V\EBPUSH M Thonson

I nternet-Draft Mozilla
I ntended status: Standards Track E. Damaggi o
Expires: January 9, 2017 B. Raynor, Ed.
M crosoft

July 8, 2016

CGeneric Event Delivery Using HITP Push
draft-ietf-webpush-protocol-07

Abstract

A sinmple protocol for the delivery of real-tine events to user agents
is described. This schenme uses HTTP/ 2 server push.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunents valid for a maxi mnum of six nonths
and may be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on January 9, 2017.
Copyright Notice

Copyright (c) 2016 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’s Legal
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions wth respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided w thout warranty as
described in the Sinplified BSD License.

Thonson, et al. Expi res January 9, 2017 [Page 1]

| nt er net - Draf t HTTP Web Push

Tabl e of Contents

1

©Cwoo

10.
11. .
11.1. Normative F@ferences .
11.2. Informati ve References .
Appendi x A. Change Log .

Auth

Thonson,

>

A
A
A
A
A
A

1.
2.
3.
4.
.5. Logging R sks .
I
1.
2.
3.

| ntroducti on

.1. Conventions and Tern1no|ogy :

Overvi ew

. 1. HTTP Resour ces

Connecting to the Push Servi ce
Subscri bing for Push Messages .

.1. Collecting Subscriptions |nt6 Sets

Requesting Push Message Delivery

.1. Requesting Push Message Receipts
. 2. Push Message Tine-To-Live .

.3. Push Message Urgency .

.4. Replacing Push Messages .

Recei vi ng Push Messages for a Subscrlptlon

.1. Receiving Push Messages for a Subscription Set
. 2. Acknow edgi ng Push Messages . .
.3. Receiving Push Message Receipts .

Oper ati onal Consi derations

1 Load Managenent

2 Push Message Explratlon

3. Subscription Expiration

7.3.1. Subscription Set Explratlon Co

4 I nplications for Application Rellablllty
5.
S

Subscription Sets and Concurrent HITP/ 2 streans .

ecurity Considerations .
Confidentiality from Push SerV|ce Access
Privacy Consi derations
Aut hori zation .
Deni al of Service CDnS|derat|ons

ANA Consi derations . . .
Header Field Rbglstratlons
Li nk Rel ati on URNs Ce e e e
Servi ce Nane and Port Nunber Regi strati on
Acknow edgenent s
Ref er ences

1. Since draft-ietf- mebpush protocol 00
2 Since draft-ietf-webpush-protocol-01
3 Since draft-ietf-webpush-protocol-02
4. Since draft-ietf-webpush-protocol-03
5. Since draft-ietf-webpush-protocol-04
6 Since draft-ietf-webpush-protocol -05
7. Since draft-ietf-webpush-protocol-06
ors’ Addresses

et al. Expi res January 9, 2017

July 2016

©COO~NOOO U~ W

I nternet-Draft HTTP Web Push July 2016

1. I nt roducti on

Many applications on nobile and enbedded devi ces require continuous
access to network communi cations so that real-time events - such as
incomng calls or nessages - can be delivered (or "pushed") in a
tinmely fashion. These devices typically have Iimted power reserves,
so finding nore efficient ways to serve application requirenents
greatly benefits the application ecosystem

One significant contributor to power usage is the radio. Radio
conmmuni cati ons consune a significant portion of the energy budget on
a W rel ess devi ce.

Uncoor di nat ed use of persistent connections or sessions fromnultiple
applications can contribute to unnecessary use of the device radio,

si nce each i ndependent session can incur its own overhead. In
particul ar, keep alive traffic used to ensure that m ddl eboxes do not
prematurely tinme out sessions, can result in significant waste.

Mai nt enance traffic tends to dom nate over the long term since
events are relatively rare.

Consolidating all real-tine events into a single session ensures nore
efficient use of network and radi o resources. A single service
consolidates all events, distributing those events to applications as
they arrive. This requires just one session, avoiding duplicated
over head costs.

The WBC Push API [API] describes an APl that enables the use of a
consol i dated push service fromweb applications. This docunent
expands on that work by describing a protocol that can be used to:

0 request the delivery of a push nessage to a user agent,
0 create new push nessage delivery subscriptions, and
o nonitor for new push nessages.

A standardi zed nethod of event delivery is particularly inportant for
the WBC Push API, where application servers mght need to use
mul ti pl e push services. The subscription, managenent and nonitoring
functions are currently fulfilled by proprietary protocols; these are
adequate, but do not offer any of the advantages that standardi zation
affords

Thi s docunent intentionally does not describe how a push service is
di scovered. Discovery of push services is left for future efforts,
if it turns out to be necessary at all. User agents are expected to
be configured with a URL for a push service.

Thonson, et al. Expi res January 9, 2017 [Page 3]

I nternet-Draft HTTP Web Push July 2016

1.1. Conventions and Ter m nol ogy

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

Thi s docunent defines the follow ng terns:

application: Both the sender and ultinmate consunmer of push nessages.
Many applications have conmponents that are run on a user agent and
ot her conponents that run on servers.

application server: The conponent of an application that usually
runs on a server and requests the delivery of a push nessage.

push nessage subscription: A nmessage delivery context that is
establ i shed between the user agent and the push service and shared
with the application server. Al push nessages are associ ated
with a push nmessage subscription.

push nessage subscription set: A nessage delivery context that is
establ i shed between the user agent and the push service that
collects nmultiple push nessage subscriptions into a set.

push nessage: A nessage sent from an application server to a user
agent via a push service.

push nessage recei pt: A nessage delivery confirmation sent fromthe
push service to the application server.

push service: A service that delivers push nessages to user agents.

user agent: A device and software that is the recipient of push
nmessages.

Exanples in this docunent use the HTTP/ 1.1 nmessage format [RFC7230].
Many of the exchanges can be conpl eted using HTTP/ 1.1, where HITP/ 2
i s necessary, the nore verbose frame format from [RFC7540] is used.

Exanpl es do not include specific nethods for push nessage encryption
or application server authentication because the protocol does not
define a mandatory system The exanples in Voluntary Application
Server ldentification [I-D.ietf-webpush-vapid] and Message Encryption
for WebPush [I-D.ietf-webpush-encryption] denonstrate the approach
adopted by the WBC Push API [API] for its requirenents.

Thonson, et al. Expi res January 9, 2017 [Page 4]

I nternet-Draft HTTP Web Push July 2016

2. Overvi ew

A general nodel for push services includes three basic actors: a user
agent, a push service, and an application (server).

