
Multipath TCP D. Kim
Internet-Draft Sungkyunkwan University
Intended status: Standards Track October 24, 2016
Expires: April 27, 2017

 Efficient Design for Secure Multipath TCP against Eavesdropper in
 Initial Handshake
 draft-kim-mptcp-semptcp-00

Abstract

 Multipath TCP has become the transmission technique of choice for the
 multi-homed environment. Recently, there have been multiple attempts
 to verify the security of Multipath TCP; but an eavesdropper in the
 initial handshake breaches the primary security goal of Multipath
 TCP. In this paper, we introduce a secure scheme against an initial
 eavesdropper, using asymmetric key exchange.

 We optimize the public parameters to overcome two challenges to the
 use of asymmetric cryptography. Then we show that compared to
 previously proposed methods, our scheme has low overhead, and is more
 secure. Our approach applies to many weak authentication-based
 protocols that seek to use asymmetric cryptography.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119]

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 27, 2017.

Kim Expires April 27, 2017 [Page 1]

Internet-Draft ESMPTCP October 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 TCP is currently restricted to a single path per connection, yet most
 state-of-the-art devices often support multiple network interfaces.
 Multipath TCP (MPTCP) [RFC6824] is a major extension of TCP that
 enables hosts to use multiple paths to concurrently transfer data for
 a single connection. Concurrent transfer through multiple subflows
 for a single TCP session could improve the throughput and overall
 usage of the network resource.

 The primary security goal of MPTCP aims at being no worse than TCP
 security. MPTCP currently provides security by exchanging keys
 during the initial handshake. These keys are used to create HMACs to
 authenticate other hosts. Exchanging keys in plaintext during the
 initial handshake is vulnerable at the viewpoint of security. An
 eavesdropper in the initial handshake can hijack the MPTCP session
 using exchanged keys even after leaving the on-path location. An
 active attacker can hijack the session by dropping the request for
 adding subflow, and can then initiate the subflow using received
 values within the request.

 These threats are considered acceptable. The root cause of the
 threats is that the attacker could exploit the authentication values,
 whether the shared keys are exposed or not. After establishing the
 subflow, the attacker can launch the attack [RFC6181].

 Asymmetric key exchange allows hosts to share the key without
 exposure. Adopting SSL, an MPTCP session can negotiate shared keys
 between the end-points. However, the overhead of SSL handshake is
 too high, considering that it occurs at every establishment of MPTCP.
 The overhead of the initial handshake affects the overall TCP
 throughput.

Kim Expires April 27, 2017 [Page 2]

Internet-Draft ESMPTCP October 2016

 Moreover, a short connection in MPTCP maximizes the reduction of
 throughput. Our priority design goal is to minimize the initial
 handshake. However, low-overhead design using asymmetric
 cryptography is difficult, since public information needs a large-
 sized space. MPTCP uses the TCP option, and the maximum size of the
 option header is 40 byte, excluding the MPTCP header. If public
 information could not be inserted in the option header, additional
 packets are required for an exchange, since SYN packets cannot
 involve TCP payload. Additional packets cause time and space
 overhead.

 We solve these limitations to optimize the public parameters
 considering the characteristics of MPTCP. We propose a secure design
 against an eavesdropper in the initial handshake. The proposed
 design is low overhead, and more secure compared to other schemes
 that use asymmetric cryptography.

2. Terminology

 This document makes use of the following terms:

 o Multipath TCP, MPTCP: refers to [RFC6824]. And every operation in
 MPTCP follows [RFC6824]

 o Eavesdropper in initial handshake: refers to an eavesdropper
 present in the inital handshake where the keys are exchanged can
 hijack the MPTCP session at any time in the future. This is
 partial-time on-path eavesdropper and is decribed in [RFC7430]

 o Off-path attacker in subflows: refers to an attacker not present
 in any subflows. This type of attacker could be present in
 initial handshake.

 o On-path eavesdropper in subflows: refers to an eavesdropper
 present in one or more subflows. This type of attacker could be
 present in initial handshake. This attacker can acquire
 information from the subflows, however, cannot change or drop the
 message between the legitimate parties.

 o On-path active attacker in subflows: refers to an active attacker
 present in one or more subflows. This type of attacker could be
 present in initial handshake, and this type of attacker can
 acquire, change and drop the message between the legitimate
 parties.

 o ADD_ADDR Attack: refers to an attack using ADD_ADDR option.
 Detail explanation is described in [I-D.ietf-mptcp-rfc6824bis].

