
Network Working Group S. Josefsson
Internet-Draft SJD AB
Intended status: Standards Track S. Leonard
Expires: July 2, 2015 Penango, Inc.

December 29, 2014

Textual Encodings of PKIX, PKCS, and CMS
Structures

draft-josefsson-pkix-textual-10

Abstract

This document describes and discusses the textual encodings of the Public-Key Infrastructure X.509
(PKIX), Public-Key Cryptography Standards (PKCS), and Cryptographic Message Syntax (CMS). The
textual encodings are well-known, are implemented by several applications and libraries, and are
widely deployed. This document articulates the de-facto rules by which existing implementations
operate, defines them so that future implementations can interoperate.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other
groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts
is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on July 2, 2015.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and restrictions with respect to this
document. Code Components extracted from this document must include Simplified BSD License
text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Josefsson & Leonard Expires July 2, 2015 [Page 1 of 14]

Table of Contents

1. Introduction
2. General Considerations
3. ABNF
4. Guide
5. Textual Encoding of Certificates
5.1. Encoding
5.2. Explanatory Text
5.3. File Extension
6. Textual Encoding of Certificate Revocation Lists
7. Textual Encoding of PKCS #10 Certification Request Syntax
8. Textual Encoding of PKCS #7 Cryptographic Message Syntax
9. Textual Encoding of Cryptographic Message Syntax
10. Textual Encoding of PKCS #8 Private Key Info, and One Asymmetric Key
11. Textual Encoding of PKCS #8 Encrypted Private Key Info
12. Textual Encoding of Attribute Certificates
13. Textual Encoding of Subject Public Key Info
14. Security Considerations
15. IANA Considerations
16. Acknowledgements
17. References
17.1. Normative References
17.2. Informative References
Appendix A. Non-Conforming Examples
Appendix B. DER Expectations
Authors’ Addresses

1. Introduction

Several security-related standards used on the Internet define ASN.1 data formats that are normally
encoded using the Basic Encoding Rules (BER) or Distinguished Encoding Rules (DER) [X.690], which
are binary, octet-oriented encodings. This document is about the textual encodings of the following
formats:

1. Certificates, Certificate Revocation Lists (CRLs), and Subject Public Key Info structures
in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile [RFC5280].

2. PKCS #10: Certification Request Syntax [RFC2986].
3. PKCS #7: Cryptographic Message Syntax [RFC2315].
4. Cryptographic Message Syntax [RFC5652].
5. PKCS #8: Private-Key Information Syntax [RFC5208], renamed to One Asymmetric Key

in Asymmetric Key Package [RFC5958], and Encrypted Private-Key Information Syntax
in the same standards.

6. Attribute Certificates in An Internet Attribute Certificate Profile for Authorization
[RFC5755].

Internet-Draft pkix-textual December 2014

Josefsson & Leonard Expires July 2, 2015 [Page 2 of 14]

A disadvantage of a binary data format is that it cannot be interchanged in textual transports, such
as e-mail or text documents. One advantage with text-based encodings is that they are easy to
modify using common text editors; for example, a user may concatenate several certificates to form
a certificate chain with copy-and-paste operations.

The tradition within the RFC series can be traced back to PEM [RFC1421], based on a proposal by
Marshall Rose in Message Encapsulation [RFC0934]. Originally called "PEM encapsulation
mechanism", "encapsulated PEM message", or (arguably) "PEM printable encoding", today the format
is sometimes referred to as "PEM encoding". Variations include OpenPGP ASCII Armor [RFC2015] and
OpenSSH Key File Format [RFC4716].

For reasons that basically boil down to non-coordination or inattention, many PKIX, PKCS, and CMS
libraries implement a text-based encoding that is similar to—but not identical with—PEM encoding.
This document specifies the textual encoding format, articulates the de-facto rules that most
implementations operate by, and provides recommendations that will promote interoperability
going forward. This document also provides common nomenclature for syntax elements, reflecting
the evolution of this de-facto standard format. Peter Gutmann's X.509 Style Guide [X.509SG] contains
a section "base64 Encoding" that describes the formats and contains suggestions similar to what is in
this document. All figures are real, functional examples, with key lengths and inner contents chosen
to be as small as practicable.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in RFC 2119 [RFC2119].

2. General Considerations

Textual encoding begins with a line comprising -----BEGIN , a label, and -----, and ends with a
line comprising -----END , a label, and -----. Between these lines, or "encapsulation
boundaries", are base64-encoded data according to Section 4 of [RFC4648]. (PEM referred to this
data as the "encapsulated text portion".) Data before the encapsulation boundaries are permitted
and parsers MUST NOT malfunction when processing such data. Furthermore, parsers SHOULD
ignore whitespace and other non-base64 characters and MUST handle different newline
conventions.

The type of data encoded is labeled depending on the type label in the -----BEGIN line (pre-
encapsulation boundary). For example, the line may be -----BEGIN CERTIFICATE----- to
indicate that the content is a PKIX certificate (see further below). Generators MUST put the same
label on the -----END line (post-encapsulation boundary) as the corresponding -----BEGIN
line. Labels are formally case-sensitive, uppercase, and comprised of zero or more characters; they
do not contain consecutive spaces or hyphen-minuses, nor do they contain spaces or hyphen-
minuses at either end. Parsers MAY disregard the label in the post-encapsulation boundary instead
of signaling an error if there is a label mismatch: some extant implementations require the labels to
match; others do not.