I
fome oo + o + oo e o +

|
| Push Message R |
| mmmme e | |

At the very beginning of the process, a new nessage subscription is
created by the user agent and then distributed to its application
server. This subscription is the basis of all future interactions
bet ween the actors. A subscription is used by the application server
to send nessages to the push service for being delivered to the user
agent. It is used by the user agent to nonitor the push service for
any incom ng nmessage.

To offer nore control for authorization, a nessage subscription is
nodel ed as two resources with different capabilities:

0 A subscription resource is used to receive nessages from a
subscription and to delete a subscription. It is private to the
user agent.

o0 A push resource is used to send nessages to a subscription. It is
public and shared by the user agent with its application server.

It is expected that a unique subscription will be distributed to each
appl i cation; however, there are no inherent cardinality constraints
in the protocol. Miltiple subscriptions mght be created for the
same application, or nultiple applications could use the sane
subscription. Note however that sharing subscriptions has security
and privacy inplications.

Thonson, et al. Expi res January 9, 2017 [Page 5]

I nternet-Draft HTTP Web Push July 2016

Subscriptions have a limted lifetime. They can also be term nated
by either the push service or user agent at any tinme. User agents
and application servers nust be prepared to manage changes in
subscription state.

2. 1. HTTP Resources

This protocol uses HITP resources [RFC7230] and link relations
[RFC5988]. The follow ng resources are defined:

push service: This resource is used to create push nessage
subscriptions (Section 4). A URL for the push service is
configured into user agents.

push nessage subscription: This resource provides read and del ete
access for a nmessage subscription. A user agent receives push
nmessages (Section 6) using a push nessage subscription. Every
push nmessage subscription has exactly one push resource associ at ed
with it.

push nessage subscription set: This resource provides read and
del ete access for a collection of push nessage subscriptions. A
user agent receives push nessages (Section 6.1) for all the push
message subscriptions in the set. A link relation of type
"urn:ietf:parans: push:set” identifies a push nessage subscription
set.

push: An application server requests the delivery (Section 5) of a
push nmessage using a push resource. A link relation of type
"urn:ietf:parans: push” identifies a push resource.

push nessage: The push service creates a push nessage resource to
identify push nessages that have been accepted for delivery
(Section 5). The push nmessage resource is also deleted by the
user agent to acknow edge receipt (Section 6.2) of a push nessage.

recei pt subscription: An application server receives delivery
confirmations (Section 5.1) for push nessages using a receipt
subscription. A link relation of type
"urn:ietf:parans: push:receipt” identifies a receipt subscription.

3. Connecting to the Push Service
The push service shares the same default port nunber (443/TCP) with

HTTPS, but MAY al so advertise the I ANA allocated TCP System Port 1001
using HTTP alternative services [RFC7838].

Thonson, et al. Expi res January 9, 2017 [Page 6]

I nternet-Draft HTTP Web Push July 2016

Wiile the default port (443) offers broad reachability
characteristics, it is nost often used for web browsing scenari os
with a lower idle tinmout than other ports configured in m ddl eboxes.
For webpush scenarios, this would contribute to unnecessary radio
communi cations to maintain the connection on battery-powered devi ces.

Advertising the alternate port (1001) allows m ddl eboxes to optim ze
idle tinmeouts for connections specific to push scenarios wth the
expectation that data exchange will be infrequent.

M ddl eboxes SHOULD conply with REQ 5 in [RFC5382] which requires that
"the value of the 'established connection idle-tinmeout’ MJST NOT be
|l ess than 2 hours 4 m nutes".

4. Subscribing for Push Messages

A user agent sends a POST request to its configured push service
resource to create a new subscription

PCOST /subscribe HTTP/ 1.1
Host: push. exanpl e. net

A 201 (Created) response indicates that the a push subscription was
created. A URI for the push nessage subscription resource that was
created in response to the request MJUST be returned in the Location
header fi el d.

The push service MJIST provide a URI for the push resource
corresponding to the push nessage subscription in a link relation of
type "urn:ietf:parans: push".

An application-specific nethod is used to distribute the push URI to
the application server. Confidentiality protection and application
server authentication MJST be used to ensure that this URl is not

di scl osed to unaut horized recipients (Section 8.3).

HTTP/ 1.1 201 Created
Date: Thu, 11 Dec 2014 23:56:52 GMI
Li nk: </ push/JzLQ@razJf FBROaqvOVsLrt 54w4r JUsV>;
rel ="urn:ietf:parans: push”
Li nk: </subscription-set/4UXw 2Rd7) GS7gp5cuut F8ZI dnEuvbOy>;
rel ="urn:ietf:parans: push: set"
Location: https://push. exanpl e. net/subscri pti on/ LBhhwOOohO W 4G 971UG

Thonson, et al. Expi res January 9, 2017 [Page 7]

I nternet-Draft HTTP Web Push July 2016

4.1. Collecting Subscriptions into Sets

Col l ecting multiple push nessage subscriptions into a subscription
set can represent a significant efficiency inprovenment for push
servi ces and user agents. The push service MAY provide a URI for a
subscription set resource in a link relation of type
"urn:ietf:parans: push:set"”.

When a subscription set is returned in a push nessage subscription
response, the user agent SHOULD include this subscription set in a
link relation of type "urn:ietf:parans: push:set” in subsequent
requests to create new push nessage subscri ptions.

A user agent MAY omt the subscription set if it is unable to receive
push nessages in an aggregated way for the lifetine of the
subscription. This m ght be necessary if the user agent is

nmoni toring subscriptions on behalf of other push nessage receivers.

POST /subscribe HTTP/ 1.1

Host: push. exanpl e. net

Li nk: </subscription-set/4UXwi 2Rd7) GS7gp5cuut F8Zl dnEuvbOy>;
rel ="urn:ietf:parans: push: set”

The push service SHOULD return the same subscription set inits
response, although it MAY return a new subscription set if it is
unabl e to reuse the one provided by the user agent.

HTTP/ 1.1 201 Created
Date: Thu, 11 Dec 2014 23:56:52 GMI
Li nk: </ push/ YBIJINBI MwA Ag8Et D47J4A>;
rel ="urn:ietf:parans: push”
Li nk: </subscription-set/4UXwi 2Rd7) GS7gp5cuut F8Zl dnEuvbOy>;
rel ="urn:ietf:parans: push: set”
Location: https://push. exanpl e. net/subscription/i-nQ@BA9ZmikgSW8_Zi j V

A push service MJIST return a 400 (Bad Request) status code for
requests which contain an invalid subscription set. A push service
MAY return a 429 (Too Many Requests) status code [RFC6585] to reject
requests which omt a subscription set.

How a push service detects that requests originate fromthe sanme user
agent is inplenentation-specific but could take anbient informtion
into consideration, such as the TLS connection, source |P address and
port. Inplenmenters are rem nded that sone heuristics can produce

fal se positives and cause requests to be rejected incorrectly.

