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Abstract

TCP servers are visible on the Internet to unauthorized clients, as the existence of a TCP server is leaked in the TCP
handshake before applications have a chance to authenticate the client.

We present a small modification to the initial TCP handshake that allows TCP clients to replace the TCP ISN in the TCP
SYN packet with an authorization token. Basedon this information, TCP servers may then chose to obscure their
presence from unauthorized TCP clients.

This RFC documents the specific method for calculating the authorization token to ensure interoperability and to
minimize interference by middleboxes. Mandatingsupport for this method in operating system TCP/IP implementations
will ensure that clients can connect to TCP servers protected by this method.
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This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also
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"work in progress."

This Internet-Draft will expire on July 21, 2015.



Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Leg al Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from
this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and
are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. . . . . . . . . . . . . . . . . . . . . . .  2
2. Terminology and Conventions Used in This Document . . . . . . 3
3. Descriptionof the TCP Stealth Option . . . . . . . . . . . . 4
3.1. 32-bitAccess Authorization . . . . . . . . . . . . . . . 4
3.1.1. Test Vectors .. . . . . . . . . . . . . . . . . . .  4

3.2. 16-bitAccess Authorization and 16-bit Payload Protection 5
3.2.1. Test Vectors .. . . . . . . . . . . . . . . . . . .  5

4. Timestamps and TCP SYN Retransmits. . . . . . . . . . . . .  6
5. TCPStealth and TCP SYN Cookies . . . . . . . . . . . . . . . 6
6. Integration with Applications . . . . . . . . . . . . . . . . 6
7. TCPStealth and destination network address translation

(DNAT) . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
8. Oldduplicate segments .. . . . . . . . . . . . . . . . . .  7
9. Middlebox Considerations .. . . . . . . . . . . . . . . . .  7
10. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 7
11. Security Considerations . . . . . . . . . . . . . . . . . . . 7
12. References. . . . . . . . . . . . . . . . . . . . . . . . .  8
12.1. Normative References . . . . . . . . . . . . . . . . . . 8
12.2. Informative References . . . . . . . . . . . . . . . . . 9

Authors’ Addresses. . . . . . . . . . . . . . . . . . . . . . .  9

1. Introduction

As it has been shown in [ZMAP], it is feasible today to perform a port scan on all Internet hosts in less than an hour and
specialized search engines perform such port scans regularily. At the same time, security issues in server
implementations are exploited by various parties for espionage and commercial gain. Thus,it is increasingly important to
minimize the visible footprint of services on Internet hosts, thereby reducing the attack surface.



Since the complete integrity of the internet infrastructure cannot be assumed, it follows that adversaries may be able to
observe all traffic of an Internet host and perform man-in-the-middle attacks on traffic originating from specific clients.
Furthermore, on the server side, an adversary looking for exploitable systems should be expected to have the ability to
perform extensive port scans for TCP servers.

To help address this problem, we propose to standardize TCP Stealth, a stealthy port-knocking variant where an
authenticator is embedded in the TCP SQN number. TCP Stealth enables authorized clients to perform a standard TCP
handshake with the server, while obscuring the existence of the server from port scanners. The basic idea is to transmit
an authorization token derived from a shared secret instead of a random value for the initial TCP SQN number in the TCP
SYN packet. Thetoken demonstrates to the server that the client is authorized and may furthermore protect the integrity
of the beginning of the TCP payload to prevent man-in-the-middle attacks. If the token is incorrect, the operating system
pretends that the port is closed. Thus, the TCP server is hidden from port scanners and the TCP traffic has no anomalies
compared to a normal TCP handshake.

The TCP MD5 Signature Option defined in RFC 2385 defines a similar mechanism, except that RFC 2385 does not work
in the presence of NATs (RFC 1631) and visibly changes the TCP wire protocol, and can thus be easily detected.

While TCP Stealth does not change the TCP wire protocol, the specific method for calculating the authorization token
must be consistent across Internet hosts and their TCP/IP implementations to ensure interoperability. By embedding the
port knocking logic into the TCP/ IP implementation of an operating system, we minimize the possibility of detecting
hidden services via timing attacks, and avoid the pitfalls of applications trying to re-implement TCP in user-space.
Implementors MUST make sure that the response to a connection request with wrong ISN value does not differ in any
way from the response to a connection request to a closed port.

2. Terminology and Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

We use "TCP Stealth" to refer to the techniques described in this document.