There is exactly one space character (SP) separating the BEGIN or END from the label. There are
exactly five hyphen-minus (also known as dash) characters (-) on both ends of the encapsulation
boundaries, no more, no less.

The label type implies that the encoded data follows the specified syntax. Parsers MUST handle non-
conforming data gracefully. However, not all parsers or generators prior to this Internet-Draft
behave consistently. A conforming parser MAY interpret the contents as another label type, but

Internet-Draft pkix-textual December 2014

Josefsson & Leonard Expires July 2, 2015 [Page 3 of 14]

ought to be aware of the security implications discussed in the Security Considerations section. The
labels described in this document identify container formats that are not specific to any particular
cryptographic algorithm, a property consistent with algorithm agility. These formats use the ASN.1
AlgorithmIdentifier structure as described in section 4.1.1.2 of [RFC5280].

Unlike legacy PEM encoding [RFC1421], OpenPGP ASCII armor, and the OpenSSH key file format,
textual encoding does not define or permit headers to be encoded alongside the data. Empty space
can appear between the pre-encapsulation boundary and the base64, but generators SHOULD NOT
emit such any such spacing. (The provision for this empty area is a throwback to PEM, which defined
an "encapsulated header portion".)

Implementers need to be aware that extant parsers diverge considerably on the handling of
whitespace. In this document, "whitespace" means any character or series of characters that
represent horizontal or vertical space in typography. In US-ASCII, whitespace means HT (0x09), VT
(0x0B), FF (0x0C), SP (0x20), CR (0x0D) and LF (0x0A); "blank" means HT and SP; lines are divided with
CRLF, CR, or LF. The common ABNF production WSP is congruent with "blank"; a new production W
is used for "whitespace". The ABNF in Section 3 is specific to US-ASCII. As these textual encodings can
be used on many different systems as well as on long-term archival storage media such as paper or
engravings, an implementer ought to use the spirit rather than the letter of the rules when
generating or parsing these formats in environments that are not strictly limited to US-ASCII.

Most extant parsers ignore blanks at the ends of lines; blanks at the beginnings of lines or in the
middle of the base64-encoded data are far less compatible. These observations are codified in Figure
1. The most lax parser implementations are not line-oriented at all, and will accept any mixture of
whitespace outside of the encapsulation boundaries (see Figure 2). Such lax parsing may run the risk
of accepting text that was not intended to be accepted in the first place (e.g., because the text was a
snippet or sample).

Generators MUST wrap the base64 encoded lines so that each line consists of exactly 64 characters
except for the final line which will encode the remainder of the data (within the 64 character line
boundary), and MUST NOT emit extraneous whitespace. Parsers MAY handle other line sizes. These
requirements are consistent with PEM [RFC1421].

Files MAY contain multiple textual encoding instances. This is used, for example, when a file contains
several certificates. Whether the instances are ordered or unordered depends on the context.

3. ABNF

The ABNF [RFC5234] of the textual encoding is:

Internet-Draft pkix-textual December 2014

Josefsson & Leonard Expires July 2, 2015 [Page 4 of 14]

textualmsg = preeb *WSP eol
 *eolWSP
 base64text
 posteb *WSP [eol]

preeb = "-----BEGIN " label "-----" ; unlike [RFC1421] (A)BNF,
 ; eol is not required (but
posteb = "-----END " label "-----" ; see [RFC1421] Section 4.4)

base64char = ALPHA / DIGIT / "+" / "/"

base64pad = "="

base64line = 1*base64char *WSP eol

base64finl = *base64char (base64pad *WSP eol base64pad /
 *2base64pad) *WSP eol
 ; ...AB= <EOL> = <EOL> is not good, but is valid

base64text = *base64line base64finl
 ; we could also use <encbinbody> from RFC 1421, which requires
 ; 16 groups of 4 chars, which means exactly 64 chars per
 ; line, except the final line, but this is more accurate

labelchar = %x21-2C / %x2E-%7E ; any printable character,
 ; except hyphen-minus

label = [labelchar *(["-" / SP] labelchar)] ; empty ok

eol = CRLF / CR / LF

eolWSP = WSP / CR / LF ; compare with LWSP

Figure 1: ABNF (Standard)

laxtextualmsg = *W preeb
 laxbase64text
 posteb *W

W = WSP / CR / LF / %x0B / %x0C ; whitespace

laxbase64text = *(W / base64char) [base64pad *W [base64pad *W]]

Figure 2: ABNF (Lax)

stricttextualmsg = preeb eol
 strictbase64text
 posteb eol

strictbase64finl = *15(4base64char) (4base64char / 3base64char
 base64pad / 2base64char 2base64pad) eol

base64fullline = 64base64char eol

strictbase64text = *base64fullline strictbase64finl

Figure 3: ABNF (Strict)

Internet-Draft pkix-textual December 2014

Josefsson & Leonard Expires July 2, 2015 [Page 5 of 14]

New implementations SHOULD emit the strict format (Figure 3) specified above. The choice of
parsing strategy depends on the context of use.