Thonson, et al. Expi res January 9, 2017 [Page 8]

I nternet-Draft HTTP Web Push July 2016

5. Requesting Push Message Delivery

An application server requests the delivery of a push nessage by
sending a HTTP POST request to a push resource distributed to the
application server by a user agent. The content of the push nessage
is included in the body of the request.

POST / push/ JzL@@BrazJf FBROaqvOVsLrt 54w4r JUsV HTTP/ 1. 1
Host: push. exanpl e. net

TTL: 15

Content - Type: text/plain;charset=utf8
Content-Length: 36

i ChYul 3j Mzt 3i r 20P8r _j gRR- dSUN182x7i B

A 201 (Created) response indicates that the push nessage was
accepted. A URl for the push nessage resource that was created in
response to the request MJST be returned in the Location header
field. This does not indicate that the nessage was delivered to the
user agent.

HTTP/ 1.1 201 Created
Date: Thu, 11 Dec 2014 23:56:55 GVl
Location: https://push. exanpl e. net/ nmessage/ gDl YHNcf Al PP_5I TvURr - d6B&

5.1. Requesting Push Message Receipts

An application server can include the Prefer header field [RFC7240]
with the "respond-async" preference to request confirmation fromthe
push service when a push nessage is delivered and then acknow edged
by the user agent. The push service MJST support delivery
confirmations.

POST / push/JzL@@BrazJf FBROaqvOVsLrt 54w4r JUsV HTTP/ 1.1
Host: push. exanpl e. net

Prefer: respond-async

TTL: 15

Content - Type: text/plain;charset=utf8
Content-Length: 36

i ChYul 3j Mzt 3i r 20P8r _j gRR- dSUN182x7i B

Thonson, et al. Expi res January 9, 2017 [Page 9]

I nternet-Draft HTTP Web Push July 2016

When the push service accepts the nessage for delivery with
confirmation, it MJUST return a 202 (Accepted) response. A UR for

t he push nmessage resource that was created in response to the request
MUST be returned in the Location header field. The push service MJST
al so provide a URI for the receipt subscription resource in a |link
relation of type "urn:ietf:parans: push:receipt".

HTTP/ 1.1 202 Accepted
Date: Thu, 11 Dec 2014 23:56:55 GVl
Li nk: </receipt-subscription/3Zt14YVNBnUUZhuoChl 6omivAZM>;
rel ="urn:ietf:parans: push:receipt"
Location: https://push. exanpl e. net/ nmessage/ gDl YHNcf Al PP_5I TvURr - d6B&

For subsequent receipt requests to the same origin [RFC6454], the
application server SHOULD include the returned recei pt subscription
inalink relation of type "urn:ietf:parans: push:receipt”. This

gi ves the push service an option to aggregate the receipts. The push
service SHOULD return the sane recei pt subscription in its response,
al though it MAY return a new recei pt subscription if it is unable to
reuse the one provided by the application server.

An application server MAY omt the receipt subscriptionif it is
unable to receive receipts in an aggregated way for the lifetine of

t he recei pt subscription. This mght be necessary if the application
server is nonitoring receipt subscriptions on the behalf of other
push nessage senders.

A push service MJIST return a 400 (Bad Request) status code for
requests which contain an invalid receipt subscription. |f a push
service wishes to limt the nunber of receipt subscriptions that it
mai ntains, it MAY return a 429 (Too Many Requests) status code

[RFC6585] to reject receipt requests which onit a receipt

subscri ption.

5.2. Push Message Tine-To-Live
A push service can inprove the reliability of push nessage delivery
consi derably by storing push nessages for a period. User agents are
often only intermttently connected, and so benefit from having short
term nessage storage at the push service.

Del ayi ng delivery mght also be used to batch comuni cation with the
user agent, thereby conserving radi o resources.

Sone push nessages are not useful once a certain period of tine
el apses. Delivery of nessages after they have ceased to be rel evant

Thonson, et al. Expi res January 9, 2017 [Page 10]

I nternet-Draft HTTP Web Push July 2016

is wasteful. For exanple, if the push nessage contains a cal
notification, receiving a nessage after the caller has abandoned the
call is of no value; the application at the user agent is forced to

suppress the message so that it does not generate a useless alert.

An application server MJUST include the TTL (Ti ne-To-Live) header
field in its request for push nmessage delivery. The TTL header field
contains a value in seconds that suggests how |l ong a push nessage is
retai ned by the push service.

TTL = 1*DIG T

A push service MJIST return a 400 (Bad Request) status code in
response to requests that omt the TTL header field.

A push service MAY retain a push nessage for a shorter duration than
requested. It indicates this by returning a TTL header field in its
response with the actual TTL. This TTL value MJST be | ess than or
equal to the value provided by the application server.

Once the TTL period el apses, the push service MJST NOT attenpt to
deliver the push nmessage to the user agent. A push service night
adj ust the TTL value to account for tine accounting errors in
processing. For instance, distributing a push nessage within a
server cluster m ght accrue errors due to clock skew or propagation
del ays.

A push service is not obligated to account for time spent by the
application server in sending a push nessage to the push service, or
del ays incurred while sending a push nessage to the user agent. An
application server needs to account for transit delays in selecting a
TTL header field val ue.

A Push nmessage with a zero TTL is inmediately delivered if the user
agent is available to receive the nessage. After delivery, the push
service is permtted to imedi ately renove a push nessage with a zero
TTL. This m ght occur before the user agent acknow edges receipt of
t he nessage by performng a HITP DELETE on t he push nessage resource.
Consequently, an application server cannot rely on receiVing

acknow edgenent receipts for zero TTL push nessages.

If the user agent is unavail able, a push nessage with a zero TTL
expires and is never delivered.

Thonson, et al. Expi res January 9, 2017 [Page 11]

I nternet-Draft HTTP Web Push July 2016

5.3. Push Message Urgency

For a device that is battery-powered, it is often critical that it
remai ns dormant for extended periods. Radio comrunication in
particul ar consunes significant power and limts the length of tine
that the device can operate.

To avoid consum ng resources to receive trivial nessages, it is

hel pful if an application server can communi cate the urgency of a
nessage and if the user agent can request that the push server only
forward nessages of a specific urgency.

An application server MAY include an Urgency header field inits
request for push nmessage delivery. This header field indicates the
nmessage urgency. The push service MJST not forward the Urgency
header field to the user agent. A push nessage w thout the Urgency
header field defaults to a value of "normal"

A user agent MAY include the Urgency header field when nonitoring for
push nessages to indicate the | owest urgency of push nessages that it
iswilling to receive. A push service MJST NOT deliver push nessages
with | ower urgency than the value indicated by the user agent inits
nmoni toring request. Push nessages of any urgency are delivered to a
user agent that does not include an Urgency header field when

noni toring for nmessages.