Kim Expires April 27, 2017 [Page 3]

Internet-Draft ESMPTCP October 2016

 o Data encryption: refers to the possibility of data encryption
 using any encryption algorithms without key exposure. It simply
 means secure key exchange.

3. Security Threats in Multipath TCP

 The fundamental goal of MPTCP is to provide security that is no worse
 than TCP. IETF documentation does not concern itself with threats
 that are applied to both TCP and MPTCP. Of course, threats on TCP
 can influence MPTCP, the extension of TCP. IETF documentation
 considers only the threats that are specific to MPTCP and are
 impossible with TCP. To guarantee security, MPTCP adopts the HMAC-
 based handshake described in Sections II.A and II.B. Researches that
 analyze the possible threats of current MPTCP implementation are
 investigated to verify the security provided to at least TCP level
 [RFC7430][SecEval-MPTCP]. They classified the attackers depending on
 location as follows:

 o An off-path attacker does not need to be located in any of the
 subflows of the MPTCP session. The off-path attacker cannot
 eavesdrop any of the packets of the MPTCP session.

 o An on-path attacker needs to be on at least one of the paths
 during the whole lifetime of the MPTCP session.

 The off-path attacker is the most restricted model to attack since
 she doesn’t know any information for an attack. Vulnerabilities in
 conditions of the off-path attacker have great impact, because they
 are vulnerable to any attacker model. It is most difficult to
 provide security against an on-path attacker who can eavesdrop every
 packet of information used for an attack. [RFC7430] describes the
 major and minor threats to MPTCP. Due to the limitations of space,
 we explain only three of them.

3.1. Eavesdropper in Initial Handshake

 The attacker could eavesdrop both MPTCP keys in an initial three-way
 handshake. This threat is mentioned in [RFC7430], and is considered
 acceptable. In MPTCP, the valid user is the one who has a shared key
 from an initial handshake. An eavesdropper to the initial handshake
 also has the same authority. Reference [I-D.ietf-paasch-mptcp-ssl][I
 -D.ietf-bagnulo-mptcp-secure][I-D.ietf-bittau-tcp-crypt][Sec-MPTCP-co
 n-approach] describe possible solutions.

 An eavesdropper in initial handshake is the most powerful attacker
 model in MPTCP. An active attacker in the initial handshake is out
 of the scope of this paper. The initial handshake is a three or
 four-way handshake in TCP. Modifying this connection is a problem of

Kim Expires April 27, 2017 [Page 4]

Internet-Draft ESMPTCP October 2016

 TCP, not MPTCP. Threats in MPTCP should arise due to the additional
 operations of MPTCP which are secure in TCP. The integrity of the
 initial handshake should be guaranteed.

3.2. DoS Attack on MP_JOIN

 A valid token in SYN+MP_JOIN makes the host turn into a receiving
 state. The host stores two 32-bit random nonces for verifying HMAC.
 If the attacker does not respond to the third ACK of a three-way
 handshake, the host maintains the half-open state until the third ACK
 is received. The number of half-open connections per MPTCP session
 is limited.

 The attacker simply sends multiple MP_JOINs with different four-
 tuples, evading the limitation of half-open connections to exhaust
 the resource. The attacker only needs the valid token which is
 easily achieved, as the token is sent as plaintext, because the token
 is not to provide security, but to specify the MPTCP session. A
 partial-time on-path eavesdropper inspecting any one of a MP_JOIN
 three-way handshake can perform a DoS Attack on MP_JOIN with a valid
 token.

