea is to derive
 PrivU from RwdU. However, for cases where PrivU is not a random
 string of a given length, we define a more general procedure.
 Namely, what’s derived from RwdU is a random seed used as an input to
 a key generation procedure that generates the pair (PrivU, PubU). In
 this case, AEenv is empty and AOenv contains PubS. The random key
 generation seed is defined as HKDF-Expand(KdKey; info="KG seed", L)
 where L is the required seed length. We note that in this
 encryption-less scheme, the authentication still needs to be random-
 key robust which HMAC satisfies.

 To further minimize storage space, the server can derive per-user
 OPRF keys kU from a single global secret key, and it can use the same
 pair (PrivS,PubS) for all users. In this case, the per-user OPAQUE
 storage consists of PubU and HMAC(Khmac; Pubs), a total of 64-byte
 overhead with a 256-bit curve and hash. EnvU communicated to the
 user is of the same length, consisting of PubS and HMAC(Khmac; Pubs).

5. OPAQUE Instantiations

 We present several instantiations of OPAQUE using DH-OPRF and
 different KE protocols. For the sake of concreteness we focus on KE
 protocols consisting of three messages, denoted KE1, KE2, KE3, and

Krawczyk Expires November 16, 2020 [Page 13]

Internet-Draft OPAQUE May 2020

 such that KE1 and KE2 include DH values sent by user and server,
 respectively, and KE3 provides explicit user authentication. As
 shown in [OPAQUE], OPAQUE cannot use less than three messages so the
 3-message instantiations presented here are optimal in terms of
 number of messages. On the other hand, there is no impediment of
 using OPAQUE with protocols with more than 3 messages as in the case
 of IKEv2 (or the underlying SIGMA-R protocol [SIGMA]).

 OPAQUE generic outline with 3-message KE:

 o C to S: IdU, alpha=H’(PwdU)^r, KE1

 o S to C: beta=alpha^kU, EnvU, KE2

 o C to S: KE3

 Key derivation and other details of the protocol are specified by the
 KE scheme. We do note that by the results in [OPAQUE], KE2 and KE3
 should include authentication of the OPRF messages (or at least of
 the value alpha) for binding between the OPRF run and the KE session.

 Next, we present three instantiations of OPAQUE - with HMQV, 3DH and
 SIGMA-I. In Section 6 we discuss integration with TLS 1.3 [RFC8446].

5.1. Instantiation of OPAQUE with HMQV and 3DH

 The integration of OPAQUE with HMQV [HMQV] leads to the most
 efficient instantiation of OPAQUE in terms of exponentiations count.
 Performance is close to optimal due to the low cost of authentication
 in HMQV: Just 1/6 of an exponentiation for each party over the cost
 of a regular DH exchange. However, HMQV is encumbered by an IBM
 patent, hence we also present OPAQUE with 3DH which only differs in
 the key derivation function at the cost of an extra exponentiation
 (and less resilience to the compromise of ephemeral exponents). We
 note that 3DH serves as a basis for the key-exchange protocol of
 [SIGNAL].

 Importantly, many other protocols follow a similar format with
 differences mainly in the key derivation function. This includes the
 Noise family of protocols. Extension may also apply to KEM-based KE
 protocols as in many post-quantum candidates.

 The private and public keys of the parties in these examples are
 Diffie-Hellman keys, namely, PubU=g^PrivU and PubS=g^PrivS.

 Specification/implementation details that are specific to the choice
 of group G will be adapted from the corresponding standards for
 different elliptic curves.

Krawczyk Expires November 16, 2020 [Page 14]

Internet-Draft OPAQUE May 2020

 PROTOCOL MESSAGES. OPAQUE with HMQV and OPAQUE with 3DH comprises:

 o KE1 = OPRF1, nonceU, info1_, IdU_, ePubU

 o KE2 = OPRF2, EnvU, nonceS, info2_, ePubS, Einfo2_, Mac(Km3;
 xcript2),

 o KE3 = info3_, Einfo3_, Mac(Km3; xcript3)}

 where:

 o * denotes optional elements;

 o OPRF1, OPRF2 denote the DH-OPRF values alpha, beta sent by user
 and server, respectively, as defined in Section 2;

 o EnvU is the OPAQUE’s envelope stored by the server containing
 keying information for the client to run the AKE with the server;

 o nonceU, nonceS are fresh random nonces chosen by client and
 server, respectively;

