
 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

Network Working Group M. Jones

Internet-Draft Microsoft

Intended status: Standards Track October 30, 2011

Expires: May 2, 2012

JSON Web Key (JWK)
draft-jones-json-web-key-02

Abstract

A JSON Web Key (JWK) is a JSON data structure that represents a set of public keys.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on May 2, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
2. Terminology
3. JSON Web Key (JWK) Overview
 3.1. Example JWK
4. JWK Format
 4.1. JWK Container Object Format
 4.2. JWK Key Object Format
 4.2.1. JWK Key Object Members for Elliptic Curve Keys
 4.2.2. JWK Key Object Members for RSA Keys
5. Base64url encoding as used by JWKs
6. IANA Considerations
7. Security Considerations
8. Open Issues and Things To Be Done (TBD)
9. References
 9.1. Normative References
 9.2. Informative References
Appendix A. Acknowledgements
Appendix B. Document History
§ Author's Address

1. Introduction

A JSON Web Key (JWK) is a JSON data structure that represents a set of public keys as a JSON
object . The JWK format is used to represent bare keys; representing certificate
chains is an explicit non-goal of this specification. JSON Web Keys are referenced in JSON Web
Signatures (JWSs) using the jku (JSON Key URL) header parameter.

2. Terminology

JSON Web Key (JWK)
A JSON data structure that represents a set of public keys. A JWK consists of a
single JWK Container Object that contains an array of JWK Key Objects.

JWK Container Object
A JSON object that contains an array of JWK Key Objects as a member.

JWK Key Object
A JSON object that represents a single public key.

Base64url Encoding
For the purposes of this specification, this term always refers to the URL- and
filename-safe Base64 encoding described in [RFC4648], Section 5, with
the (non URL-safe) '=' padding characters omitted, as permitted by Section 3.2.
(See Appendix C of for notes on implementing base64url encoding without
padding.)

3. JSON Web Key (JWK) Overview

It is sometimes useful to be able to reference public key representations, for instance, in
order to verify the signature on content signed with the corresponding private key. The JSON
Web Key (JWK) data structure provides a convenient JSON representation for sets of public
keys utilizing either the Elliptic Curve or RSA families of algorithms.

3.1. Example JWK

The following example JWK contains two public keys: one using an Elliptic Curve algorithm and
a second one using an RSA algorithm. In both cases, integers are represented using the
base64url encoding of their big endian representations.

{"keyvalues":
 [
 {"algorithm":"EC",
 "curve":"P-256",
 "x":"MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",
 "y":"4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",
 "use":"encryption",
 "keyid":"1"},

 {"algorithm":"RSA",
 "modulus": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx4cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMstn64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbISD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqbw0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",
 "exponent":"AQAB",
 "keyid":"2011-04-29"}
]
 }

4. JWK Format

A JWK consists of a JWK Container Object, which is a JSON object that contains an array of JWK
Key Objects as a member. This section specifies the format of these objects.

4.1. JWK Container Object Format

A JWK Container Object is a JSON object containing a specific member. This member is:

Member
Name

JSON Value
Type

Container Object Member Semantics

keyvalues array
The keyvalues member value contains an array of JWK Key Objects.
This member is REQUIRED.

 JWK Container Object Member

Additional members MAY be present in the JWK Container Object. If present, they MUST be
understood by implementations using that JWK.

4.2. JWK Key Object Format

A JWK Key Object is a JSON object containing specific members. Those members that are
common to all key types are as follows:

Member
Name

JSON
Value
Type

Key Object Member Semantics

algorithm string

The algorithm member identifies the cryptographic algorithm family used with
the key. Values defined by this specification are EC and RSA. Specific additional
members are required to represent the key, depending upon the algorithm
value. The algorithm value is case sensitive. This member is REQUIRED.

use string
The use member identifies the intended use of the key. Values defined by this
specification are signature and encryption. Other values MAY be used. The use
value is case sensitive. This member is OPTIONAL.

keyid string

The keyid (Key ID) member can be used to match a specific key. This can be
used, for instance, to choose among a set of keys within the JWK during key
rollover. The keyid value MAY correspond to a JWS kid value. The interpretation of
the keyid value is unspecified. This member is OPTIONAL.

 JWK Key Object Members

Additional members MAY be present in the JWK Key Object. If present, they MUST be
understood by implementations using that key.