Urgency = 1#(urgency-option)
urgency-option = ("very-low' / "low' / "normal" / "high")

In order of increasing urgency:

very-low | On power and wifi Adverti senents

I I I
| | ow | On either power or wfi | Topic updates |
| normal | On neither power nor wfi | Chat or Cal endar Message

| hi gh | Low battery | I'ncom ng phone call or |
| | | tinme-sensitive alert |
- S Y +

Tabl e 1. Table of Urgency Val ues
Mul ti pl e values for the Urgency header field MJUST NOT be included in

requests; otherw se, the push service MJST return a 400 (Bad Request)
status code.

Thonson, et al. Expi res January 9, 2017 [Page 12]

I nternet-Draft HTTP Web Push July 2016

5.4. Repl aci ng Push Messages

A push nessage that has been stored by the push service can be
replaced with new content. |f the user agent is offline during the
time that the push nessages are sent, updating a push nessage avoi ds
the situation where outdated or redundant nessages are sent to the
user agent.

Only push nessages that have been assigned a topic can be repl aced.
A push nmessage with a topic replaces any outstandi ng push nessage
with an identical topic.

A push nmessage topic is a string carried in a Topic header field. A
topic is used to correlate push nessages sent to the sane
subscription and does not convey any other semantics.

The grammar for the Topic header field uses the "token" rule defined
in [RFC7230].

Topi ¢ = token

For use with this protocol, the Topic header field MIST be restricted
to no nore than 32 characters fromthe URL and fil enane safe Base 64
al phabet [RFC4648]. A push service that receives a request with a
Topi ¢ header field that does not neet these constraints MJST return a
400 (Bad Request) status code to the application server.

A push nessage repl acenent request creates a new push nessage
resource and simul taneously del etes any exi sting nessage resource
that has a matching topic. Delivery receipts for the del eted nessage
SHOULD be suppressed.

The repl acenent request also replaces the stored TTL, Urgency, and
any recei pt subscription associated with the previous nessage in the
mat chi ng topic.

A push nmessage with a topic that is not shared by an outstanding
nessage to the same subscription is stored or delivered as nornal.

Thonson, et al. Expi res January 9, 2017 [Page 13]

I nternet-Draft HTTP Web Push July 2016

For exanple, the follow ng nessage could cause an existing nessage to
be repl aced:

PCST / push/ JzL@@BrazJf FBROaqvOVsLrt 54w4r JUsV HTTP/ 1. 1
Host: push. exanpl e. net

TTL: 600

Topi c: upd

Content - Type: text/plain;charset=utf8
Content-Length: 36

ZUHSZPKa2b1lj t OKLGoW cr n8cNgt 0i VQyr oF

If the push service identifies an outstandi ng push nessage with a
topic of "upd", then that nessage resource is deleted. A 201
(Created) response indicates that the push nessage repl acenent was
accepted. A URI for the new push nessage resource that was created
in response to the request is included in the Location header field.

HTTP/ 1.1 201 Created
Date: Thu, 11 Dec 2014 23:57:02 GMI
Location: https://push. exanpl e. net/ nessage/ gDl YHNcf Al PP_5I TvURr - d6B&

The value of the Topic header field MJUST NOT be forwarded to user
agents. Its value is neither encrypted nor authenticated.

6. Receiving Push Messages for a Subscription

A user agent requests the delivery of new push nmessages by naking a
CET request to a push nessage subscription resource. The push
servi ce does not respond to this request, it instead uses HITP/ 2
server push [RFC7540] to send the contents of push nessages as they
are sent by application servers.

A user agent MAY include a Urgency header field in its request. The
push service MJST NOT deliver nessages with | ower urgency than the
val ue of the header field as defined in the Table of Urgency Val ues.

Each push nmessage is pushed as the response to a synthesized GET
request sent in a PUSH PROM SE. This GET request is nade to the push
nmessage resource that was created by the push service when the
application server requested nessage delivery. The response headers
SHOULD provide a URI for the push resource corresponding to the push
message subscription in a link relation of type

"urn:ietf:parans: push". The response body is the entity body from
t he nost recent request sent to the push resource by the application
server.

Thonson, et al. Expi res January 9, 2017 [Page 14]

I nternet-Draft HTTP Web Push July 2016

The foll owm ng exanpl e request is made over HITP/ 2.

HEADERS [stream 7] +END_STREAM +END_HEADERS
: met hod = CGET
»path = /subscri pti on/ LBhhwOOohO W 40 971UG

cauthority push. exanpl e. net

The push service permts the request to remain outstanding. Wen a
push nessage is sent by an application server, a server push is
generated in association with the initial request. The response for
the server push includes the push nessage.

PUSH PROM SE [stream 7; prom sed stream 4] +END_HEADERS

: met hod = CGET
»path = / message/ gDl YHNcf Al PP_5I TvURr - d6B&
authority = push. exanpl e. net
HEADERS [stream 4] +END_HEADERS
»status = 200
dat e Thu, 11 Dec 2014 23:56:56 GVl

Thu, 11 Dec 2014 23:56:55 GVl

private

</ push/ JzLQBr azJf FBROaqvOVsLrt 54w4r JUsV>;
rel ="urn:ietf:parans: push”

text/pl ai n; charset=utf8

| ast-nodi fi ed
cache-contro
i nk

cont ent -type

content-1ength 36

DATA [stream 4] +END_STREAM
i ChYul 3] Mzt 3i r 20P8r _j gRR- dSuN182x7i B

HEADERS [stream 7] +END_STREAM +END_ HEADERS
»status = 200

A user agent can al so request the contents of the push nessage
subscription resource inmmediately by including a Prefer header field
[RFC7240] with a "wait" preference set to "0". 1In response to this
request, the push service MJST generate a server push for all push
nessages that have not yet been delivered.

A 204 (No Content) status code with no associ ated server pushes

i ndicates that no nessages are presently available. This could be
because push nessages have expired.

Thonson, et al. Expi res January 9, 2017 [Page 15]

I nternet-Draft HTTP Web Push July 2016

6.1. Receiving Push Messages for a Subscription Set

There are minor differences between receiving push nessages for a
subscription and a subscription set. |If a subscription set is
avai | abl e, the user agent SHOULD use the subscription set to nonitor
for push nessages rather than individual push nessage subscriptions.

A user agent requests the delivery of new push nessages for a
col l ection of push nessage subscriptions by making a GET request to a
push nessage subscription set resource. The push service does not
respond to this request, it instead uses HITP/2 server push [RFC7540]
to send the contents of push nessages as they are sent by application
servers.