4. Guide

For convenience, these figures summarize the structures, encodings, and references in the following
sections:

Sec. Label ASN.1 Type Reference Module
----+----------------------+-----------------------+---------+----------
 5 CERTIFICATE Certificate [RFC5280] id-pkix1-e
 6 X509 CRL CertificateList [RFC5280] id-pkix1-e
 7 CERTIFICATE REQUEST CertificationRequest [RFC2986] id-pkcs10
 8 PKCS7 ContentInfo [RFC2315] id-pkcs7*
 9 CMS ContentInfo [RFC5652] id-cms2004
 10 PRIVATE KEY PrivateKeyInfo ::= [RFC5208] id-pkcs8
 OneAsymmetricKey [RFC5958] id-aKPV1
 11 ENCRYPTED PRIVATE KEY EncryptedPrivateKeyInfo [RFC5958] id-aKPV1
 12 ATTRIBUTE CERTIFICATE AttributeCertificate [RFC5755] id-acv2
 13 PUBLIC KEY SubjectPublicKeyInfo [RFC5280] id-pkix1-e

Figure 4: Convenience Guide

 id-pkixmod OBJECT IDENTIFIER ::= {iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7) mod(0)}
 id-pkix1-e OBJECT IDENTIFIER ::= {id-pkixmod pkix1-explicit(18)}
 id-acv2 OBJECT IDENTIFIER ::= {id-pkixmod mod-attribute-cert-v2(61)}
 id-pkcs OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1)}
 id-pkcs10 OBJECT IDENTIFIER ::= {id-pkcs 10 modules(1) pkcs-10(1)}
 id-pkcs7 OBJECT IDENTIFIER ::= {id-pkcs 7 modules(0) pkcs-7(1)}
 id-pkcs8 OBJECT IDENTIFIER ::= {id-pkcs 8 modules(1) pkcs-8(1)}
 id-sm-mod OBJECT IDENTIFIER ::= {id-pkcs 9 smime(16) modules(0)}
 id-aKPV1 OBJECT IDENTIFIER ::= {id-sm-mod mod-asymmetricKeyPkgV1(50)}
 id-cms2004 OBJECT IDENTIFIER ::= {id-sm-mod cms-2004(24)}

*This OID does not actually appear in PKCS #7 v1.5 [RFC2315]. It was defined in the ASN.1 module to
PKCS #7 v1.6 [P7v1.6], and has been carried forward through PKCS #12 [RFC7292].

Figure 5: ASN.1 Module Object Identifier Value Assignments

5. Textual Encoding of Certificates

5.1. Encoding

Public-key certificates are encoded using the CERTIFICATE label. The encoded data MUST be a BER
(DER strongly preferred; see Appendix B) encoded ASN.1 Certificate structure as described in
section 4 of [RFC5280].

Internet-Draft pkix-textual December 2014

Josefsson & Leonard Expires July 2, 2015 [Page 6 of 14]

-----BEGIN CERTIFICATE-----
MIICLDCCAdKgAwIBAgIBADAKBggqhkjOPQQDAjB9MQswCQYDVQQGEwJCRTEPMA0G
A1UEChMGR251VExTMSUwIwYDVQQLExxHbnVUTFMgY2VydGlmaWNhdGUgYXV0aG9y
aXR5MQ8wDQYDVQQIEwZMZXV2ZW4xJTAjBgNVBAMTHEdudVRMUyBjZXJ0aWZpY2F0
ZSBhdXRob3JpdHkwHhcNMTEwNTIzMjAzODIxWhcNMTIxMjIyMDc0MTUxWjB9MQsw
CQYDVQQGEwJCRTEPMA0GA1UEChMGR251VExTMSUwIwYDVQQLExxHbnVUTFMgY2Vy
dGlmaWNhdGUgYXV0aG9yaXR5MQ8wDQYDVQQIEwZMZXV2ZW4xJTAjBgNVBAMTHEdu
dVRMUyBjZXJ0aWZpY2F0ZSBhdXRob3JpdHkwWTATBgcqhkjOPQIBBggqhkjOPQMB
BwNCAARS2I0jiuNn14Y2sSALCX3IybqiIJUvxUpj+oNfzngvj/Niyv2394BWnW4X
uQ4RTEiywK87WRcWMGgJB5kX/t2no0MwQTAPBgNVHRMBAf8EBTADAQH/MA8GA1Ud
DwEB/wQFAwMHBgAwHQYDVR0OBBYEFPC0gf6YEr+1KLlkQAPLzB9mTigDMAoGCCqG
SM49BAMCA0gAMEUCIDGuwD1KPyG+hRf88MeyMQcqOFZD0TbVleF+UsAGQ4enAiEA
l4wOuDwKQa+upc8GftXE2C//4mKANBC6It01gUaTIpo=
-----END CERTIFICATE-----

Figure 6: Certificate Example

Historically the label X509 CERTIFICATE and also less commonly X.509 CERTIFICATE have
been used. Generators conforming to this document MUST generate CERTIFICATE labels and
MUST NOT generate X509 CERTIFICATE or X.509 CERTIFICATE labels. Parsers SHOULD NOT
treat X509 CERTIFICATE or X.509 CERTIFICATE as equivalent to CERTIFICATE, but a valid
exception may be for backwards compatibility (potentially together with a warning).

5.2. Explanatory Text

Many tools are known to emit explanatory text before the BEGIN and after the END lines for PKIX
certificates, more than any other type. If emitted, such text SHOULD be related to the certificate,
such as providing a textual representation of key data elements in the certificate.

