JOSE Working Group ToC
Intemet.Draft

Intended status: Standards Track October 15, 2012

JSON Web Encryption JSON Serialization (JWE-JS)
draft-jones-jose-jwe-json-serialization-02

Abstract

The JSON Web Encryption JSON Serialization (JWE-JS) is a means of representing encrypted
content using JavaScript Object Notation (JSON) data structures. This specification describes
a means of representing secured content as a JSON data object (as opposed to the JWE
specification, which uses a compact serialization with a URL-safe representation). It enables
the same content to be encrypted to multiple parties (unlike JWE). Cryptographic algorithms
and identifiers used with this specification are described in the separate JSON Web Algorithms
(JWA) specification. The JSON Serialization for related digital signature and MAC functionality
is described in the separate JSON Web Signature JSON Serialization (JWS-JS) specification.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on April 18, 2013.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Notational Conventions
. Terminology

JSON Serialization

Example JWE-JS

IANA Considerations
Security Considerations
References
7.1. Normative References
7.2. Informative References
Appendix A. Acknowledgements

[N [N

Appendix B. Open Issues
Appendix C. Document History
§ Author's Address

TOC
1. Introduction

The JSON Web Encryption JSON Serialization (JWE-JS) is a format for representing encrypted
content as a JavaScript Object Notation (JSON) [RFC4627] object. It enables the same
content to be encrypted to multiple parties (unlike JWE [JWE].) The encryption mechanisms
are independent of the type of content being encrypted. Cryptographic algorithms and
identifiers used with this specification are described in the separate JSON Web Algorithms
(JWA) [JWA] specification. The JSON Serialization for related digital signature and MAC
functionality is described in the separate JSON Web Signature JSON Serialization (JWS-JS)
[JWS-JS] specification.

TOC
1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in Key words for use in RFCs to Indicate Requirement Levels
[RFC2119].

2. Terminology _—

This specification uses the same terminology as the JSON Web Encryption (JWE) [JWE]
specification.

3. JSON Serialization TOC

The JSON Serialization represents encrypted content as a JSON object with a recipients
member containing an array of per-recipient information, an initialization_vector
member containing a shared Encoded JWE Initialization Vector value, and a ciphertext
member containing a shared Encoded JWE Ciphertext value. Each member of the
recipients array is a JSON object with a header member containing an Encoded JWE
Header value, an encrypted_key member containing an Encoded JWE Encrypted Key value,
and an integrity_value member containing an Encoded JWE Integrity Value value.

Unlike the compact serialization used by JWEs, content using the JSON Serialization MAY be
encrypted to more than one recipient. Each recipient requires:

¢ a JWE Header value specifying the cryptographic parameters used to encrypt the
JWE Encrypted Key to that recipient and the parameters used to encrypt the
plaintext to produce the JWE Ciphertext; this is represented as an Encoded JWE
Header value in the header member of an object in the recipients array.

¢ a JWE Encrypted Key value used to encrypt the ciphertext; this is represented as
an Encoded JWE Encrypted Key value in the encrypted_key member of the
same object in the recipients array.

¢ a JWE Integrity Value that ensures the integrity of the Ciphertext and the
parameters used to create it; this is represented as an Encoded JWE Integrity
Value value in the integrity_value member of the same object in the
recipients array.

Therefore, the syntax is:

{"recipients":[
{"header":"<header 1 contents>",
"encrypted_key":"<encrypted key 1 contents>",
"integrity_value":"<integrity value 1 contents>"},

{"header":"<header N contents>",
"encrypted_key":"<encrypted key N contents>",
"integrity_value":"<integrity value N contents>"}],

"initialization_vector":"<initialization vector contents>",

"ciphertext":"<ciphertext contents>"

}

The contents of the Encoded JWE Header, Encoded JWE Encrypted Key, Encoded JWE
Initialization Vector, Encoded JWE Ciphertext, and Encoded JWE Integrity Value values are
exactly as specified in JSON Web Encryption (JWE) [JWE]. They are interpreted and validated
in the same manner, with each corresponding header, encrypted_key, and
integrity_value value being created and validated together.