3.3. ADD_ADDR Attack

 The ADD_ADDR attack is a MPTCP session hijacking using a man-in-the-
 middle (MitM) attack. An off-path active attacker can perform an
 ADD_ADDR attack. The attacker creates MitM configuration using the
 ADD_ADDR option, even if she is not in the middle of the path between
 the hosts. To prevent this, ADD_ADDR format is modified to include
 HMAC. However, it is still vulnerable to an eavesdropper in the
 initial handshake. First, we describe the attack for the previous
 ADD_ADDR format. We then look at the threats of the modified format.

 Assume that hosts-A and -B have the secure MPTCP session. The
 attacker wants to add a subflow to host-A. The attacker sends her IP
 address and Address ID to host-B, using the ADD_ADDR option. Host-B
 considers it as the advertisement of a redundant IP address from
 host-A, and tries to begin an MP_JOIN handshake to the attacker’s IP
 address.

 Host-B is a valid user who can make the valid token for A, Token-A.
 Host-B sends Token-A and a random value, R-B to the attacker and she
 relay these values to host-A. Host-A verifies Token_A then sends
 HMAC-B and R-A to the attacker. The attacker delivers these values
 to host-B. Finally, host-B sends HMAC-A to the attacker. The
 attacker could finalize the authentication using HMAC-A.

Kim Expires April 27, 2017 [Page 5]

Internet-Draft ESMPTCP October 2016

 The ADD_ADDR attack is a typical MitM attack except that the attacker
 could launch the attack whenever she wants. The connection requests
 could be refused when Address ID in the received ADD_ADDR collides
 with that already assigned in the subflows. However, the collision
 could be ignored, considering that the default number of the subflow
 in the current kernel is two, and that subflows are finite due to the
 lack of network interfaces in the normal network configuration.

 The root cause of an ADD_ADDR attack is that there are no
 authentication values for ADD_ADDR operation allowing the attacker to
 masquerade as hosts-A or -B. [I-D.ietf-mptcp-rfc6824bis] modifies
 this to only legitimate users being able to advertise their IP
 address using truncated HMAC. The parameters for HMAC are defined in
 Section II.C. However, an eavesdropper in the initial handshake
 generates a truncated HMAC using both keys and still launches an
 ADD_ADDR attack. Even then, that attacker could calculate the valid
 token and HMAC. Using these values, she constructs the MitM
 configuration or adds a subflow to the victims.

3.4. Design Consideration

 Considering the widespread nature of TCP, it is hard to use PKIX
 [RFC5280], which has scalability issues. Even though it is possible,
 it has limited advantages because not all users have trusted
 certificates. It is not practical to use trusted third parties.
 MPTCP is based on weak authentication [Weak-auth]. The weak
 authentication is cryptographically strong authentication among
 unknown parties without trusted third parties. It does not authorize
 the hosts’ real identity such as X. 509 certificates, since there is
 no trusted third party, and pre-shared secrets cannot be used.

 The other host is unknown before establishing a connection. MPTCP
 should exchange the secrets in the initial handshake. Due to the
 leap of faith, which is one of the techniques supporting weak
 authentication, it cannot validate the actual credentials of
 entities, but ensures that entities are those who communicate from
 the beginning. For example, hosts-A and -B are valid users who have
 a MPTCP session. When host-B want to create a new subflow, hosts-A
 and -B authenticate each other with Key-A and Key-B, not using the
 real information of the hosts. Assuming that the key exchange is
 secure, the entities who have both keys are the valid users. The
 hosts cannot know if the other entities are hosts-A or -B, but they
 ensure that the other hosts are legitimate entities. However, the
 key exchange proceeds in plaintext. An eavesdropper in the initial
 subflow knows both keys, and this means that she is a valid user.
 Before the initial handshake, hosts-A and -B don’t know each other.
 It is difficult to send the key securely between unknown parties.