Subject: CN=Atlantis
Issuer: CN=Atlantis
Validity: from 7/9/2012 3:10:38 AM UTC to 7/9/2013 3:10:37 AM UTC
-----BEGIN CERTIFICATE-----
MIIBmTCCAUegAwIBAgIBKjAJBgUrDgMCHQUAMBMxETAPBgNVBAMTCEF0bGFudGlz
MB4XDTEyMDcwOTAzMTAzOFoXDTEzMDcwOTAzMTAzN1owEzERMA8GA1UEAxMIQXRs
YW50aXMwXDANBgkqhkiG9w0BAQEFAANLADBIAkEAu+BXo+miabDIHHx+yquqzqNh
Ryn/XtkJIIHVcYtHvIX+S1x5ErgMoHehycpoxbErZmVR4GCq1S2diNmRFZCRtQID
AQABo4GJMIGGMAwGA1UdEwEB/wQCMAAwIAYDVR0EAQH/BBYwFDAOMAwGCisGAQQB
gjcCARUDAgeAMB0GA1UdJQQWMBQGCCsGAQUFBwMCBggrBgEFBQcDAzA1BgNVHQEE
LjAsgBA0jOnSSuIHYmnVryHAdywMoRUwEzERMA8GA1UEAxMIQXRsYW50aXOCASow
CQYFKw4DAh0FAANBAKi6HRBaNEL5R0n56nvfclQNaXiDT174uf+lojzA4lhVInc0
ILwpnZ1izL4MlI9eCSHhVQBHEp2uQdXJB+d5Byg=
-----END CERTIFICATE-----

Figure 7: Certificate Example with Explanatory Text

5.3. File Extension

Although textual encodings of PKIX structures can occur anywhere, many tools are known to offer an
option to output this encoding when serializing PKIX structures. To promote interoperability and to
separate DER encodings from textual encodings, the extension .crt SHOULD be used for the
textual encoding of a certificate. Implementations should be aware that in spite of this
recommendation, many tools still default to encode certificates in this textual encoding with the
extension .cer.

Internet-Draft pkix-textual December 2014

Josefsson & Leonard Expires July 2, 2015 [Page 7 of 14]

This section does not disturb the official application/pkix-cert registration [RFC2585] in any way
(which states that "each '.cer' file contains exactly one certificate, encoded in DER format"), but
merely articulates a widespread, de-facto alternative.

6. Textual Encoding of Certificate Revocation Lists

Certificate Revocation Lists (CRLs) are encoded using the X509 CRL label. The encoded data MUST
be a BER (DER strongly preferred; see Appendix B) encoded ASN.1 CertificateList structure as
described in Section 5 of [RFC5280].

-----BEGIN X509 CRL-----
MIIB9DCCAV8CAQEwCwYJKoZIhvcNAQEFMIIBCDEXMBUGA1UEChMOVmVyaVNpZ24s
IEluYy4xHzAdBgNVBAsTFlZlcmlTaWduIFRydXN0IE5ldHdvcmsxRjBEBgNVBAsT
PXd3dy52ZXJpc2lnbi5jb20vcmVwb3NpdG9yeS9SUEEgSW5jb3JwLiBieSBSZWYu
LExJQUIuTFREKGMpOTgxHjAcBgNVBAsTFVBlcnNvbmEgTm90IFZhbGlkYXRlZDEm
MCQGA1UECxMdRGlnaXRhbCBJRCBDbGFzcyAxIC0gTmV0c2NhcGUxGDAWBgNVBAMU
D1NpbW9uIEpvc2Vmc3NvbjEiMCAGCSqGSIb3DQEJARYTc2ltb25Aam9zZWZzc29u
Lm9yZxcNMDYxMjI3MDgwMjM0WhcNMDcwMjA3MDgwMjM1WjAjMCECEC4QNwPfRoWd
elUNpllhhTgXDTA2MTIyNzA4MDIzNFowCwYJKoZIhvcNAQEFA4GBAD0zX+J2hkcc
Nbrq1Dn5IKL8nXLgPGcHv1I/le1MNo9t1ohGQxB5HnFUkRPAY82fR6Epor4aHgVy
b+5y+neKN9Kn2mPF4iiun+a4o26CjJ0pArojCL1p8T0yyi9Xxvyc/ezaZ98HiIyP
c3DGMNR+oUmSjKZ0jIhAYmeLxaPHfQwR
-----END X509 CRL-----

Figure 8: CRL Example

Historically the label CRL has rarely been used. Today it is not common and many popular tools do
not understand the label. Therefore, this document standardizes X509 CRL in order to promote
interoperability and backwards-compatibility. Generators conforming to this document MUST
generate X509 CRL labels and MUST NOT generate CRL labels. Parsers SHOULD NOT treat CRL as
equivalent to X509 CRL.

7. Textual Encoding of PKCS #10 Certification Request Syntax

PKCS #10 Certification Requests are encoded using the CERTIFICATE REQUEST label. The encoded
data MUST be a BER (DER strongly preferred; see Appendix B) encoded ASN.1
CertificationRequest structure as described in [RFC2986].