The abbreviation "ISN" is used for the initial sequence number in the TCP header.

3. Descriptionof the TCP Stealth Option

TCP Stealth implementations MUST support two variants for the TCP ISN calculation. The first variant is to only
provide access authorization, the second also ensures the integrity of the first octets of the TCP payload. Which method
is used depends on the application protocol, as only certain application protocols can benefit from the TCP payload
protection.

Using the TCP Timestamp option (see RFC 7323, section 3.2) is recommended but optional in combination with TCP
Stealth. Ifthe client does not include a timestamp in the request, the following calculations should be done using a
timestamp value of zero.

Note that if the TCP Timestamp option is enabled then the TCP implementation MUST make sure that potential
retransmits of TCP SYN segments carry the same value for the TSVal field as the initial SYN segment that was sent out
by TCP Stealth.

3.1. 32-bitAccess Authorization

For TCP Stealth without payload integrity protection, the 32 bit ISN is calculated using a single round of MD5 (the
procedure explained in RFC 1321, section 3.4) using the 64-byte shared secret as the argument for the hash function and
a 16 byte initialization vector IV computed as follows:

First, the 16 byte are set to the destination address, in the case of IPv4 padded with zeros. Then, (if existent) the
timestamp value (in network byte order) is XORed at offsets 8 to 11, and finally the destination port (in network byte
order) is XORed at offsets 12 to 13.

The resulting four 32-bit words of the MD5 hash are combined using XOR to calculate the 32-bit ISN in network byte
order.

3.1.1. Test Vectors



+------------------+-----------------------+-----------------------+
| | IPv4 | IPv6 |
+------------------+-----------------------+-----------------------+
| Shared secret | "Magic secret string" | "Magic secret string" |
| Destination IP | 192.18.42.42 |2001:db8::2a:2a |
| Destination Port | 4242 | 4242 |
| Timestamp |0x11223344 | 0x11223344 |
| Resulting ISN | 0xedea1325 | 0x4923a842 |
+------------------+-----------------------+-----------------------+

3.2. 16-bitAccess Authorization and 16-bit Payload Protection

For TCP Stealth with payload integrity protection, the protected portion of the payload is limited to at most the first
segment. Additionally, both client and server must know the exact number of bytes to be protected beforehand. The
secret is prepended to the protected payload and hashed using full MD5 and the resulting eight 16-bit words of the MD5
hash are combined using XOR to a 16-bit integrity hash (IH).

Then, the 32 bit ISN is calculated using a single round of MD5 (the procedure explained in RFC 1321, section 3.4) using
the 64-byte shared secret as the argument for the hash function and a 16 byte initialization vector IV computed as follows:

First, the 16 bytes are set to the destination address, in the case of IPv4 padded with zeros. The IH is XORed at offset 4
to 5. Then, (if existent) the timestamp value (in network byte order) is XORed at offsets 8 to 11, and finally the
destination port (in network byte order) is XORed at offsets 12 to 13.

The resulting four 32-bit words of the MD5 hash are combined using XOR to calculate at 32-bit authenticator value (AV).
The upper 16 bit of the AV are concatenated with the 16 bit of the IH to create the final 32-bit ISN in network byte order

The TCP server uses the 16 bit IH from the ISN to calculate the AV when receiving the TCP SYN packet. If the AV
matches, the handshake is allowed to proceed. Then, when the TCP server receives the first segment, it checks that the
included payload is of sufficient length and in combination with the shared secret hashes to the IH. If these checks fail,
the connection is closed (using TCP RST).

3.2.1. Test Vectors



+---------------+------------------------+--------------------------+
| | IPv4 |IPv6 |
+---------------+------------------------+--------------------------+
| Payload |"Protected payload | "Protected payload goes |
| | goes here." | here." |
| Protected |28 |28 |
| length | | |
| Shared secret | "Magic secret string"| "Magic secret string" |
| Destination |192.18.42.42 |2001:db8::2a:2a |
| IP |  | |
| Destination |4242 |4242 |
| Port | | |
| Timestamp |0x11223344 |0x11223344 |
| Resulting ISN | 0x2153ff96 |0x3ae5ff96 |
+---------------+------------------------+--------------------------+

4. Timestamps and TCP SYN Retransmits

Implementations of TCP Stealth MUST take care to NOT modify the value of the TCP timestamp (if present) when
retransmitting the TCP SYN packet. Otherwise,a different TCP timestamp would change the result of the ISN
calculation and the receiver would fail to interpret the SYN packet correctly as a retransmission, which would be
problematic in cases where high delay or a loss of the SYN ACK caused the retransmission.