 o info1, info2, info3 denote optional application-specific
 information sent in the clear (e.g., they can include parameter
 negotiation, parameters for a hardening function, etc.);

 o Einfo2, Einfo3 denotes optional application-specific information
 sent encrypted under keys Ke2, Ke3 defined below;

 o IdU is the user’s identity used by the server to fetch the
 corresponding user record, including EnvU, OPRF key, etc. (it can
 be omitted from message KE1 if the information is available to the
 server in some other way);

 o IdS, the server’s identity, is not shown explicitly, it can be
 part of an info field (encrypted or not), part of EnvU, or can be
 known from other context (see Section 3.3); it is used crucially
 for key derivation (see below);

 o ePubU, ePubS are Diffie-Hellman ephemeral public keys chosen by
 user and server, respectively;

 o xcript2 includes the concatenation of the values OPRF1, nonceU,
 info1_, IdU_, ePubU, OPRF2, EnvU, nonceS, info2_, ePubS, Einfo2_;

 o xscript3 includes the concatenation of all elements in xscript2
 followed by info3_, Einfo3_;

Krawczyk Expires November 16, 2020 [Page 15]

Internet-Draft OPAQUE May 2020

 Notes:

 o The explicit concatenation of elements under xscript2 and xscript3
 can be replaced with hashed values of these elements, or their
 combinations, using a collision-resistant hash (e.g., as in the
 transcript-hash of TLS 1.3).

 o The inclusion of the values OPRF1 and OPRF2 under xscript2 is
 needed for binding the OPRF execution to that of the KE session.
 On the other hand, including EnvU in xscript2 is not mandatory.

 o The ephemeral keys ePubU, ePubS, can be exchanged prior to the
 above 3 messages, e.g., when running these protocols under TLS
 1.3.

 KEY DERIVATION. The above protocol requires MAC keys Km2, Km3, and
 optional encryption keys Ke2, Ke3, as well as generating a session
 key SK which is the AKE output for protecting subsequent traffic (or
 for generating further key material). Key derivation uses HKDF
 [RFC5869] with a combination of the parties static and ephemeral
 private-public key pairs and the parties’ identities IdU, IdS. See
 Section 3.3.

 SK, Km2, Km3, Ke2, Ke3 = HKDF(salt=0, IKM, info, L)

 where L is the sum of lengths of SK, Km2, Km3, Ke2, Ke3, and SK gets
 the most significant bytes of the key stream, Km2 the next bunch,
 etc.

 Values IKM and info are defined for each protocol:

 FOR HMQV: Info="HMQV keys" and IKM = Khmqv | IdU | IdS

 where Khmqv is computed:

 - by the client as: Khmqv = (ePubS * PubS^b)^{ePrivU + a*PrivU}

 - by the server as: Khmqv = (ePubU * PubU^a)^{ePrivS + b*PrivS}

 with a = H(ePubU, IdS) and b = H(ePubS, IdU)

 FOR 3DH: Info="3DH keys" and IKM = K3dh | IdU | IdS

 where K3dh is the concatenation of 3 DH values computed

 - by the client as: K3dh = ePubS^ePrivU | PubS^ePrivU | ePubS^PrivU

 - by the server as: K3dh = ePubU^ePrivS | PubU^ePrivS | ePubU^PrivS

Krawczyk Expires November 16, 2020 [Page 16]

Internet-Draft OPAQUE May 2020

5.2. Instantiation of OPAQUE with SIGMA-I

 We show how OPAQUE is built around the 3-message SIGMA-I protocol
 [SIGMA]. This is an example of a signature-based protocol and also
 serves as a basis for integration of OPAQUE with TLS 1.3, as the
 latter follows the design of SIGMA-I (see Section 6. This
 specification can be extended to the 4-message SIGMA-R protocol as
 used in IKEv2.

 PROTOCOL MESSAGES. OPAQUE with SIGMA-I comprises:

 o KE1 = OPRF1, nonceU, info1_, IdU_, ePubU

 o KE2 = OPRF2, EnvU, nonceS, info2_, ePubS, Einfo2_, Sign(PrivS;
 xcript2-), Mac(Km2; IdU),

 o KE3 = info3_, Einfo3_, Sign(PrivU; xcript3-), Mac(Km3; IdS)}

 See explanation of fields above. In addition, for the signed
 material, xscript2- is defined similarly to xscript2, however if
 xscript2 includes information that identifies the user, such
 information can be eliminated in xscript2- (this is advised if
 signing user’s identification information by the server is deemed to
 have adverse privacy consequences). In SIGMA, including the peer’s
 identity under the MAC is necessary and sufficient for security, but
 including it under the signature is not necessary. Similarly,
 xscript3- is defined as xcript3 with server identification
 information removed if so desired.