Kim Expires April 27, 2017 [Page 6]

Internet-Draft ESMPTCP October 2016

3.4.1. Asymmetric Key Exchange

 If using the asymmetric property, the key exchange could occur
 without key exposure between the unknown parties. There are two
 challenges to adopting an asymmetric key in MPTCP. The former is the
 space limitation of the TCP option and the latter is the cost of
 asymmetric computation. MPTCP is over the TCP option. The maximum
 length of TCP option is 40 bytes and the MPTCP header uses four
 bytes. Asymmetric key exchange is hard to implement only using the
 TCP option without using TCP payload. It generally needs a large
 space for trading cryptographic parameters. However, a SYN flagged
 packet typically does not include the data for negotiating the
 initial sequence number. At least two packets in TCP handshake could
 not be used for sending data, which results in extra packets for
 trading public parameters. Despite space and time overheads, this
 concept was used in the prototypes of securing MPTCP [SecEval-MPTCP]
 and SMPTCP [I-D.ietf-bagnulo-mptcp-secure] to cover an eavesdropper
 in initial handshake. They deal with additional packets in an
 initial handshake for key exchange.

3.4.2. Minimizing Initial Handshake

 The short connection of MPTCP subflow degrades the overall TCP
 performance [Shortflow]. Not every MPTCP session transfers a large
 amount of data. Some of them are terminated right after or before
 subflow is established. When a short connection occurs, the
 operation of adding subflow reduces the TCP performance since it
 makes an unnecessary connection. However, a transport layer cannot
 estimate the volume of application data. It is difficult to predict
 the necessity of subflow before making the connection. Delaying the
 point of creating subflow reduces the damage of short connection
 problem. Only the connection with long lifetime wants to make a new
 subflow. But an initial handshake is inevitable. The overhead of
 the initial handshake has a critical impact on the whole network
 since it occurs each connection. To minimize the handshake, the
 current implementation exchanges keys in plaintext, even though these
 are vulnerable to an eavesdropper in initial handshake.

4. The Proposed Design

 Previous methods using an asymmetric key increase the overhead of the
 initial handshake resulting from the additional packet. This
 breaches the latter design consideration. We minimize public
 parameters for an asymmetric key. Optimized parameters are able to
 be embedded in the TCP option, and don’t require additional packets,
 except for a four-way handshake. Considering SSL/TLS, the public
 information is too large to be in the TCP option. MPTCP relies on
 weak authentication, which doesn’t care about other host’s real

Kim Expires April 27, 2017 [Page 7]

Internet-Draft ESMPTCP October 2016

 identity. Our scheme skips the exchange of certificates. It cannot
 guarantee publicity of the asymmetric key, but authenticates the
 subflows that originate from the owner of the MPTCP session. Another
 challenge is the size of the public key. To reduce the key size, we
 apply the Elliptic Curve and Elliptic Curve Diffie-Hellman [RFC4492].

 Host A Host B
 ------------------------ -------------
 Address A1 | Address A2 Address B1
 ------------------------ -------------
 | | |
 | | |
 | SYN + MP_CAPABLE(A’s x point) |
 -----|-->|
 | | ACK + MP_CAPABLE(B’s x point) |
 | |-->|
 A | SYN + MP_CAPABLE(A’s y point) |
 | |-->|
 | | SYN + MP_CAPABLE(B’s y point) |
 -----|-->|
 | | |
 | SYN + MP_JOIN(Token-B, HMAC-token, R-A)
 | |-------------------------------->|-----
 | | SYN/ACK + MP_JOIN(Auth-B, R-B) | |
 | |<--------------------------------| |
 | | ACK + MP_JOIN(Auth-A) | B
 | |-------------------------------->| |
 | | ACK | |
 | |<--------------------------------|-----
 | | |

 Figure 1: Basic operation of the proposed Multipath TCP

 Notations | Value

 K | Hash(X_AB||Y_AB)
 Token_B | lsb_32(Hash(X_B||Y_B))
 HMAC_Token | lsb_32(HMAC(K, Token_B||Address ID||R_A))
 Auth_B | msb_64(HMAC(K, R_B||R_A))
 Auth_A | HMAC(K, R_A||R_B)