-----BEGIN CERTIFICATE REQUEST-----
MIIBWDCCAQcCAQAwTjELMAkGA1UEBhMCU0UxJzAlBgNVBAoTHlNpbW9uIEpvc2Vm
c3NvbiBEYXRha29uc3VsdCBBQjEWMBQGA1UEAxMNam9zZWZzc29uLm9yZzBOMBAG
ByqGSM49AgEGBSuBBAAhAzoABLLPSkuXY0l66MbxVJ3Mot5FCFuqQfn6dTs+9/CM
EOlSwVej77tj56kj9R/j9Q+LfysX8FO9I5p3oGIwYAYJKoZIhvcNAQkOMVMwUTAY
BgNVHREEETAPgg1qb3NlZnNzb24ub3JnMAwGA1UdEwEB/wQCMAAwDwYDVR0PAQH/
BAUDAwegADAWBgNVHSUBAf8EDDAKBggrBgEFBQcDATAKBggqhkjOPQQDAgM/ADA8
AhxBvfhxPFfbBbsE1NoFmCUczOFApEuQVUw3ZP69AhwWXk3dgSUsKnuwL5g/ftAY
dEQc8B8jAcnuOrfU
-----END CERTIFICATE REQUEST-----

Figure 9: PKCS #10 Example

The label NEW CERTIFICATE REQUEST is also in wide use. Generators conforming to this
document MUST generate CERTIFICATE REQUEST labels. Parsers MAY treat
NEW CERTIFICATE REQUEST as equivalent to CERTIFICATE REQUEST.

Internet-Draft pkix-textual December 2014

Josefsson & Leonard Expires July 2, 2015 [Page 8 of 14]

8. Textual Encoding of PKCS #7 Cryptographic Message Syntax

PKCS #7 Cryptographic Message Syntax structures are encoded using the PKCS7 label. The encoded
data MUST be a BER encoded ASN.1 ContentInfo structure as described in [RFC2315].

-----BEGIN PKCS7-----
MIHjBgsqhkiG9w0BCRABF6CB0zCB0AIBADFho18CAQCgGwYJKoZIhvcNAQUMMA4E
CLfrI6dr0gUWAgITiDAjBgsqhkiG9w0BCRADCTAUBggqhkiG9w0DBwQIZpECRWtz
u5kEGDCjerXY8odQ7EEEromZJvAurk/j81IrozBSBgkqhkiG9w0BBwEwMwYLKoZI
hvcNAQkQAw8wJDAUBggqhkiG9w0DBwQI0tCBcU09nxEwDAYIKwYBBQUIAQIFAIAQ
OsYGYUFdAH0RNc1p4VbKEAQUM2Xo8PMHBoYdqEcsbTodlCFAZH4=
-----END PKCS7-----

Figure 10: PKCS #7 Example

The label CERTIFICATE CHAIN has been in use to denote a degenerate PKCS #7 structure that
contains only a list of certificates (see Section 9 of [RFC2315]). Several modern tools do not support
this label. Generators MUST NOT generate the CERTIFICATE CHAIN label. Parsers SHOULD NOT
treat CERTIFICATE CHAIN as equivalent to PKCS7.

PKCS #7 is an old standard that has long been superseded by CMS [RFC5652]. Implementations
SHOULD NOT generate PKCS #7 when CMS is an alternative.

9. Textual Encoding of Cryptographic Message Syntax

Cryptographic Message Syntax structures are encoded using the CMS label. The encoded data MUST
be a BER encoded ASN.1 ContentInfo structure as described in [RFC5652].

-----BEGIN CMS-----
MIGDBgsqhkiG9w0BCRABCaB0MHICAQAwDQYLKoZIhvcNAQkQAwgwXgYJKoZIhvcN
AQcBoFEET3icc87PK0nNK9ENqSxItVIoSa0o0S/ISczMs1ZIzkgsKk4tsQ0N1nUM
dvb05OXi5XLPLEtViMwvLVLwSE0sKlFIVHAqSk3MBkkBAJv0Fx0=
-----END CMS-----

Figure 11: CMS Example

CMS is the IETF successor to PKCS #7. Section 1.1.1 of [RFC5652] describes the changes since PKCS
#7 v1.5. Implementations SHOULD generate CMS when it is an alternative, promoting
interoperability and forwards-compatibility.

10. Textual Encoding of PKCS #8 Private Key Info, and One Asymmetric
Key

Unencrypted PKCS #8 Private Key Information Syntax structures (PrivateKeyInfo), renamed to
Asymmetric Key Packages (OneAsymmetricKey), are encoded using the PRIVATE KEY label. The
encoded data MUST be a BER (DER preferred; see Appendix B) encoded ASN.1 PrivateKeyInfo
structure as described in PKCS #8 [RFC5208], or a OneAsymmetricKey structure as described in
[RFC5958]. The two are semantically identical, and can be distinguished by version number.