A user agent MAY include a Urgency header field in its request. The
push service MJST NOT deliver messages with | ower urgency than the
val ue of the header field as defined in the Table of Urgency Val ues.

Each push nmessage is pushed as the response to a synthesized GET
request sent in a PUSH PROM SE. This GET request is nade to the push
nmessage resource that was created by the push service when the
application server requested nessage delivery. The synthetic request
MJST provide a URI for the push resource corresponding to the push
message subscription in a link relation of type
"urn:ietf:parans: push". This enables the user agent to differentiate
the source of the nmessage. The response body is the entity body from
t he nost recent request sent to the push resource by an application
server.

The foll ow ng exanple request is made over HITP/ 2.

HEADERS [stream 7] +END_STREAM +END_HEADERS
: met hod = CGET
»path = /subscription-set/4UXwi 2Rd7] GS7gp5cuut F8ZI dnEuvbOy

cauthority push. exanpl e. net

Thonson, et al. Expi res January 9, 2017 [Page 16]

I nternet-Draft HTTP Web Push July 2016

The push service permts the request to remain outstanding. Wen a
push nessage is sent by an application server, a server push is
generated in association with the initial request. The server push’s
response includes the push nessage.

PUSH PROM SE [stream 7; prom sed stream 4] +END_HEADERS

: met hod = CGET
s path = / message/ gDl YHNcf Al PP_5I TVURr - d6B&
cauthority = push. exanpl e. net
i nk = </ push/ JzL@@Br azZJf FBROagvOMVsLrt 54war JUsV>;
rel ="urn:ietf:parans: push”

HEADERS [stream 4] +END_HEADERS
»status = 200
dat e = Thu, 11 Dec 2014 23:56:56 GVI
| ast-nodified = Thu, 11 Dec 2014 23:56:55 GMI
cache-control = private
content-type = text/plain;charset=utf8
content-length = 36

DATA [stream 4] +END_STREAM
i ChYul 3j Mzt 3i r 20P8r _j gRR- dSUN182x7i B

HEADERS [stream 7] +END_STREAM +END_ HEADERS
»status = 200

A user agent can request the contents of the push nessage
subscription set resource imedi ately by including a Prefer header
field [RFC7240] with a "wait" preference set to "0". In response to
this request, the push service MJST generate a server push for al
push nessages that have not yet been delivered.

A 204 (No Content) status code with no associ ated server pushes
i ndi cates that no nessages are presently available. This could be
because push nmessages have expired.
6.2. Acknow edgi ng Push Messages
To ensure that a push nessage is properly delivered to the user agent

at | east once, the user agent MJUST acknow edge recei pt of the nessage
by perform ng a HITP DELETE on the push nessage resource.

DELETE / message/ gDl YHNcf Al PP_51 TVURr - d6BG HTTP/ 1. 1
Host: push. exanpl e. net

Thonson, et al. Expi res January 9, 2017 [Page 17]

I nternet-Draft HTTP Web Push July 2016

If the push service receives the acknow edgenent and the application
has requested a delivery receipt, the push service MIST return a 204
(No Content) response to the application server nonitoring the
recei pt subscription.

If the push service does not receive the acknow edgenent within a
reasonabl e amount of tinme, then the nessage is considered to be not
yet delivered. The push service SHOULD continue to retry delivery of
the nessage until its advertised expiration.

The push service MAY cease to retry delivery of the nessage prior to
its advertised expiration due to scenari os such as an unresponsive
user agent or operational constraints. |If the application has
requested a delivery receipt, then the push service MJST return a 410
(Gone) response to the application server nonitoring the receipt
subscri pti on.

6. 3. Receiving Push Message Receipts

The application server requests the delivery of receipts fromthe
push service by making a HTTP CGET request to the receipt subscription
resource. The push service does not respond to this request, it

i nstead uses HITP/ 2 server push [RFC7540] to send push recei pts when
nmessages are acknow edged (Section 6.2) by the user agent.

Each receipt is pushed as the response to a synthesized CGET request
sent in a PUSH PROM SE. This GET request is nade to the sane push
nmessage resource that was created by the push service when the
application server requested nessage delivery. The response includes
a status code indicating the result of the nessage delivery and
carries no data.

The foll owi ng exanpl e request is made over HITP/ 2.

HEADERS [stream 13] +END_STREAM +END_HEADERS
: met hod = CGET
:path = /recei pt-subscription/3Zt | 4YVNBnUUZhuoChl 6omiv(AZM

cauthority push. exanpl e. net

Thonson, et al. Expi res January 9, 2017 [Page 18]

I nternet-Draft HTTP Web Push July 2016

The push service permts the request to remain outstanding. Wen the
user agent acknow edges the nessage, the push service pushes a
delivery receipt to the application server. A 204 (No Content)
status code confirns that the nmessage was delivered and acknow edged.

PUSH PROM SE [stream 13; prom sed stream 82] +END_HEADERS

: met hod = CGET
s path = / message/ gDl YHNcf Al PP_5I TVURr - d6B&
cauthority = push. exanpl e. net
HEADERS [stream 82] +END_STREAM
+END_HEADERS
»status = 204
dat e = Thu, 11 Dec 2014 23:56:56 GMVI

If the user agent fails to acknow edge the recei pt of the push
nmessage and the push service ceases to retry delivery of the nessage
prior to its advertised expiration, then the push service MJST push a
failure response with a status code of 410 (CGone).

7. Qperational Considerations
7.1. Load Managenent

A push service is likely to have to maintain a very |arge nunber of
open TCP connections. Effective managenent of those connections can
depend on being able to nove connections between server instances.

A user agent MJST support the 307 (Tenporary Redirect) status code
[RFC7231], which can be used by a push service to redistribute | oad
at the time that a new subscription is requested.

A server that wishes to redistribute |oad can do so using HTTP
alternative services [RFC7838]. HITP alternative services allows for
redi stribution of |oad while maintaining the sane URIs for various
resources. A user agent can ensure a graceful transition by using
the GOAWAY frame once it has established a replacenent connection.

7.2. Push Message Expiration

St orage of push nessages based on the TTL header field conprises a
potentially significant anpbunt of storage for a push service. A push
service is not obligated to store nessages indefinitely. A push
service is able to indicate howlong it intends to retain a nessage
to an application server using the TTL header field (Section 5.2).

Thonson, et al. Expi res January 9, 2017 [Page 19]

I nternet-Draft HTTP Web Push July 2016

A user agent that does not actively nonitor for push nessages wl|
not receive nessages that expire during that interval.

Push messages that are stored and have not been delivered to a user
agent are delivered when the user agent recommences nonitoring.