 KEY DERIVATION. Key in SIGMA-I are derived as

 SK, Km2, Km3, Ke2, Ke3 = HKDF(salt=0, IKM, info, L)

 where L is the sum of lengths of SK, Km2, Km3, Ke2, Ke3, and SK gets
 the most significant bytes of the stream, Km2 the next bunch, etc.

 info = "SIGMA-I keys" and IKM is computed

 o by the client as IKM = ePubS^ePrivU

 o by the server as IKM = ePubU^ePrivS

6. Integrating OPAQUE with TLS 1.3

 This section is intended as a discussion of ways to integrate OPAQUE
 with TLS 1.3. Precise protocol details are left for a future
 separate specification. A very preliminary draft is
 [I-D.sullivan-tls-opaque].

Krawczyk Expires November 16, 2020 [Page 17]

Internet-Draft OPAQUE May 2020

 As stated in the introduction, the security of the standard password-
 over-TLS mechanism for password authentication suffers from its
 essential reliance on PKI and the exposure of passwords to the server
 (and possibly others) upon TLS decryption. Integrating OPAQUE with
 TLS removes these vulnerabilities while at the same time it armors
 TLS itself against PKI failures. Such integration also benefits
 OPAQUE by leveraging the standardized negotiation and record-layer
 security of TLS. Furthermore, TLS offers an initial PKI-
 authenticated channel to protect the privacy of account information
 such as user name transmitted between client and server.

 If one is willing to forgo protection of user account information
 transmitted between user and server, integrating OPAQUE with TLS 1.3
 is relatively straightforward and follows essentially the same
 approach as with SIGMA-I in Section 5.2. Specifically, one reuses
 the Diffie-Hellman exchange from TLS and uses the user’s private key
 PrivU retrieved from the server as a signature key for TLS client
 authentication. The integrated protocol will have as its first
 message the TLS’s Client Hello augmented with user account
 information and with the DH-OPRF first message (the value alpha).
 The server’s response includes the regular TLS 1.3 second flight
 augmented with the second OPRF message which includes the values beta
 and EnvU. For its TLS signature, the server uses the private key
 PrivS whose corresponding public key PubS is authenticated as part of
 the user envelope EnvU (there is no need to send a regular TLS
 certificate in this case). Finally, the third flight consists of the
 standard client Finish message with client authentication where the
 client’s signature is produced with the user’s private key PrivU
 retrieved from EnvU and verified by the server using public key PubU.

 The above scheme is depicted in Figure 1 where the sign + indicates
 fields added by OPAQUE, and OPRF1, OPRF2 denote the two DH-OPRF
 messages. Other messages in the figure are the same as in TLS 1.3.
 Notation {...} indicates encryption under handshake keys. Note that
 ServerSignature and ClientSignature are performed with the private
 keys defined by OPAQUE and they replace signatures by traditional TLS
 certificates.

Krawczyk Expires November 16, 2020 [Page 18]

Internet-Draft OPAQUE May 2020

 Client Server

 ClientHello
 key_share
 + userid + OPRF1 -------->
 ServerHello
 key_share
 {+ OPRF2 + EnvU}
 {ServerSignature}
 <-------- {ServerFinished}

 {ClientSignature}
 {ClientFinished} -------->

 Figure 1: Integration of OPAQUE in TLS 1.3 (no userid
 confidentiality)

 Note that in order to send OPRF1 in the first message, the client
 needs to know the DH group the server uses for OPRF, or it needs to
 "guess" it. This issue already appears in TLS 1.3 where the client
 needs to guess the key_share group and it should be handled similarly
 in OPAQUE (e.g., the client may try one or more groups in its first
 message).

 Protection of user’s account information can be added through TLS 1.3
 pre-shared/resumption mechanisms where the account information
 appended to the ClientHello message would be encrypted under the pre-
 shared key.