 Figure 2: Parameter Notations and Thier Values for the Proposed MPTCP
 Scheme

Kim Expires April 27, 2017 [Page 8]

Internet-Draft ESMPTCP October 2016

4.1. New MP_CAPABLE handshake

 Fig.1.A describes the sequence of a modified handshake. Parameters
 of the Elliptic Curve use the named curve defined in [SEC2]. The
 length of the x point and y point relates to the type of elliptic
 curve. The modified MP_CAPABLE needs a four-way handshake. First,
 Host-A sends SYN with A’s x point and stuffing the one of unused bits
 in MP_CAPABLE option. Host-B responds with ACK including B’s x
 point. Host-B sends SYN containing B’s y point. Finally, Host-A
 responds with ACK with A’s y point.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype|Version|A|B|C|D|E|F|G|H|
 +---------------+---------------+-------+-------+---------------+
 | EC type | |
 +---------------+ |
 | Sender or Receiver’s x or y point in E |
 | (Length is depending on EC type) |
 +---+

 Figure 3: New MP_CAPABLE option

 Fig.3. shows the format of the new MP_CAPABLE. The current
 implementation uses "A" and "H" flags and reserves "B" flag for an
 extension. "C"-"G" flags remain for cryptographic negotiation. Our
 design selects the flag among them. The proposed design supports
 backward compatibility. It requests a connection initiation set to
 an unused flag. Receivers who do not support our scheme reject the
 connection, since our request uses an unused flag. It simply returns
 to current implementation, which uses "H" flags. Receivers who
 support our scheme but do not want to use asymmetric key exchange
 reply that "H" flag will be used with their key, Key-B. Receivers do
 not drop the request packet, to avoid repetition of connection
 initiation. Key-A is the least significant 64-bits of sender’s x
 point in the request packet. The randomness of Key-A is ensured,
 because x point is also arbitrary value.

Kim Expires April 27, 2017 [Page 9]

Internet-Draft ESMPTCP October 2016

 --
 EC type | Named Curved | RSA/DSA
 --
 0 | secp160k1 | 1024
 1 | secp160r1 | 1024
 2 | secp160r2 | 1024
 3 | secp192k1 | 1024
 4 | secp192r1 | 1024
 5 | secp224k1 | 2048
 6 | secp224r1 | 2048
 7 | secp256k1 | 3072
 8 | secp256r1 | 3072
 Reserved | Reserved | Reserved
 --

 Figure 4: Supported Elliptic Curve Type and Security Level Compared
 to RSA/DSA

4.2. New MP_JOIN handshake

 A 32-bit token identifies an MPTCP session where a new subflow wants
 to join in. Assume that a sender inserts a random value in a token
 to defend against reuse of the token. It is problematic for a
 receiver to distinguish the requested MPTCP session. The receiver
 generates hash values of all stored MPTCP identifiers with a random
 value to compare with the token. This degrades overall TCP
 performance in proportion to the currently existed MPTCP sessions.
 To solve this problem, the proposed design sends the token in
 plaintext for clarity. It protects the token using HMAC whose
 messages are the token, Address ID, and random value. Although an
 attacker knows the valid token, she could not launch the attack,
 since calculating HMAC for a different Address ID is impossible. In
 the case of reusing a previously delivered HMAC, the connection
 requests are refused, due to the collision of Address IDs.

 Fig.1.B describes the sequence of the new MP_JOIN handshake. Fig.2
 describes details of the parameters. Using (X-A, Y-A) and (X-B,
 Y-B), both hosts calculate (X-AB, Y-AB) with Elliptic Curve Diffie-
 Hellman key exchange. Then, they calculate the Token-B and K. These
 computations could be pre-processed. Host-A sends SYN with Token-B,
 HMAC-Token, and a random value, R-A, in MP_JOIN. Host-B verifies
 HMAC-Token, and checks that Address ID has no collision. Host-B
 sends SYN/ACK with Auth-B, which originates from R-B, R-A, X-AB, and
 Y-AB. Only a legitimate user who has the pre-shared secret, (X-AB,
 Y-AB), can make the right authentication values. The responses ACK
 with Auth-A are made by R-A, R-B, X-AB, and Y-AB.