St ored push nessages SHOULD i nclude a Last-Modified header field
(Section 2.2 of [RFC7232]) indicating when delivery was requested by
an application server.

A CGET request to a push nessage subscription resource with only
expi red nessages results in a response as though no push nessage was
ever sent.

Push services mght need to limt the size and nunber of stored push
nmessages to avoid overloading. To limt the size of nessages, the
push service MAY return a 413 (Payl oad Too Large) status code

[RFC7231] in response to requests that include an entity body that is
too large. Push services MJST NOT return a 413 status code in
responses to an entity body that is 4k (4096 bytes) or less in size.

To limt the nunber of stored push nessages, the push service MAY
ei ther expire nessages prior to their advertised Tine-To-Live or
reduce their advertised Tinme-To-Live.

7.3. Subscription Expiration

In some cases, it may be necessary to term nate subscriptions so that
they can be refreshed. This applies to both push nessage
subscriptions and recei pt subscriptions.

A push service MAY expire a subscription at any tinme. |If there are
out standi ng requests to an expired push nmessage subscription resource
(Section 6) froma user agent or to an expired recei pt subscription
resource (Section 6.3) froman application server, this MJIST be
signal ed by returning a 404 (Not Found) status code.

A push service MJIST return a 404 (Not Found) status code if an
application server attenpts to send a push nessage to an expired push
nmessage subscription.

A user agent can renove its push nessage subscription by sending a
DELETE request to the corresponding URI. An application server can
remove its recei pt subscription by sending a DELETE request to the
correspondi ng URI.

Thonson, et al. Expi res January 9, 2017 [Page 20]

I nternet-Draft HTTP Web Push July 2016

7.3.1. Subscription Set Expiration

A push service MAY expire a subscription set at any tinme and MJST
al so expire all push nessage subscriptions in the set. |[If a user
agent has an outstanding request to a push subscription set
(Section 6.1) this MJST be signaled by returning a 404 (Not Found)
status code.

A user agent can request that a subscription set be renpved by
sendi ng a DELETE request to the subscription set URI. This MJST al so
renove all push nessage subscriptions in the set.

If a specific push nmessage subscription that is a nenber of a
subscription set is expired or renoved, then it MJST al so be renoved
fromits subscription set.

7.4. Inplications for Application Reliability

A push service that does not support reliable delivery over
intermttent network connections or failing applications on devices,
forces the device to acknow edge receipt directly to the application
server, incurring additional power drain in order to establish
(usual ly secure) connections to the individual application servers.

Push nmessage reliability can be inportant if nmessages contain
information critical to the state of an application. Repairing state
can be expensive, particularly for devices with limted

comuni cations capacity. Knowi ng that a push nessage has been
correctly received avoids retransm ssions, polling, and state
resynchroni zati on.

The availability of push nessage delivery receipts ensures that the
application developer is not tenpted to create alternative mechani sns
for nmessage delivery in case the push service fails to deliver a
critical nessage. Setting up a polling nechani smor a backup
nmessagi ng channel in order to conpensate for these shortcom ngs
negates al nost all of the advantages a push service provides.

However, reliability m ght not be necessary for nessages that are
transient (e.g. an incomng call) or nessages that are quickly
superceded (e.g. the current nunber of unread emails).

7.5. Subscription Sets and Concurrent HITP/ 2 streans
If the push service requires that the user agent use push nessage
subscription sets, then it MAY Iimt the nunber of concurrently

active streans with the SETTI NGS_MAX CONCURRENT STREAMS par anet er
within a HITP/ 2 SETTINGS frame [RFC7540]. The user agent MAY be

Thonson, et al. Expi res January 9, 2017 [Page 21]

I nternet-Draft HTTP Web Push July 2016

[imted to one concurrent streamto nmanage push nmessage subscriptions
and one concurrent stream for each subscription set returned by the
push service. This could force the user agent to serialize
subscription requests to the push service.

8. Security Considerations

This protocol MJST use HITP over TLS [RFC2818]. This includes any
communi cati ons between user agent and push service, plus
comuni cati ons between the application and the push service. Al

URIs therefore use the "https" schene. This provides confidentiality
and integrity protection for subscriptions and push nessages from
external parties.

Applications using this protocol MJST use nmechani sns that provide
confidentiality, integrity and data origin authentication. The
application server sending the push nessage and the application on
the user agent that receives it are frequently just different

i nstances of the sanme application, so no standardi zed protocol is
needed to establish a proper security context. The distribution of
subscription information fromthe user agent to its application
server also offers a convenient nedium for key agreenent.

8.1. Confidentiality from Push Service Access

The protection afforded by TLS does not protect content fromthe push
service. Wthout additional safeguards, a push service can inspect
and nodify the nmessage content.

For its requirenents, the WBC Push API [API] has adopted Message
Encryption for WebPush [I-D.ietf-webpush-encryption] to secure the
content of nessages fromthe push service. Oher scenarios can be
addressed by simlar policies.

The Topic header field exposes information that allows nore granul ar
correlation of push nessages on the sane subject. This m ght be used
to aid traffic anal ysis of push nessages by the push service.

8.2. Privacy Considerations
Push nessage confidentiality does not ensure that the identity of who
IS communi cating and when they are communi cating is protected.
However, the anmount of information that is exposed can be |limted.
The URI's provided for push resources MJUST NOT provide any basis to

correl ate communi cations for a given user agent. |t MJST NOT be
possible to correlate any two push resource URIs based solely on

Thonson, et al. Expi res January 9, 2017 [Page 22]

I nternet-Draft HTTP Web Push July 2016

their contents. This allows a user agent to control correlation
across different applications, or over tine.

Simlarly, the URIs provided by the push service to identify a push
nmessage MUST NOT provide any information that allows for correlation
across subscriptions. Push nessage URIs for the sanme subscription
MAY contain information that would allow correlation with the

associ ated subscription or other push nessages for that subscription.

User and device informati on MJUST NOT be exposed through a push or
push nmessage URI

In addition, push URIs established by the sane user agent or push
nmessage URIs for the sane subscription MJUST NOT include any
information that allows themto be correlated with the user agent.

Note: This need not be perfect as long as the resulting anonymty
set ([RFC6973], Section 6.1.1) is sufficiently large. A push UR
necessarily identifies a push service or a single server instance.
It is also possible that traffic analysis could be used to
correl ate subscri ptions.

A user agent MJUST be able to create new subscriptions with new
identifiers at any tine.