 When a resumable session or pre-shared key between the client and the
 server do not exist, user account protection requires a server
 certificate. One option that does not add round trips is to use a
 mechanism similar to the proposed ESNI extension [I-D.ietf-tls-esni]
 or a semi-static TLS exchange as in [I-D.ietf-tls-semistatic-dh].
 Without such extensions, one would run a TLS 1.3 handshake augmented
 with the two first OPAQUE messages interleaved between the second and
 third flight of the regular TLS handshake. That is, the protocol
 consists of five flights as follows: (i) A regular 2-flight 1-RTT
 handshake to produce handshake traffic keys authenticated by the
 server’s TLS certificate; (ii) two OPAQUE messages that include user
 identification information, the DH-OPRF messages exchanged between
 client and server, and the retrieved EnvU, all encrypted under the
 handshake traffic keys (thus providing privacy to user account
 information); (iii) the TLS 1.3 client authentication flight where
 client authentication uses the user’s private signature key PrivU
 retrieved from the server in step (ii).

Krawczyk Expires November 16, 2020 [Page 19]

Internet-Draft OPAQUE May 2020

 Note that server authentication in step (i) uses TLS certificates
 hence PKI is used for user account privacy but not for user
 authentication or other purposes. (In some applications, PKI may be
 trusted also for server authentication in which case server
 authentication through OPAQUE may be forgone). In OPAQUE the server
 authenticates using the private key PrivS whose corresponding public
 key PubS is sent to the user as part of EnvU. There are two options:
 If PubS is the same as the public key the server used in the 1-RTT
 authentication (step (i)) then there is no need for further
 authentication. Otherwise, the server needs to send a signature
 under PrivS that is piggybacked to the second OPAQUE message in (ii).
 In this case, the signature would cover the running transcript hash
 as is standard in TLS 1.3. The client signature in the last message
 also covers the transcript hash including the regular handshake and
 OPAQUE messages.

 The described scheme is depicted in Figure 2. Please refer to the
 text before Figure 1 describing notation. Note the asterisk in the
 ServerSignature message. This indicates that this message is
 optional as it is used only if the server’s key PubS in OPAQUE is
 different than the one in the server’s certificate (transmitted in
 the second protocol flight).

 Client Server

 ClientHello
 key_share -------->
 ServerHello
 key_share
 {Certificate}
 {CertificateVerify}
 <-------- {ServerFinished}

 {+ userid + OPRF1} -------->

 {+ OPRF2 + EnvU}
 <-------- {+ ServerSignature*}

 {ClientSignature}
 {ClientFinished} -------->

 Figure 2: Integration of OPAQUE in TLS 1.3 (with userid
 confidentiality)

 We note that the above approaches for integration of OPAQUE with TLS
 may benefit from the post-handshake client authentication mechanism
 of TLS 1.3 and the exported authenticators from
 [I-D.ietf-tls-exported-authenticator]. Also, formatting of messages

Krawczyk Expires November 16, 2020 [Page 20]

Internet-Draft OPAQUE May 2020

 and negotiation information suggested in [I-D.barnes-tls-pake] can be
 used in the OPAQUE setting.

7. User enumeration

 User enumeration refers to attacks where the attacker tries to learn
 whether a given user identity is registered with a server.
 Preventing such attack requires the server to act with unknown user
 identities in a way that is indistinguishable from its behavior with
 existing users. Here we suggest a way to implement such defense,
 namely, a way for simulating the values beta and EnvU for non-
 existing users. Note that if the same pair of user identity IdU and
 value alpha is received twice by the server, the response needs to be
 the same in both cases (since this would be the case for real users).
 For protection against this attack, one would apply the encryption
 function in the construction of EnvU (Section 4) to all the key
 material in EnvU, namely, AOenv will be empty. The server S will
 have two keys MK, MK’ for a PRF f (this refers to a regular PRF such
 as HMAC or CMAC). Upon receiving a pair of user identity IdU and
 value alpha for a non-existing user IdU, S computes kU=f(MK; IdU) and
 kU’=f(MK’; IdU) and responds with values beta=alpha^kU and EnvU,
 where the latter is computed as follows. RwdU is set to kU’ and
 AEenv is set to the all-zero string (of the length of a regular EnvU
 plaintext). Care needs to be taken to avoid side channel leakage
 (e.g., timing) from helping differentiate these operations from a
 regular server response. The above requires changes to the server-
 side implementation but not to the protocol itself or the client
 side.