Each JWE Encrypted Key value and the corresponding JWE Integrity Value are computed using
the parameters of the corresponding JWE Header value in the same manner described in the
JWE specification. This has the desirable result that each Encoded JWE Encrypted Key value in
the recipients array and each Encoded JWE Integrity Value in the same array element are

identical to the values that would have been computed for the same parameters in a JWE, as
is the shared JWE Ciphertext value.

All recipients use the same JWE Ciphertext and JWE Initialization Vector values, resulting in
potentially significant space savings if the message is large. Therefore, all header parameters
that specify the treatment of the JWE Ciphertext value MUST be the same for all recipients.
This primarily means that the enc (encryption method) header parameter value in the JWE
Header for each recipient MUST be the same.

4. Example JWE-JS TOC

This section contains an example using the JWE JSON Serialization. This example
demonstrates the capability for encrypting the same plaintext to multiple recipients.

Two recipients are present in this example: the first using the RSAES-PKCS1-V1 5 algorithm
to encrypt the Content Master Key (CMK) and the second using RSAES OAEP to encrypt the
CMK. The Plaintext is encrypted using the AES CBC algorithm and the same block encryption
parameters to produce the common JWE Ciphertext value. The two Decoded JWE Header
Segments used are:

{"alg":"RSA1_5","enc":"A128CBC+HS256"}

and:

{"alg":"RSA-OAEP", "enc": "A128CBC+HS256"}

The keys used for the first recipient are the same as those in Appendix A.2 of [JWE], as is
the plaintext used. The asymmetric encryption key used for the second recipient is the same
as that used in Appendix A.1 of [JWE]; the block encryption keys and parameters for the
second recipient are the same as those for the first recipient (which must be the case, since
the initialization vector and ciphertext are shared).

The complete JSON Web Encryption JSON Serialization (JWE-JS) for these values is as follows
(with line breaks for display purposes only):

{"recipients":[
{"header":

"eyJhbGci0iJSUGEXXzUiLCJ1bmMi0OiJBMTI4QOJIDKOhTMjU2In0",
"encrypted_key":

"06AgXqgV13J4c41p5sXZd7bpGHAW6ARKHUeXQXD1cAW4 -X1x0qtj_ANOmukqgE
014YBUOWJIXIJY9-G1ELK-RQWrKH_StR-AMOH7GpKmMSEji8QYOCMOjr-u9H1Lt
_PBE1eG802SxWzOrbFTXRcj4BWLxcpCtjUZ31AP-sc-L_eCZ5UN1@aSRNgFsk
UPkzRsFZRDJ(qSSJeV0OyJ7pZCQ83f1il19Vvgi_ 3R7XMUqluQuuc7ZHOWixid7jX
1BT1WRZ5iFxaS8G6J8wUrd4BKggAw3gX5XoIfXQV1QZEOVmMkg _zQSIo5LnFKy
OwWOORCdSEUNh9BOMkyt@ZQE1G-jGdtHWjZS0A",

"integrity value":

"RBGhYZzE8_cZLHjJqgqHuLhzbgWgL_wV3LDSUrcbkOiIA"},

{"header":

"eyJhbGciO0iJSUOGELTOFFUCISImMVUYYI6IKEXMjhDQKMrSFMyNTYifQ",

"encrypted_key":

"myoFYZHErXG4gMVW19Ur FOCFIwvOUudYrxTsRsOt6maTc3W8G1FqGVOIBSZve
Bdzz2LgS42xta50XEwLYaocObUxt fHOH8VvMsjO-mBo7U9mp_PkS9PqVJIMkeEe
PLhzNLHOecq7nYT6AFr5sSt4WMOPjSwHVQWtx43fZt4HvYaE_vgeSrxdi8KAb
xbLzK_-gqcYT6H7cwOMZr T6SFCcXgLXESUKpFOazSGQtUmoOMLICPOYPBecGLTo
PiveOH2awKZx0FkzPwi4JIJmOIvnAJ_wVQQJDVELWO9SI0oF801CQRHGYZ9rzDrr
GRkoYgm2jVz-x0BuUFVQFa4ZNufudtiT8pQxKg",

"integrity value":