Kim Expires April 27, 2017 [Page 10]

Internet-Draft ESMPTCP October 2016

4.3. ADD_ADDR

 Assuming the ADD_ADDR operation is vulnerable, even in the proposed
 design, the attacker creates a subflow using the same method
 described in Section III.B without knowing the shared key. The
 current MPTCP denies the requests when the sender’s IP address is
 different from the IP address, a component of HMAC. But, an
 eavesdropper in initial handshake who knows both keys still derives a
 new HMAC with her IP address as an input. In the proposed design,
 the attacker could not acquire the shared key. Maintaining current
 ADD_ADDR format mitigates against ADD_ADDR attack.

5. Evaluation

 This section evaluates the proposed design compared to the previous
 defense technique described in Section VI. MPTLS and SMPTCP
 calculate the shared key for authentication right after a key
 exchange over the initial handshake. Calculating the shared key
 occurs whenever an MPTCP session is established, causing the increase
 of overall overhead. This calculation violates our design
 consideration, of minimizing the initial handshake. The proposed
 design exchanges public keys in the initial handshake, but derives a
 shared key in adding subflows, to decrease the computational overhead
 of the whole network. In the case of a short connection, it does not
 calculate a shared key, since MP_JOIN does not arise. Our scheme
 optimizes not only the computational but also the space and time
 overheads, through MPTCP specific design.

Kim Expires April 27, 2017 [Page 11]

Internet-Draft ESMPTCP October 2016

 |Proposed| SMPTCP | MPTLS | Hash | MPTCP
 |Design | | | Chain |

 MP_CAPABLE
 - Key exchange(bytes) | 148 | 202 | 7468 | 52 | 32
 - Number of RTT/2 | 3 | 4 | 7 | 3 | 3

 MP_JOIN
 - Identify MPTCP | 16 | 12 | 12 | 24 | 12
 session(bytes) | | | | |
 - Authentication(bytes)| 40 | 40 | 40 | 28 | 40

 Eavesdropper in initial handshake
 & Off-path attacker | O | O | O | O | X
 in subflows | | | | |
 & On-path eavesdropper | O | O | O | O | X
 in subflows | | | | |
 & On-path active | O | O | O | X | X
 attacker in subflows | | | | |

 DoS Attack on MP_JOIN | O | X | X | X | X

 ADD_ADDR Attack
 & Eavesdropper | O | O | O | X | X
 in initial handshake | | | | |
 & On-path any attacker | O | O | O | X | O
 in subflows | | | | |

 Data encryption | O | O | O | X | X

 Figure 5: Comparison of the proposed design and previous MPTCP
 schemes in terms of space overhead(bytes), time overhead(RTT),
 security, and data encryption

 Fig.5 outlines our evaluation. We explain the overhead of the
 proposed design and then discuss the security aspect. Asymmetric
 methods have a high space overhead represented by bytes, due to the
 size of public information. Each method has a different handshake of
 packets for key exchange. We adopt an expression as a notation,
 rather than using total bytes to declare this characteristic. The
 operands of addition are the size of each packet, except the TCP
 header. The proposed scheme has the lowest space overhead in
 MP_CAPABLE among asymmetric schemes. To cover DoS attack on MP_JOIN,
 it includes HMAC of token causing a relatively big overhead caused by
 identifying the MPTCP session. The time overhead represents the

Kim Expires April 27, 2017 [Page 12]

Internet-Draft ESMPTCP October 2016

 number of RTT/2 which means the one-way message latency. Although it
 needs a four-way handshake on MP_CAPABLE, the number of RTT/2 is
 three, since the second ACK packet and third SYN packet can pass
 concurrently. MPTLS has a large overhead of space and time depending
 on the TLS handshake. The number of RTT/2 of MP_JOIN is the same as
 three in every scheme, so we intentionally omit this outcome in
 Fig.5.