 There is one form of leakage that the above allows and whose
 prevention would require a change in OPAQUE. Note that an attacker
 that tests a IdU (and same alpha) twice and receives different
 responses can conclude that either the user registered with the
 service between these two activations or that the user was registered
 before but changed its password in between the activations (assuming
 the server changes kU at the time of a password change). In any
 case, this indicates that IdU is a registered user at the time of the
 second activation. To conceal this information, S can implement the
 derivation of kU as kU=f(MK; IdU) also for registered users. Hiding
 changes in EnvU, however, requires a change in the protocol. Instead
 of sending EnvU as is, S would send an encryption of EnvU under a key
 that the user derives from the OPRF result (similarly to RwdU) and
 that S stores during password registration. During login, the user
 will derive this key from the OPRF result, will use it to decrypt
 EnvU, and continue with the regular protocol. If S uses a randomized
 encryption, the encrypted EnvU will look each time as a fresh random
 string, hence S can simulate the encrypted EnvU also for non-existing
 users.

Krawczyk Expires November 16, 2020 [Page 21]

Internet-Draft OPAQUE May 2020

 Note that the first case above does not change the protocol so its
 implementation is a server’s decision (the client side is not
 changed). The second case, requires changes on the client side so it
 changes OPAQUE itself.
 TBC: Should this variant be documented/standardized?

8. Security considerations

 This is an early draft presenting the OPAQUE concept and its
 potential instantiations. More precise details and security
 considerations will be provided in future drafts. We note that the
 security of OPAQUE is formally proved in [OPAQUE] under a strong
 model of aPAKE security assuming the security of the OPRF function
 and of the underlying key-exchange protocol. In turn, the security
 of DH-OPRF is proven in the random oracle model under the One-More
 Diffie-Hellman assumption [JKKX16].

 Best practices regarding implementation of cryptographic schemes
 apply to OPAQUE. Particular care needs to be given to the
 implementation of the OPRF regarding testing group membership and
 avoiding timing and other side channel leakage in the hash-to-curve
 mapping. Drafts [I-D.irtf-cfrg-hash-to-curve] and
 [I-D.irtf-cfrg-voprf] have detailed instantiation and implementation
 guidance.

 While one can expect the practical security of the OPRF function
 (namely, the hardness of computing the function without knowing the
 key) to be in the order of computing discrete logarithms or solving
 Diffie-Hellman, Brown and Gallant [BG04] and Cheon [Cheon06] show an
 attack that slightly improves on generic attacks. For the case that
 q-1 or q+1, where q is the order of the group G, has a t-bit divisor,
 they show an attack that calls the OPRF on 2^t chosen inputs and
 reduces security by t/2 bits, i.e., it can find the OPRF key in time
 2^{q/2-t/2} and 2^{q/2-t/2} memory. For typical curves, the attack
 requires an infeasible number of calls and/or results in
 insignificant security loss (*). Moreover, in the OPAQUE
 application, these attacks are completely impractical as the number
 of calls to the function translates to an equal number of failed
 authentication attempts by a _single_ user. For example, one would
 need a billion impersonation attempts to reduce security by 15 bits
 and a trillion to reduce it by 20 bits - and most curves will not
 even allow for such attacks in the first place (note that this
 theoretical loss of security is with respect to computing discrete
 logarithms, not in reducing the password strength).

 (*) Some examples (courtesy of Dan Brown): For P-384, 2^90 calls
 reduce security from 192 to 147 bits; for NIST P-256 the options are
 6-bit reduction with 2153 OPRF calls, about 14 bit reduction with 187

Krawczyk Expires November 16, 2020 [Page 22]

Internet-Draft OPAQUE May 2020

 million calls and 20 bits with a trillion calls. For Curve25519,
 attacks are completely infeasible (require over 2^100 calls) but its
 twist form allows an attack with 25759 calls that reduces security by
 7 bits and one with 117223 calls that reduces security by 8.4 bits.

 Note on user authentication vs. authenticated key exchange. OPAQUE
 provides PAKE (password-based authenticated key exchange)
 functionality in the client-server setting. While in the case of
 user identification, focus is often on the authentication part, we
 stress that the key exchange element is not less crucial. Indeed, in
 most cases user authentication is performed to enforce some policy,
 and the key exchange part is essential for binding this enforcement
 to the authentication step. Skipping the key exchange part is
 analogous to carefully checking a visitor’s credential at the door
 and then leaving the door open for others to enter freely.

 This draft complies with the requirements for PAKE protocols set
 forth in [RFC8125].