"i45dXWFjRKk805VtjIw_8iqGqir9gPV7ULDLbNNAC_Q"}],

"initialization_vector":
"AXY8DCtDaGlsbGljb3RozQ",
"ciphertext":
"1eBWFgcrz40wC88cgv8rPgu3EfmC1lp4zTOKIXxfSF2zDJcQ-iEHKk1jQM95xAdr5
le

. . TOC
5. IANA Considerations
This specification makes no requests of IANA.
. . . TOC
6. Security Considerations
The security considerations for this specification are the same as those for the JSON Web
Encryption (JWE) [JWE] specification.
TOC
7. References
TOC

7.1. Normative References

[JWA] Jones, M., “ISON Web Algorithms (JWA),” October 2012.
[JWE] Jones, M., Rescorla, E., and]. Hildebrand, “JSON Web Encryption (JWE),” October 2012.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

[RFC4627] Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” RFC 4627,
July 2006 (TXT).

. TOC
7.2. Informative References

[I-D.rescorla- Rescorla, E. and J. Hildebrand, “JavaScript Message Security Format,” draft-rescorla-jsms-00 (work in
jsms] progress), March 2011 (TXT).

[JSE] Bradley,). and N. Sakimura (editor), “/SON Simple Encryption,” September 2010.
[Jws-)s] Jones, M., Bradley, J., and N. Sakimura, “J[SON Web Signature JSON Serialization (JWS-|S),”

October 2012.

mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
mailto:mbj@microsoft.com
mailto:ekr@rtfm.com
mailto:jhildebr@cisco.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/draft-rescorla-jsms-00
http://www.ietf.org/internet-drafts/draft-rescorla-jsms-00.txt
http://jsonenc.info/enc/1.0/
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp
http://tools.ietf.org/html/draft-jones-jose-jws-json-serialization

Appendix A. Acknowledgements _—

JSON serializations for encrypted content were previously explored by JSON Simple
Encryption [JSE] and JavaScript Message Security Format [I-D.rescorla-jsms].

. TOC
Appendix B. Open Issues
[[to be removed by the RFC editor before publication as an RFC]]
The following items remain to be considered or done in this draft:
e Track changes that occur in the JWE spec.
. . TOC
Appendix C. Document History
[[to be removed by the RFC editor before publication as an RFC]]
-02
¢ Changed to use an array of structures for per-recipient values, rather than a set
of parallel arrays.
¢ Promoted Initialization Vector from being a header parameter to being a top-
level]WE element. This saves approximately 16 bytes in the compact
serialization, which is a significant savings for some use cases. Promoting the
Initialization Vector out of the header also avoids repeating this shared value in
the JSON serialization.
-01
¢ Added a complete JWE-JS example.
¢ Generalized language to refer to Message Authentication Codes (MACs) rather
than Hash-based Message Authentication Codes (HMACs).
-00
e Renamed draft-jones-json-web-encryption-json-serialization to draft-jones-jose-
jwe-json-serialization to have "jose" be in the document name so it can be
included in the Related Documents list at http://datatracker.ietf.org/wg/jose/. No
normative changes.
draft-jones-json-web-encryption-json-serialization-02
¢ Updated examples to track updated algorithm properties in the JWA spec.
o Tracked editorial changes made to the JWE spec.
draft-jones-json-web-encryption-json-serialization-01
e Tracked changes between JOSE JWE draft -00 and -01, which added an integrity
check for non-AEAD algorithms.
draft-jones-json-web-encryption-json-serialization-00
¢ Created the initial version incorporating JOSE working group input and drawing
from the JSON Serialization previously proposed in draft-jones-json-web-token-
01.
TOC
Author's Address

Michael B. Jones

Microsoft
Email: mbj@microsoft.com
URI: http://self-issued.info/

mailto:mbj@microsoft.com
http://self-issued.info/

	JSON Web Encryption JSON Serialization (JWE-JS) draft-jones-jose-jwe-json-serialization-02
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	2. Terminology
	3. JSON Serialization
	4. Example JWE-JS
	5. IANA Considerations
	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References
	Appendix A. Acknowledgements
	Appendix B. Open Issues
	Appendix C. Document History
	Author's Address

