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Abstract

A JSON Web Key (JWK) is a JSON data structure that represents a set of public keys.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in  [RFC2119].
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Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
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1.  Introduction

A JSON Web Key (JWK) is a JSON data structure that represents a set of public keys as a JSON
object . The JWK format is used to represent bare keys; representing certificate
chains is an explicit non-goal of this specification. JSON Web Keys are referenced in JSON Web
Signatures (JWSs)  using the jku (JSON Key URL) header parameter.

2.  Terminology

JSON Web Key (JWK)
A JSON data structure that represents a set of public keys. A JWK consists of a
single JWK Container Object that contains an array of JWK Key Objects.

JWK Container Object
A JSON object that contains an array of JWK Key Objects as a member.

JWK Key Object
A JSON object that represents a single public key.

Base64url Encoding
For the purposes of this specification, this term always refers to the URL- and
filename-safe Base64 encoding described in  [RFC4648], Section 5, with
the (non URL-safe) '=' padding characters omitted, as permitted by Section 3.2.
(See Appendix C of  for notes on implementing base64url encoding without
padding.)

3.  JSON Web Key (JWK) Overview

It is sometimes useful to be able to reference public key representations, for instance, in
order to verify the signature on content signed with the corresponding private key. The JSON
Web Key (JWK) data structure provides a convenient JSON representation for sets of public
keys utilizing either the Elliptic Curve or RSA families of algorithms.

3.1.  Example JWK

The following example JWK contains two public keys: one using an Elliptic Curve algorithm and
a second one using an RSA algorithm. In both cases, integers are represented using the
base64url encoding of their big endian representations.

{"keyvalues":
   [
     {"algorithm":"EC",
      "curve":"P-256",
      "x":"MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",
      "y":"4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",
      "use":"encryption",
      "keyid":"1"},

    {"algorithm":"RSA",
      "modulus": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx4cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMstn64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbISD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqbw0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",
      "exponent":"AQAB",
      "keyid":"2011-04-29"}
   ]
 }

4.  JWK Format

A JWK consists of a JWK Container Object, which is a JSON object that contains an array of JWK
Key Objects as a member. This section specifies the format of these objects.

4.1.  JWK Container Object Format

A JWK Container Object is a JSON object containing a specific member. This member is:

Member
Name

JSON Value
Type

Container Object Member Semantics

keyvalues array
The keyvalues member value contains an array of JWK Key Objects.
This member is REQUIRED.

 JWK Container Object Member 

Additional members MAY be present in the JWK Container Object. If present, they MUST be
understood by implementations using that JWK.

4.2.  JWK Key Object Format

A JWK Key Object is a JSON object containing specific members. Those members that are
common to all key types are as follows:

Member
Name

JSON
Value
Type

Key Object Member Semantics

algorithm string

The algorithm member identifies the cryptographic algorithm family used with
the key. Values defined by this specification are EC and RSA. Specific additional
members are required to represent the key, depending upon the algorithm
value. The algorithm value is case sensitive. This member is REQUIRED.

use string
The use member identifies the intended use of the key. Values defined by this
specification are signature and encryption. Other values MAY be used. The use
value is case sensitive. This member is OPTIONAL.

keyid string

The keyid (Key ID) member can be used to match a specific key. This can be
used, for instance, to choose among a set of keys within the JWK during key
rollover. The keyid value MAY correspond to a JWS kid value. The interpretation of
the keyid value is unspecified. This member is OPTIONAL.

 JWK Key Object Members 

Additional members MAY be present in the JWK Key Object. If present, they MUST be
understood by implementations using that key.

4.2.1.  JWK Key Object Members for Elliptic Curve Keys

JWKs can represent Elliptic Curve  keys. In this case, the algorithm member
value MUST be EC. Furthermore, these additional members MUST be present:

Member
Name

JSON
Value
Type

Key Object Member Semantics

curve string

The curve member identifies the cryptographic curve used with the key. Values
defined by this specification are P-256, P-384 and P-521. Additional curve values
MAY be used, provided they are understood by implementations using that Elliptic
Curve key. The curve value is case sensitive.

x string
The x member contains the x coordinate for the elliptic curve point. It is
represented as the base64url encoding of the coordinate's big endian
representation.

y string
The y member contains the y coordinate for the elliptic curve point. It is
represented as the base64url encoding of the coordinate's big endian
representation.

 Members for Elliptic Curve Keys 

4.2.2.  JWK Key Object Members for RSA Keys

JWKs can represent RSA  keys. In this case, the algorithm member value MUST
be RSA. Furthermore, these additional members MUST be present:

Member
Name

JSON
Value
Type

Key Object Member Semantics

modulus string
The modulus member contains the modulus value for the RSA public key. It is
represented as the base64url encoding of the value's big endian
representation.

exponent string
The exponent member contains the exponent value for the RSA public key. It is
represented as the base64url encoding of the value's big endian
representation.

 Members for RSA Keys 

5.  Base64url encoding as used by JWKs

JWKs make use of the base64url encoding as defined in  [RFC4648]. As allowed by
Section 3.2 of the RFC, this specification mandates that base64url encoding when used with
JWKs MUST NOT use padding. Notes on implementing base64url encoding can be found in
the JWS  specification.

6.  IANA Considerations

No IANA actions are required by this specification.

7.  Security Considerations

TBD

8.  Open Issues and Things To Be Done (TBD)

The following items remain to be done in this draft:

Write the Security Considerations section.
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