9. Appendix A. Counter mode encryption

 We define counter mode encryption to be used with EnvU (Section 4).
 The specification is based on [RFC3686] with a different initial
 value of CTRBLK. The description refers to AES but it applies to any
 block cipher (with its corresponding block size).

 Let PT be the plaintext to be encrypted and CTRBASE a 128-bit initial
 value (see Section 4 for the OPAQUE-specific CTRBASE value).
 Partition PT into 128-bit blocks PT = PT[1] PT[2] ... PT[n] where the
 final block can be shorter than 128 bits. To compute the ciphertext
 CT, each block PT[i] is XORed with a block KS[i] of a key stream KS
 obtained by applying AES to a 128-bit counter CTRBLK initialized to
 CTRBASE and incremented for each block KS[i]. The last value KS[n]
 is truncated, if necessary, to the length of PT[n]. The ciphertext
 CT includes n+1 blocks defined as CT[0]=CTRBASE and CT[i]=PT[i] xor
 KS[i], for i=1,...,n, with the final block possibly shorter than 128
 bits.

 The encryption of n plaintext blocks can be summarized as:

 CT[0] := CTRBASE
 CTRBLK := CTRBASE
 FOR i := 1 to n-1 DO
 CT[i] := PT[i] XOR AES(CTRBLK)
 CTRBLK := CTRBLK + 1
 END
 CT[n] := PT[n] XOR TRUNC(AES(CTRBLK))

Krawczyk Expires November 16, 2020 [Page 23]

Internet-Draft OPAQUE May 2020

 The AES() function performs AES encryption with key EncKey. The
 TRUNC() function truncates the output of the AES encrypt operation to
 the same length as the final plaintext block, returning the most
 significant bits.

 Decryption is similar. The decryption of ciphertext CT= CT[0] ...
 CT[n] summarized as:

 CTRBLK := C[0]
 FOR i := 1 to n-1 DO
 PT[i] := CT[i] XOR AES(CTRBLK)
 CTRBLK := CTRBLK + 1
 END
 PT[n] := CT[n] XOR TRUNC(AES(CTRBLK))

10. Appendix B. Acknowledgments

 The OPAQUE protocol and its analysis is joint work of the author with
 Stas Jarecki and Jiayu Xu. We are indebted to the OPAQUE reviewers
 during CFRG’s aPAKE selection process, particularly Julia Hesse and
 Bjorn Tackmann. This draft has benefited from comments by multiple
 people. Special thanks to Richard Barnes, Dan Brown, Eric Crockett,
 Paul Grubbs, Fredrik Kuivinen, Kevin Lewi, Payman Mohassel, Jason
 Resch, Nick Sullivan.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

11.2. Informative References

 [AuCPace] Haase, B. and B. Labrique, "AuCPace: Efficient verifier-
 based PAKE protocol tailored for the IIoT",
 http://eprint.iacr.org/2018/286 , 2018.

 [BG04] Brown, D. and R. Galant, "The static Diffie-Hellman
 problem", http://eprint.iacr.org/2004/306 , 2004.

 [Blinding]
 Jarecki, S., Krawczyk, H., and J. Xu, "Multiplicative DH-
 OPRF and Its Applications to Password Protocols",
 Manuscript , 2020.

Krawczyk Expires November 16, 2020 [Page 24]

Internet-Draft OPAQUE May 2020

 [Boyen09] Boyen, X., "HPAKE: Password authentication secure against
 cross-site user impersonation", Cryptology and Network
 Security (CANS) , 2009.

 [Canetti01]
 Canetti, R., "Universally composable security: A new
 paradigm for cryptographic protocols", IEEE Symposium on
 Foundations of Computer Science (FOCS) , 2001.

 [Cheon06] Cheon, J., "Security analysis of the strong Diffie-Hellman
 problem", Euroctypt 2006 , 2006.

 [FK00] Ford, W. and B. Kaliski, Jr, "Server-assisted generation
 of a strong secret from a password", WETICE , 2000.

 [GMR06] Gentry, C., MacKenzie, P., and . Z, Ramzan, "A method for
 making password-based key exchange resilient to server
 compromise", CRYPTO , 2006.

 [HMQV] Krawczyk, H., "HMQV: A high-performance secure Diffie-
 Hellman protocol", CRYPTO , 2005.