 Asymmetric methods are secure against an eavesdropper in initial
 handshake. Key exchange without key exposure makes data encryption
 possible. Hash Chain is also a research into the same security
 threats, but that scheme is insecure to the on-path active attacker
 in subflow. She drops the MP_JOIN requests of legitimate users and
 then makes her MP_JOIN request using the hash value received from the
 legitimate user. Hash Chain has no mitigation for an ADD_ADDR
 attack. It authenticates hosts using a hash chain, so there are no
 comments about the HMAC and its keys. If it simply uses a stored
 hash as a key of HMAC, the exchange of hash values has the same
 meaning as the exchange of keys in plaintext. It is still insecure
 to ADD_ADDR attack towards an eavesdropper in initial handshake. But
 if it uses the ADD_ADDR format of the current MPTCP with the
 assumption that the hash value is a key, it would be changed to
 "secure" towards an on-path active attacker in Fig.5. A notable
 difference is DoS Attack on MP_JOIN. In other methods, the attacker
 can undertake a DoS attack using a valid token. However, in the
 proposed design, the attacker knows a valid token but she could not
 make HMAC due to ignorance of the shared key. If the attacker reuses
 HMAC, rather than making a new one, the receiver denies the
 connection, by checking the collision of address IDs.

6. Related Work

 We discuss previous work for the secure schemes on security threats
 mentioned in Section III. MPTLS [I-D.ietf-paasch-mptcp-ssl] uses an
 asymmetric key to avoid the key exposure caused by key exchange in
 plaintext. Hosts negotiate the shared key for HMAC using TLS. TLS
 authenticates both hosts with certificates and operates the key
 exchange algorithm to create the shared key. MPTCP operations are
 performed with this key. However, MPTLS inherit the overhead of TLS
 handshake.

 SMPTCP is another method that uses an asymmetric key. It uses
 tcpcrypt [I-D.ietf-bittau-tcp-crypt] to secure an MPTCP session.
 Using tcpcrypt, both hosts negotiate a cryptographic protocol that
 protects the TCP payload. A shared key calculated by the negotiated
 cryptographic protocol is used for authentication for MP_JOIN.
 Tcpcrypt uses the TCP option for implementation so it is easy to
 integrate with MPTCP. Due to restrictions of the TCP option size,

Kim Expires April 27, 2017 [Page 13]

Internet-Draft ESMPTCP October 2016

 tcpcrypt requires one additional message to perform the key exchange.
 Despite one-way message latency, tcpcrypt is much more efficient than
 TLS, since it focuses on the key exchange. Likewise MPTLS,
 operations in SMPTCP perform the same as MPTCP, except the key for
 HMAC is determined by tcpcrypt. Tcpcrypt is vulnerable in MitM
 attack, but MitM in the initial handshake is out of the scope of this
 paper.

 The Hash Chain-based solution [Sec-MPTCP-con-approach] makes a list
 consisting of chained hash values generated by recursively executing
 a hash function. The host makes the key list, H0-Hn by repeating the
 hash function with the initial random value as a message until pre-
 defined length, n, of the hash chain. During the initial handshake
 of the MPTCP session, both hosts exchange their last hash values Hn.
 During adding subflow, each host sends the next value of their
 previous hash values, i.e., Hn-1. The one-way property of the hash
 function blocks the attacker from gaining the previous hash values.
 Only legitimate hosts know the full hash chain. Next adding subflow
 authenticates both hosts using the hash chain in reverse order. Once
 the subflow is established, the host replaces the stored hash with
 the last received hash. However, an active attacker could drop the
 SYN+MP_JOIN from the legitimate host, and establish a new subflow
 using a hash value in that SYN packet, without knowing the hash
 chain.

7. IANA Considerations

 This document requests an MPTCP unused flag for this option:

 o Asymmetric Key Exchange Option

 NOTE: Implementations may use "e" flag among unused flags

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moelier, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492,
 DOI 10.17487/RFC4492, May 2006,
 <http://www.rfc-editor.org/info/rfc4492>.