4.2.1. JWK Key Object Members for Elliptic Curve Keys

JWKs can represent Elliptic Curve keys. In this case, the algorithm member
value MUST be EC. Furthermore, these additional members MUST be present:

Member
Name

JSON
Value
Type

Key Object Member Semantics

curve string

The curve member identifies the cryptographic curve used with the key. Values
defined by this specification are P-256, P-384 and P-521. Additional curve values
MAY be used, provided they are understood by implementations using that Elliptic
Curve key. The curve value is case sensitive.

x string
The x member contains the x coordinate for the elliptic curve point. It is
represented as the base64url encoding of the coordinate's big endian
representation.

y string
The y member contains the y coordinate for the elliptic curve point. It is
represented as the base64url encoding of the coordinate's big endian
representation.

 Members for Elliptic Curve Keys

4.2.2. JWK Key Object Members for RSA Keys

JWKs can represent RSA keys. In this case, the algorithm member value MUST
be RSA. Furthermore, these additional members MUST be present:

Member
Name

JSON
Value
Type

Key Object Member Semantics

modulus string
The modulus member contains the modulus value for the RSA public key. It is
represented as the base64url encoding of the value's big endian
representation.

exponent string
The exponent member contains the exponent value for the RSA public key. It is
represented as the base64url encoding of the value's big endian
representation.

 Members for RSA Keys

5. Base64url encoding as used by JWKs

JWKs make use of the base64url encoding as defined in [RFC4648]. As allowed by
Section 3.2 of the RFC, this specification mandates that base64url encoding when used with
JWKs MUST NOT use padding. Notes on implementing base64url encoding can be found in
the JWS specification.

6. IANA Considerations

No IANA actions are required by this specification.

7. Security Considerations

TBD

8. Open Issues and Things To Be Done (TBD)

The following items remain to be done in this draft:

Write the Security Considerations section.

9. References

RFC 2119

[RFC4627]

[JWS]

RFC 4648

[JWS]

[FIPS.186‑3]

[RFC3447]

RFC 4648

[JWS]

 TOC

 TOC

 TOC

 TOC

 TOC

9.1. Normative References

[FIPS.186-
3]

National Institute of Standards and Technology, “Digital Signature Standard (DSS),” FIPS PUB 186-3, June 2009.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

[RFC3447] Jonsson, J. and B. Kaliski, “Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1,” RFC 3447, February 2003 (TXT).

[RFC4627] Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” RFC 4627,
July 2006 (TXT).

[RFC4648] Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT).

9.2. Informative References

[JWS] Jones, M., Balfanz, D., Bradley, J., Goland, Y., Panzer, J., Sakimura, N., and P. Tarjan, “JSON Web
Signature (JWS),” October 2011.

[MagicSignatures] Panzer (editor), J., Laurie, B., and D. Balfanz, “Magic Signatures,” August 2010.

Appendix A. Acknowledgements

A JSON representation for RSA public keys was previously introduced in
[MagicSignatures].

Appendix B. Document History

-02

Editorial changes to have this spec better match the JWT, JWS, and JWE specs. No
normative changes.

-01

Changed algorithm member value for Elliptic Curve keys from ECDSA to EC,
since Elliptic Curve keys can be used with more algorithms than just the Elliptic
Curve Digital Signature Algorithm (ECDSA).
Added OPTIONAL use member to identify intended key usage, especially since
the same Elliptic Curve key should not be used for both signing and encryption
operations.

-00

Created first version based upon decisions made at the Internet Identity
Workshop (IIW), as documented at http://self-issued.info/?p=390.

Author's Address

 Michael B. Jones
 Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

Magic Signatures

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc3447
http://www.rfc-editor.org/rfc/rfc3447.txt
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
mailto:mbj@microsoft.com
mailto:balfanz@google.com
mailto:ve7jtb@ve7jtb.com
mailto:yarong@microsoft.com
mailto:jpanzer@google.com
mailto:n-sakimura@nri.co.jp
mailto:pt@fb.com
http://self-issued.info/docs/draft-jones-json-web-signature.html
http://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-experimental-00.html
mailto:mbj@microsoft.com
http://self-issued.info/

	JSON Web Key (JWK) draft-jones-json-web-key-02
	Abstract
	Requirements Language
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. JSON Web Key (JWK) Overview
	3.1. Example JWK
	4. JWK Format
	4.1. JWK Container Object Format
	4.2. JWK Key Object Format
	4.2.1. JWK Key Object Members for Elliptic Curve Keys
	4.2.2. JWK Key Object Members for RSA Keys
	5. Base64url encoding as used by JWKs
	6. IANA Considerations
	7. Security Considerations
	8. Open Issues and Things To Be Done (TBD)
	9. References
	9.1. Normative References
	9.2. Informative References
	Appendix A. Acknowledgements
	Appendix B. Document History
	Author's Address