 [I-D.barnes-tls-pake]
 Barnes, R. and O. Friel, "Usage of PAKE with TLS 1.3",
 draft-barnes-tls-pake-04 (work in progress), July 2018.

 [I-D.ietf-tls-esni]
 Rescorla, E., Oku, K., Sullivan, N., and C. Wood,
 "Encrypted Server Name Indication for TLS 1.3", draft-
 ietf-tls-esni-06 (work in progress), March 2020.

 [I-D.ietf-tls-exported-authenticator]
 Sullivan, N., "Exported Authenticators in TLS", draft-
 ietf-tls-exported-authenticator-11 (work in progress),
 December 2019.

 [I-D.ietf-tls-semistatic-dh]
 Rescorla, E., Sullivan, N., and C. Wood, "Semi-Static
 Diffie-Hellman Key Establishment for TLS 1.3", draft-ietf-
 tls-semistatic-dh-01 (work in progress), March 2020.

 [I-D.irtf-cfrg-argon2]
 Biryukov, A., Dinu, D., Khovratovich, D., and S.
 Josefsson, "The memory-hard Argon2 password hash and
 proof-of-work function", draft-irtf-cfrg-argon2-10 (work
 in progress), March 2020.

Krawczyk Expires November 16, 2020 [Page 25]

Internet-Draft OPAQUE May 2020

 [I-D.irtf-cfrg-hash-to-curve]
 Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R., and
 C. Wood, "Hashing to Elliptic Curves", draft-irtf-cfrg-
 hash-to-curve-07 (work in progress), April 2020.

 [I-D.irtf-cfrg-voprf]
 Davidson, A., Sullivan, N., and C. Wood, "Oblivious
 Pseudorandom Functions (OPRFs) using Prime-Order Groups",
 draft-irtf-cfrg-voprf-03 (work in progress), March 2020.

 [I-D.sullivan-tls-opaque]
 Sullivan, N., Krawczyk, H., Friel, O., and R. Barnes,
 "Usage of OPAQUE with TLS 1.3", draft-sullivan-tls-
 opaque-00 (work in progress), March 2019.

 [JKKX16] Jarecki, S., Kiayias, A., Krawczyk, H., and J. Xu,
 "Highly-efficient and composable password-protected secret
 sharing (or: how to protect your bitcoin wallet online)",
 IEEE European Symposium on Security and Privacy , 2016.

 [OPAQUE] Jarecki, S., Krawczyk, H., and J. Xu, "OPAQUE: An
 Asymmetric PAKE Protocol Secure Against Pre-Computation
 Attacks", Eurocrypt , 2018.

 [RFC2945] Wu, T., "The SRP Authentication and Key Exchange System",
 RFC 2945, DOI 10.17487/RFC2945, September 2000,
 <https://www.rfc-editor.org/info/rfc2945>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC7914] Percival, C. and S. Josefsson, "The scrypt Password-Based
 Key Derivation Function", RFC 7914, DOI 10.17487/RFC7914,
 August 2016, <https://www.rfc-editor.org/info/rfc7914>.

 [RFC8018] Moriarty, K., Ed., Kaliski, B., and A. Rusch, "PKCS #5:
 Password-Based Cryptography Specification Version 2.1",
 RFC 8018, DOI 10.17487/RFC8018, January 2017,
 <https://www.rfc-editor.org/info/rfc8018>.

 [RFC8125] Schmidt, J., "Requirements for Password-Authenticated Key
 Agreement (PAKE) Schemes", RFC 8125, DOI 10.17487/RFC8125,
 April 2017, <https://www.rfc-editor.org/info/rfc8125>.

Krawczyk Expires November 16, 2020 [Page 26]

Internet-Draft OPAQUE May 2020

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [SIGMA] Krawczyk, H., "SIGMA: The SIGn-and-MAc approach to
 authenticated Diffie-Hellman and its use in the IKE
 protocols", CRYPTO , 2003.

 [SIGNAL] "Signal recommended cryptographic algorithms",
 https://signal.org/docs/specifications/
 doubleratchet/#recommended-cryptographic-algorithms ,
 2016.

 [SPAKE2plus]
 Shoup, V., "Security Analysis of SPAKE2+",
 http://eprint.iacr.org/2020/313 , 2020.

Author’s Address

 Hugo Krawczyk
 Algorand Foundation

 Email: hugokraw@gmail.com

Krawczyk Expires November 16, 2020 [Page 27]