8.3. Authorization

Thi s protocol does not define how a push service establishes whet her
a user agent is permtted to create a subscription, or whether push
messages can be delivered to the user agent. A push service MNAY
choose to authorize requests based on any HTTP-conpati bl e

aut hori zation nmethod avail abl e, of which there are nunerous options.
The aut hori zati on process and any associ ated credentials are expected
to be configured in the user agent along with the URI for the push
servi ce.

Aut hori zation is managed using capability URLs for the push nessage
subscription, push, and receipt subscription resources ([CAP-URI]).
A capability URL grants access to a resource based solely on

know edge of the URL.

Capability URLs are used for their "easy onward sharing" and "easy
client API" properties. These nmake it possible to avoid relying on
rel ati onshi ps between push services and application servers, with the
protocol s necessary to build and support those rel ati onshi ps.

Capability URLs act as bearer tokens. Know edge of a push nessage
subscription URI inplies authorization to either receive push

Thonson, et al. Expi res January 9, 2017 [Page 23]

I nternet-Draft HTTP Web Push July 2016

nmessages or del ete the subscription. Know edge of a push URI inplies
aut hori zation to send push nessages. Know edge of a push nessage UR
all ows for reading and acknow edgi ng that specific nmessage.

Know edge of a receipt subscription URI inplies authorization to
recei ve push receipts.

Encoding a | arge anount of randomentropy (at |east 120 bits) in the
pat h conponent ensures that it is difficult to successfully guess a
valid capability URL.

8. 4. Deni al of Service Considerations

A user agent can control where valid push nessages originate by
[imting the distribution of push URIs to authorized application
servers. Ensuring that push URIs are hard to guess ensures that only
application servers that have received a push URI can use it.

Push nmessages that are not successfully authenticated by the user
agent will not be delivered, but this can present a denial of service
risk. Even a relatively small volunme of push nmessages can cause
battery-powered devices to exhaust power reserves.

To address this case, the WBC Push APl [API] has adopted Vol untary
Application Server ldentification [I-D.ietf-webpush-vapid], which
allows a user agent to restrict a subscription to a specific
application server. The push service can then identity and reject
unwant ed nessages W t hout contacting the user agent.

A malicious application with a valid push URI could use the greater
resources of a push service to nount a denial of service attack on a
user agent. Push services SHOULD limt the rate at which push
nmessages are sent to individual user agents.

A push service MAY return a 429 (Too Many Requests) status code

[RFC6585] when an application server has exceeded its rate limt for
push nmessage delivery to a push resource. The push service SHOULD
al so include a Retry-After header [RFC7231] to indicate how |l ong the
application server is requested to wait before it makes anot her
request to the push resource.

A push service or user agent MAY al so term nate subscriptions
(Section 7.3) that receive too many push nessages.

A push service is also able to deny service to user agents.
Intentional failure to deliver nessages is difficult to distinguish
fromfaults, which m ght occur due to transient network errors,
interruptions in user agent availability, or genuine service outages.

Thonson, et al. Expi res January 9, 2017 [Page 24]

I nternet-Draft HTTP Web Push July 2016

8.5. Logging Risks

Server request |ogs can reveal subscription-related URIs or

rel ati onshi ps between subscription-related URIs for the same user
agent. Limtations on log retention and strong access control
mechani snms can ensure that URIs are not reveal ed to unauthorized
entities.

9. | ANA Consi derati ons

Thi s protocol defines new HITP header fields in Section 9.1. New
link relation types are identified using the URNs defined in
Section 9.2. Port registration is defined in Section 9.3

9.1. Header Field Registrations

HTTP header fields are registered within the "Mssage Headers"
regi stry maintained at <https://ww.iana. org/ assi gnnent s/ nessage-
header s/ >.

Thi s docunent defines the foll ow ng HTTP header fields, so their
associated registry entries shall be added according to the pernmanent
regi strations bel ow ([RFC3864]):

U e S SRS S SRS S U +
| Header Field Name | Protocol | Status | Reference |
o e e e R R o e a o - +
| TTL | http | standard | Section 5.2
| Urgency | http | standard | Section 5.3
| Topic | http | standard | Section 5.4
U SRS SRS S S +
The change controller is: "IETF (iesg@etf.org) - Internet

Engi neeri ng Task Force".

9.2. Link Relation URNs
Thi s docunent registers URNs for use in identifying link relation
types. These are added to a new "Web Push Identifiers" registry
according to the procedures in Section 4 of [RFC3553]; the
correspondi ng "push" sub-nanmespace is entered in the "I ETF URN Sub-
nanmespace for Regi stered Protocol Paraneter ldentifiers" registry.

The "Web Push ldentifiers" registry operates under the | ETF Revi ew
policy [RFC5226].

Regi stry nanme: Wb Push ldentifiers

Thonson, et al. Expi res January 9, 2017 [Page 25]

I nternet-Draft HTTP Web Push July 2016

URN Prefix: urn:ietf:parans: push
Specification: (this docunent)

Repository: [Editor/IANA note: please include a link to the final
registry location.]

Index value: Values in this registry are URNs or URN prefixes that
start with the prefix "urn:ietf:parans: push". Each is registered
i ndependent | y.

New regi strations in the "Web Push Identifiers" are encouraged to
include the follow ng information:

URN: A conplete URN or URN prefi x.
Description: A sunmary description.

Specification: A reference to a specification describing the
semantics of the URN or URN prefix.

Contact: Emmil for the person or group nmaking the registration.

I ndex value: As described in [RFC3553], URN prefixes that are
regi stered include a description of howthe URN is constructed.
This is not applicable for specific URNs.

These values are entered as the initial content of the "Wb Push
Identifiers" registry.

URN: urn:ietf:parans: push

Description: This link relation type is used to identify a resource
for sendi ng push nessages.

Specification: (this docunent)
Contact: The Web Push WG (webpush@etf. org)
URN: urn:ietf:parans: push: set

Description: This link relation type is used to identify a
col l ection of push nessage subscriptions.

Specification: (this docunent)

Contact: The Wb Push WG (webpush@ et f. org)

Thonson, et al. Expi res January 9, 2017 [Page 26]

I nternet-Draft HTTP Web Push July 2016

URN: urn:ietf:parans: push:receipt

Description: This link relation type is used to identify a resource
for receiving delivery confirmations for push nessages.

Specification: (this docunent)
Contact: The Web Push WG (webpush@etf. org)

9.3. Service Nane and Port Nunber Registration
Servi ce nanes and port nunbers are registered wwthin the "Service
Nane and Transport Protocol Port Nunber Registry" maintained at
<https://wwv. i ana. or g/ assi gnnment s/ servi ce- nanes- port - nunber s/ servi ce-

names- port - nunbers. xht n >.

I ANA is requested to assign the System Port nunber 1001 and the
servi ce nane "webpush" in accordance with [RFC6335].