Kim Expires April 27, 2017 [Page 14]

Internet-Draft ESMPTCP October 2016

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation
 List(CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May
 2008, <http://www.rfc-editor.org/info/rfc5280>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

8.2. Informative References

 [RFC6181] Bagnulo, M., "Threat Analysis for TCP Extensions for
 Multipath Operation with Multiple Addresses", RFC 6181,
 DOI 10.17487/RFC6181, March 2021,
 <http://www.rfc-editor.org/info/rfc6181>.

 [RFC7430] Bagnulo, M., Paasch, C., Gont, F., Bonaventure, O., and C.
 Raiciu, "Analysis Residual Threats and Possible Fixes for
 Multipath TCP (MPTCP)", RFC 7430, DOI 10.17487/RFC7430,
 July 2015, <http://www.rfc-editor.org/info/rfc7430>.

 [I-D.ietf-mptcp-rfc6824bis]
 Ford, A., Raiciu, C., Handley, M., Bonaventure, O., and C.
 Paasch, "TCP Extensions for Multipath Operation with
 Multiple Addresses", draft-ietf-mptcp-rfc6824bis-05 (work
 in progress), January 2016.

 [I-D.ietf-paasch-mptcp-ssl]
 Paasch, C. and O. Bonaventure, "Securing the Multipath TCP
 handshake with external keys draft-paasch-mptcp-ssl-00",
 I-D.ietf-paasch-mptcp-ssl-00 (work in progress), October
 2012, <https://tools.ietf.org/pdf/draft-paasch-mptcp-ssl-
 00.pdf>.

 [I-D.ietf-bagnulo-mptcp-secure]
 Bagnulo, M., "Secure MPTCP draft-bagnulo-mptcp-secure-00",
 I-D.ietf-bagnulo-mptcp-secure-00 (work in progress),
 February 2014, <https://tools.ietf.org/id/draft-bagnulo-
 mptcp-secure-00.txt>.

Kim Expires April 27, 2017 [Page 15]

Internet-Draft ESMPTCP October 2016

 [I-D.ietf-bittau-tcp-crypt]
 Bittau, A., Boneh, D., Hamburg, M., Handley, M., Mazieres,
 D., and Q. Slack, "Cryptographic protection of TCP Streams
 (tcpcrypt) draft-bittau-tcp-crypt-04.txt", I-D.ietf-
 bittau-tcp-crypt-04 (work in progress), February 2014,
 <https://tools.ietf.org/id/draft-bagnulo-mptcp-secure-
 00.txt>.

 [SecEval-MPTCP]
 Demaria, F., "Security Evaluation of Multipath TCP", M.S.
 thesis Computer Engineering, KTH Royal Institute of
 Technology, March 2016.

 [Sec-MPTCP-con-approach]
 Diez, J., Bagnulo, M., Valera, F., and I. Vidal, "Security
 for multipath TCP: a constructive approach", International
 Journal of Internet Protocol Technology Vol. 6. No. 3.,
 2011.

 [Weak-auth]
 Arkko, J. and P. Nikander, "Weak Authentication: How to
 Authentication Unknown Principals without Trusted
 Parties", International Workship on Security
 Protocols Springer Berlin Heidelberg, April 2002.

 [Shortflow]
 Kheirkhah, M., Wakeman, I., and G. Parisis, "Short vs.
 Long Flows: A Battle That Both Can Win", ACM SIGCOMM
 Computer Communication Review Vol. 45. No. 4., August
 2015.

 [SEC2] Certicom Research, , "SEC 2: Recommended Elliptic Curve
 Domain Parameters", SEC2 Version 1.0, September 2000,
 <http://www.secg.org/SEC2-Ver-1.0.pdf>.

Author’s Address

 Dongyong Kim
 Sungkyunkwan University
 Suwon 16419
 South Korea

 Email: kdysk93@skku.edu

Kim Expires April 27, 2017 [Page 16]