Internet-Draft pkix-textual December 2014

Josefsson & Leonard Expires July 2, 2015 [Page 9 of 14]

-----BEGIN PRIVATE KEY-----
MIGEAgEAMBAGByqGSM49AgEGBSuBBAAKBG0wawIBAQQgVcB/UNPxalR9zDYAjQIf
jojUDiQuGnSJrFEEzZPT/92hRANCAASc7UJtgnF/abqWM60T3XNJEzBv5ez9TdwK
H0M6xpM2q+53wmsN/eYLdgtjgBd3DBmHtPilCkiFICXyaA8z9LkJ
-----END PRIVATE KEY-----

Figure 12: PKCS #8 PrivateKeyInfo (OneAsymmetricKey) Example

11. Textual Encoding of PKCS #8 Encrypted Private Key Info

Encrypted PKCS #8 Private Key Information Syntax structures (EncryptedPrivateKeyInfo), called
the same in [RFC5958], are encoded using the ENCRYPTED PRIVATE KEY label. The encoded data
MUST be a BER (DER preferred; see Appendix B) encoded ASN.1 EncryptedPrivateKeyInfo
structure as described in PKCS #8 [RFC5208] and [RFC5958].

-----BEGIN ENCRYPTED PRIVATE KEY-----
MIHNMEAGCSqGSIb3DQEFDTAzMBsGCSqGSIb3DQEFDDAOBAghhICA6T/51QICCAAw
FAYIKoZIhvcNAwcECBCxDgvI59i9BIGIY3CAqlMNBgaSI5QiiWVNJ3IpfLnEiEsW
Z0JIoHyRmKK/+cr9QPLnzxImm0TR9s4JrG3CilzTWvb0jIvbG3hu0zyFPraoMkap
8eRzWsIvC5SVel+CSjoS2mVS87cyjlD+txrmrXOVYDE+eTgMLbrLmsWh3QkCTRtF
QC7k0NNzUHTV9yGDwfqMbw==
-----END ENCRYPTED PRIVATE KEY-----

Figure 13: PKCS #8 EncryptedPrivateKeyInfo Example

12. Textual Encoding of Attribute Certificates

Attribute certificates are encoded using the ATTRIBUTE CERTIFICATE label. The encoded data
MUST be a BER (DER strongly preferred; see Appendix B) encoded ASN.1 AttributeCertificate
structure as described in [RFC5755].

-----BEGIN ATTRIBUTE CERTIFICATE-----
MIICKzCCAZQCAQEwgZeggZQwgYmkgYYwgYMxCzAJBgNVBAYTAlVTMREwDwYDVQQI
DAhOZXcgWW9yazEUMBIGA1UEBwwLU3RvbnkgQnJvb2sxDzANBgNVBAoMBkNTRTU5
MjE6MDgGA1UEAwwxU2NvdHQgU3RhbGxlci9lbWFpbEFkZHJlc3M9c3N0YWxsZXJA
aWMuc3VueXNiLmVkdQIGARWrgUUSoIGMMIGJpIGGMIGDMQswCQYDVQQGEwJVUzER
MA8GA1UECAwITmV3IFlvcmsxFDASBgNVBAcMC1N0b255IEJyb29rMQ8wDQYDVQQK
DAZDU0U1OTIxOjA4BgNVBAMMMVNjb3R0IFN0YWxsZXIvZW1haWxBZGRyZXNzPXNz
dGFsbGVyQGljLnN1bnlzYi5lZHUwDQYJKoZIhvcNAQEFBQACBgEVq4FFSjAiGA8z
OTA3MDIwMTA1MDAwMFoYDzM5MTEwMTMxMDUwMDAwWjArMCkGA1UYSDEiMCCGHmh0
dHA6Ly9pZGVyYXNobi5vcmcvaW5kZXguaHRtbDANBgkqhkiG9w0BAQUFAAOBgQAV
M9axFPXXozEFcer06bj9MCBBCQLtAM7ZXcZjcxyva7xCBDmtZXPYUluHf5OcWPJz
5XPus/xS9wBgtlM3fldIKNyNO8RsMp6Ocx+PGlICc7zpZiGmCYLl64lAEGPO/bsw
Smluak1aZIttePeTAHeJJs8izNJ5aR3Wcd3A5gLztQ==
-----END ATTRIBUTE CERTIFICATE-----

Figure 14: Attribute Certificate Example

13. Textual Encoding of Subject Public Key Info

Public keys are encoded using the PUBLIC KEY label. The encoded data MUST be a BER (DER
preferred; see Appendix B) encoded ASN.1 SubjectPublicKeyInfo structure as described in
Section 4.1.2.7 of [RFC5280].

Internet-Draft pkix-textual December 2014

Josefsson & Leonard Expires July 2, 2015 [Page 10 of 14]

-----BEGIN PUBLIC KEY-----
MHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEn1LlwLN/KBYQRVH6HfIMTzfEqJOVztLe
kLchp2hi78cCaMY81FBlYs8J9l7krc+M4aBeCGYFjba+hiXttJWPL7ydlE+5UG4U
Nkn3Eos8EiZByi9DVsyfy9eejh+8AXgp
-----END PUBLIC KEY-----

Figure 15: Subject Public Key Info Example

14. Security Considerations

Data in this format often originates from untrusted sources, thus parsers must be prepared to
handle unexpected data without causing security vulnerabilities.

Implementers building implementations that rely on canonical representation or the ability to
fingerprint a particular data object need to understand that this Internet-Draft does not define
canonical encodings. The first ambiguity is introduced by permitting the text-encoded representation
instead of the binary BER or DER encodings, but further ambiguities arise when multiple labels are
treated as similar. Variations of whitespace and non-base64 alphabetic characters can create further
ambiguities. Data encoding ambiguities also create opportunities for side channels. If canonical
encodings are desired, the encoded structure must be decoded and processed into a canonical form
(namely, DER encoding).