Servi ce Nane.
webpush

Transport Protocol.
tcp

Assi gnee.
| ESG (i esg@etf.org)

Cont act .
The Wb Push WG (webpush@etf. org)

Descri pti on.
HTTP Web Push

Ref er ence.
[RFCt hi s]

Port Nunber.
1001

10. Acknow edgenents
Significant technical input to this docunent has been provided by Ben
Bangert, Peter Beverl oo, Kit Canbridge, JR Conlin, Matthew Kaufman,

Costin Manol ache, Mark Nottingham Idel Pivnitskiy, Robert Sparks,
Dar shak Thakore and many ot hers.

Thonson, et al. Expi res January 9, 2017 [Page 27]

| nt er net - Draf t

HTTP Web Push July 2016

11. Ref er ences

11.1. Nor mat i

[CAP- URI]

[RFC2119]

[REC2818]

[RFC3553]

[RFC3864]

[RFC4648]

[RFC5226]

[RFC5382]

[RFC5988]

[RFC6335]

[RFCB454]

[RFC6585]

Thonmson, et al

ve References

Tenni son, J., "Good Practices for Capability URLs", FPWD
capability-urls, February 2014,
<http://ww. w3. org/ TR/ capabi lity-urls/>.

Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

Rescorla, E., "HITP Over TLS", RFC 2818, My 2000.

Mealling, M, Msinter, L., Hardie, T., and G Klyne, "An
| ETF URN Sub- nanespace for Registered Protocol
Paranmeters”, BCP 73, RFC 3553, June 2003.

Klyne, G, Nottingham M, and J. Mgul, "Registration
Procedures for Message Header Fields", BCP 90, RFC 3864,
Sept enber 2004.

Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, Cctober 2006.

Narten, T. and H Alvestrand, "Quidelines for Witing an
I ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
May 2008.

Bi swas, K., Ford, B., Sivakunar, S., and P. Srisuresh,
"NAT Behavi oral Requirenents for TCP', RFC 5382, Cctober
2008.

Notti ngham M, "Wb Linking", RFC 5988, QOctober 2010.

Cotton, M, Eggert, L., Touch, J., Westerlund, M, and S
Cheshire, "Internet Assigned Nunmbers Authority (I1ANA)
Procedures for the Managenent of the Service Nanme and
Transport Protocol Port Nunber Registry", RFC 6335, August
2011.

Barth, A, "The Wb Oigin Concept", RFC 6454, Decenber
2011.

Notti ngham M and R Fielding, "Additional HITP Status
Codes", RFC 6585, April 2012.

. Expi res January 9, 2017 [Page 28]

I nternet-Draft HTTP Web Push July 2016

[RFC7230] Fielding, R and J. Reschke, "Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing”, RFC 7230, June
2014.

[RFC7231] Fielding, R and J. Reschke, "Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

[RFC7232] Fielding, R and J. Reschke, "Hypertext Transfer Protocol
(HTTP/ 1.1): Conditional Requests", RFC 7232, June 2014.

[RFC7240] Snell, J., "Prefer Header for HTTP', RFC 7240, June 2014.

[RFC7540] Belshe, M, Peon, R, and M Thonson, "Hypertext Transfer
Protocol Version 2", RFC 7540, My 2015.

[RFC7838] Nottingham M, MManus, P., and J. Reschke, "HTTP
Alternative Services", RFC 7838, April 2016.

11. 2. I nformati ve References

[API] van Quwer kerk, M, Thonmson, M, Sullivan, B., and E
Ful l ea, "WBC Push API", ED push-api, July 2016,
<https://w3c.github.io/push-api/>.

[1-D.ietf-webpush-encryption]
Thonson, M, "Message Encryption for Wb Push", draft-
i et f-webpush-encryption-03 (work in progress), March 2016,
<https://tools.ietf.org/pdf/draft-ietf-webpush-encryption-
03. pdf >.

[1-D.ietf-webpush-vapi d]
Thonson, M and P. Beverl oo, "Voluntary Application Server
Identification for Web Push", draft-ietf-webpush-vapid-01
(work in progress), April 2016,
<https://tools.ietf.org/pdf/draft-ietf-webpush-vapid-
0l1. pdf >.

[RFC6973] Cooper, A., Tschofenig, H, Aboba, B., Peterson, J.,
Morris, J., Hansen, M, and R Smith, "Privacy
Consi derations for Internet Protocols", RFC 6973, July
2013.
Appendi x A. Change Log

[[The RFC Editor is requested to renove this section at
publication.]]

Thonson, et al. Expi res January 9, 2017 [Page 29]

I nternet-Draft HTTP Web Push July 2016

A.1l. Since draft-ietf-webpush-protocol-00

Editorial changes for Push Message Ti ne-To-Live

Editorial changes for Push Acknow edgenents

Renoved subscription expiration based on HTTP cache headers
A.2. Since draft-ietf-webpush-protocol-01

Added Subscription Sets

Added System Port as an alternate service with guidance for idle
ti meouts

Finalized status codes for acknow edgenents
Editorial changes for Rate Limts

A.3. Since draft-ietf-webpush-protocol-02
Added explicit correlation for Subscription Sets
Added Push Message Updates (nessage col |l apsing)

Renanmed the push:receipt link relation to push:receipts and

transitioned the Push-Recei pt header field to the push:receipt |ink
relation type

A 4. Since draft-ietf-webpush-protocol-03

An application server MIST include the TTL (Ti me-To-Live) header
field in its request for push nessage delivery.

Added Push Message Urgency header field
A.5. Since draft-ietf-webpush-protocol-04

Sinplified design for Push Receipts and elimnated the
urn:ietf:parans: push:receipts link relation

Clarified Security Considerations section and added i nformative

references to Message Encryption and Vol untary Application Server
I dentification

Thonson, et al. Expi res January 9, 2017 [Page 30]

I nternet-Draft HTTP Web Push July 2016

A.6. Since draft-ietf-webpush-protocol-05
Addr essed feedback from Wrking G oup Last Cal
A.7. Since draft-ietf-webpush-protocol-06

Updated informative references to WBC Push API, Message Encryption,
and Vol untary Application Server ldentification

Aut hor s’ Addresses

Martin Thonson

Mozill a

331 E Evelyn Street
Mountain View, CA 94041
us

Email: martin.thomson@mail.com

El i o Damaggi o

M crosoft

One Mcrosoft Way
Rednond, WA 98052
us

Enai | : el i oda@n crosoft.com
Brian Raynor (editor)

M crosoft

One M crosoft Way

Rednond, WA 98052

UsS

Emai | : brian.raynmor@n crosoft.com

Thonson, et al. Expi res January 9, 2017 [Page 31]