TCP implementations in general SHOULD strongly consider preserving the original TCP timestamp value for TCP SYN
retransmissions to make it impossible to detect the use of TCP Stealth by forcing TCP SYN retransmissions.

5. TCPStealth and TCP SYN Cookies

Implementations of TCP Stealth can support the use of TCP SYN Cookies as described in RFC 4987, even in
combination with content integrity protection.For this, the TCP server needs to recover the original ISN by subtracting 1
from the SQN of the first acknowledgement from the client. This way, the TCP server does not need to keep any state
after receiving just the SYN packet.

6. Integration with Applications

Given operating system support, nearly every network application can be easily adapted to use TCP Stealth. Operating
systems MUST use their existing facilities for setting TCP options to enable TCP clients to specify the shared secret and
optionally the first octets of the TCP payload that are to be integrity protected. Similarly,



for the TCP server it MUST be possible to set the shared secret and the expected number of protected octets of the TCP
payload.

Furthermore, support for these options MUST be provided for both IPv4 and IPv6 and MAY be provided for other
address families.

7. TCPStealth and destination network address translation (DNAT)

As TCP Stealth relies on the destination port and address being preserved across the network, TCP Stealth cannot directly
be used with hosts behind a DNAT . In case a host behind a DNAT should be protected by TCP Stealth the TCP Stealth
implementation should be moved directly into the DNAT implementation.

8. Oldduplicate segments

A client using the pseudo-random ISN generation of TCP Stealth without payload protection must respect TCP
TIME-WAIT and use a different source port for a second connection to the same destination until sufficient time has past
for old duplicate segments of the previous TCP connection to not be in the network anymore. TCPStealth has no impact
on the TCP PAWS mechanism (RFC 7323), as PAWS makes no assumptions about the ISN.

9. MiddleboxConsiderations

To avoid interfering with TCP Stealth, middleboxes SHOULD NOT modify TCP SQN numbers and SHOULD preserve
the TCP timestamp option (if present). Recent studies [OSSIFICATION] [Knock] have shown that almost all
middleboxes already satisfy these constraints.

10. IANA Considerations

None.

11. SecurityConsiderations

Implementations using a predictable shared secret and predictable values for the TCP timestamp (such as 0 if timestamps
are not used at all) may be susceptible to attacks based on ISN prediction. Thus, applications MUST be careful to not set
the option with an empty or default value for the shared secret (especially in the case where the user did not to specify a
shared secret). Similarly, static sequence numbers occur when TCP timestamps are disabled for each combination of
secret, destination IP address and destination port.

Using predictable ISNs can be used as a vector for denial-of-service attacks on TCP (such as CVE-2005-0356).
However, with TCP Stealth,



only the authorized client and the providing server share the secret necessary to predict the ISN. Routers that are in a
position to observe the ISN from the handshake can always perform a Denial of Service attack on TCP. TCP Stealth does
not change this fundamental issue with TCP.

Middleboxes MAY modify the TCP SQN number or tamper with the TCP timestamp option. In this case, services
protected by the TCP Stealth option would be unavailble to clients accessing the network from behind such a NAT .
While such implementations are rare in practice, operators should be aware of the resulting possible limitations in
availablilty of TCP Stealth protected services.

TCP Stealth MAY protect against malicious attacks in which security flaws of software operating above the TCP protocol
are exploited. However TCP Stealth SHOULD be considered as an additional layer of security, not as a replacement of
IP or higher level based authentication.

TCP Stealth does not protect against passive port scan scenarios in which an attacker can tell a closed from an open port
by eavesdropping on the connection made by a legit client to a TCP Stealth protected server. TCP Stealth MAY protect
against active man-in-the-middle attacks in which an attacker tries to intercept the TCP connection after the knock if TCP
Stealth operates with payload integrity protection and the application layer protocol is designed in a sane way.

The protections offered by TCP Stealth are limited by the fact that the TCP SQN number field is only 32 bits. Thus, an
adversary may still be able to connect to TCP Stealth protected services with low probability by chance, or high
probability using brute-force methods. Thus, TCP Stealth SHOULD only be used as an additional layer of security.
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