15. IANA Considerations

This document implies no IANA Considerations.

16. Acknowledgements

Peter Gutmann suggested to document labels for Attribute Certificates and PKCS #7 messages, and
to add examples for the non-standard variants. Dr. Stephen Henson suggested distinguishing when
BER versus DER are appropriate or necessary.

17. References

17.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119,
March 1997.

[RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax Version 1.5", RFC 2315, March 1998.

[RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification Request Syntax Specification Version
1.7", RFC 2986, November 2000.

[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, October 2006.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R. and W. Polk, "Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280,
May 2008.

[RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", STD 68, RFC
5234, January 2008.

[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, September 2009.

[RFC5755] Farrell, S., Housley, R. and S. Turner, "An Internet Attribute Certificate Profile for
Authorization", RFC 5755, January 2010.

Internet-Draft pkix-textual December 2014

Josefsson & Leonard Expires July 2, 2015 [Page 11 of 14]

mailto:burt@rsa.com
http://tools.ietf.org/html/rfc5234
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc5755
http://tools.ietf.org/html/rfc5652
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2315
http://tools.ietf.org/html/rfc2986
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc5280

[RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958, August 2010.

[X.690] International Telecommunications Union, "Information Technology - ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1:2008,
November 2008.

17.2. Informative References

[RFC0934] Rose, M. and E. Stefferud, "Proposed standard for message encapsulation", RFC 934,
January 1985.

[RFC1421] Linn, J., "Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures", RFC 1421, February 1993.

[RFC2015] Elkins, M., "MIME Security with Pretty Good Privacy (PGP)", RFC 2015, October 1996.

[RFC2585] Housley, R. and P. Hoffman, "Internet X.509 Public Key Infrastructure Operational
Protocols: FTP and HTTP", RFC 2585, May 1999.

[RFC4716] Galbraith, J. and R. Thayer, "The Secure Shell (SSH) Public Key File Format", RFC 4716,
November 2006.

[RFC5208] Kaliski, B., "Public-Key Cryptography Standards (PKCS) #8: Private-Key Information Syntax
Specification Version 1.2", RFC 5208, May 2008.

[RFC7292] Moriarty, K., Nystrom, M., Parkinson, S., Rusch, A. and M. Scott, "PKCS #12: Personal
Information Exchange Syntax v1.1", RFC 7292, July 2014.

[P7v1.6] Kaliski, B. and K. Kingdon, "Extensions and Revisions to PKCS #7 (Version 1.6 Bulletin)", May
1997.

[X.509SG] Gutmann, P., "X.509 Style Guide", October 2000.

Appendix A. Non-Conforming Examples

This section contains examples for the non-recommended label variants described earlier in this
document. As discussed earlier, supporting these are not required and sometimes discouraged. Still,
they can be useful for interoperability testing and for easy reference.

-----BEGIN X509 CERTIFICATE-----
MIIBHDCBxaADAgECAgIcxzAJBgcqhkjOPQQBMBAxDjAMBgNVBAMUBVBLSVghMB4X
DTE0MDkxNDA2MTU1MFoXDTI0MDkxNDA2MTU1MFowEDEOMAwGA1UEAxQFUEtJWCEw
WTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATwoQSr863QrR0PoRIYQ96H7WykDePH
Wa0eVAE24bth43wCNc+U5aZ761dhGhSSJkVWRgVH5+prLIr+nzfIq+X4oxAwDjAM
BgNVHRMBAf8EAjAAMAkGByqGSM49BAEDRwAwRAIfMdKS5F63lMnWVhi7uaKJzKCs
NnY/OKgBex6MIEAv2AIhAI2GdvfL+mGvhyPZE+JxRxWChmggb5/9eHdUcmW/jkOH
-----END X509 CERTIFICATE-----

Figure 16: Non-standard 'X509' Certificate Example

Internet-Draft pkix-textual December 2014

Josefsson & Leonard Expires July 2, 2015 [Page 12 of 14]

http://tools.ietf.org/html/rfc4716
http://tools.ietf.org/html/rfc934
mailto:housley@spyrus.com
http://tools.ietf.org/html/rfc1421
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt
mailto:104-8456@mcimail.com
http://tools.ietf.org/html/rfc5958
http://tools.ietf.org/html/rfc5208
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-7-cryptographic-message-syntax-standar.htm
http://tools.ietf.org/html/rfc2585
http://tools.ietf.org/html/rfc7292
mailto:Stef@UCI.ARPA
mailto:MRose@UDel.ARPA
http://tools.ietf.org/html/rfc2015
mailto:phoffman@imc.org

-----BEGIN X.509 CERTIFICATE-----
MIIBHDCBxaADAgECAgIcxzAJBgcqhkjOPQQBMBAxDjAMBgNVBAMUBVBLSVghMB4X
DTE0MDkxNDA2MTU1MFoXDTI0MDkxNDA2MTU1MFowEDEOMAwGA1UEAxQFUEtJWCEw
WTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATwoQSr863QrR0PoRIYQ96H7WykDePH
Wa0eVAE24bth43wCNc+U5aZ761dhGhSSJkVWRgVH5+prLIr+nzfIq+X4oxAwDjAM
BgNVHRMBAf8EAjAAMAkGByqGSM49BAEDRwAwRAIfMdKS5F63lMnWVhi7uaKJzKCs
NnY/OKgBex6MIEAv2AIhAI2GdvfL+mGvhyPZE+JxRxWChmggb5/9eHdUcmW/jkOH
-----END X.509 CERTIFICATE-----

Figure 17: Non-standard 'X.509' Certificate Example

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBWDCCAQcCAQAwTjELMAkGA1UEBhMCU0UxJzAlBgNVBAoTHlNpbW9uIEpvc2Vm
c3NvbiBEYXRha29uc3VsdCBBQjEWMBQGA1UEAxMNam9zZWZzc29uLm9yZzBOMBAG
ByqGSM49AgEGBSuBBAAhAzoABLLPSkuXY0l66MbxVJ3Mot5FCFuqQfn6dTs+9/CM
EOlSwVej77tj56kj9R/j9Q+LfysX8FO9I5p3oGIwYAYJKoZIhvcNAQkOMVMwUTAY
BgNVHREEETAPgg1qb3NlZnNzb24ub3JnMAwGA1UdEwEB/wQCMAAwDwYDVR0PAQH/
BAUDAwegADAWBgNVHSUBAf8EDDAKBggrBgEFBQcDATAKBggqhkjOPQQDAgM/ADA8
AhxBvfhxPFfbBbsE1NoFmCUczOFApEuQVUw3ZP69AhwWXk3dgSUsKnuwL5g/ftAY
dEQc8B8jAcnuOrfU
-----END NEW CERTIFICATE REQUEST-----

Figure 18: Non-standard 'NEW' PKCS #10 Example

-----BEGIN CERTIFICATE CHAIN-----
MIHjBgsqhkiG9w0BCRABF6CB0zCB0AIBADFho18CAQCgGwYJKoZIhvcNAQUMMA4E
CLfrI6dr0gUWAgITiDAjBgsqhkiG9w0BCRADCTAUBggqhkiG9w0DBwQIZpECRWtz
u5kEGDCjerXY8odQ7EEEromZJvAurk/j81IrozBSBgkqhkiG9w0BBwEwMwYLKoZI
hvcNAQkQAw8wJDAUBggqhkiG9w0DBwQI0tCBcU09nxEwDAYIKwYBBQUIAQIFAIAQ
OsYGYUFdAH0RNc1p4VbKEAQUM2Xo8PMHBoYdqEcsbTodlCFAZH4=
-----END CERTIFICATE CHAIN-----

Figure 19: Non-standard 'CERTIFICATE CHAIN' Example

Appendix B. DER Expectations

This appendix is informative. Consult the respective standards for the normative rules.

DER is a restricted profile of BER [X.690]; thus all DER encodings of data values are BER encodings,
but just one of the BER encodings is the DER encoding for a data value. Canonical encoding matters
when performing cryptographic operations; additionally, canonical encoding has certain efficiency
advantages for parsers. There are three principal reasons to encode with DER:

1. A digital signature is (supposed to be) computed over the DER encoding of the
semantic content, so providing anything other than the DER encoding is senseless. (In
practice, an implementer might choose to have an implementation parse and digest
the data as-is, but this practice amounts to guesswork.)

2. In practice, cryptographic hashes are computed over the DER encoding for
identification.

3. In practice, the content is small. DER always encodes data values in definite length
form (where the length is stated at the beginning of the encoding); thus, a parser can
anticipate memory or resource usage up-front.

Figure 20 matches the structures in this document with the particular reasons for DER encoding:

Internet-Draft pkix-textual December 2014

Josefsson & Leonard Expires July 2, 2015 [Page 13 of 14]

Sec. Label Reasons
----+----------------------+-------
 5 CERTIFICATE 1 2 ~3
 6 X509 CRL 1
 7 CERTIFICATE REQUEST 1 ~3
 8 PKCS7 *
 9 CMS *
 10 PRIVATE KEY 3
 11 ENCRYPTED PRIVATE KEY 3
 12 ATTRIBUTE CERTIFICATE 1 ~3
 13 PUBLIC KEY 2 3

*Cryptographic Message Syntax is designed for content of any length; indefinite length encoding
enables one-pass processing (streaming) when generating the encoding. Only certain parts, namely
signed and authenticated attributes, need to be DER encoded.
~Although not always "small", these encoded structures should not be particularly "large" (e.g., more
than 16 kilobytes). The parser ought to be informed of large things up-front in any event, which is yet
another reason to DER encode these things in the first place.

Figure 20: Guide for DER Encoding

Authors’ Addresses

Simon Josefsson
SJD AB
Johan Olof Wallins Väg 13
Solna, 171 64
SE
EMail: simon@josefsson.org
URI: http://josefsson.org/

Sean Leonard
Penango, Inc.
5900 Wilshire Boulevard
21st Floor
Los Angeles, CA 90036
USA
EMail: dev+ietf@seantek.com
URI: http://www.penango.com/

Internet-Draft pkix-textual December 2014

Josefsson & Leonard Expires July 2, 2015 [Page 14 of 14]

http://www.penango.com/
http://josefsson.org/
mailto:simon@josefsson.org
mailto:dev+ietf@seantek.com

	Abstract
	Introduction
	ABNF
	References
	Appendix A
	Appendix B

