
Network Working Group T. Drake, Ed.
Internet-Draft UnboundID
Intended status: Standards Track C. Mortimore
Expires: March 03, 2014 SalesForce
 M. Ansari
 Cisco
 K. Grizzle
 SailPoint
 E. Wahlstroem
 Technology Nexus
 August 30, 2013

 System for Cross-Domain Identity Management:Protocol
 draft-ietf-scim-api-02

Abstract

 The System for Cross-Domain Identity Management (SCIM) specification
 is designed to make managing user identity in cloud based
 applications and services easier. The specification suite seeks to
 build upon experience with existing schemas and deployments, placing
 specific emphasis on simplicity of development and integration, while
 applying existing authentication, authorization, and privacy models.
 It’s intent is to reduce the cost and complexity of user management
 operations by providing a common user schema and extension model, as
 well as binding documents to provide patterns for exchanging this
 schema using standard protocols. In essence, make it fast, cheap,
 and easy to move users in to, out of, and around the cloud.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 03, 2014.

Drake, et al. Expires March 03, 2014 [Page 1]

Internet-Draft draft-scim-api-02 August 2013

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction and Overview 3
 1.1. Intended Audience . 3
 1.2. Notational Conventions 3
 1.3. Definitions . 3
 2. Authentication and Authorization 3
 3. API . 4
 3.1. Creating Resources 6
 3.1.1. Resource Types 8
 3.2. Retrieving Resources 8
 3.2.1. Retrieving a known Resource 8
 3.2.2. List/Query Resources 9
 3.2.3. Querying Resources Using HTTP POST 16
 3.3. Modifying Resources 18
 3.3.1. Modifying with PUT 18
 3.3.2. Modifying with PATCH 20
 3.4. Deleting Resources 27
 3.5. Bulk . 28
 3.6. Data Input/Output Formats 42
 3.7. Additional retrieval query parameters 42
 3.8. Attribute Notation 43
 3.9. HTTP Response Codes 43
 3.10. API Versioning . 45
 3.11. Versioning Resources 45
 3.12. HTTP Method Overloading 47
 4. Multi-Tenancy . 48
 4.1. Associating Consumers to Tenants 49
 4.1.1. URL Prefix Example 49
 4.1.2. Subdomain Example 49
 4.1.3. HTTP Header . 49
 4.2. SCIM Identifiers with Multiple Tenants 49
 5. Security Considerations 50

Drake, et al. Expires March 03, 2014 [Page 2]

Internet-Draft draft-scim-api-02 August 2013

 6. Contributors . 50
 7. Acknowledgments . 50
 8. References . 50
 Authors’ Addresses . 50

1. Introduction and Overview

 The SCIM Protocol is an application-level, REST protocol for
 provisioning and managing identity data on the web. The protocol
 supports creation, modification, retrieval, and discovery of core
 identity Resources; i.e., Users and Groups, as well as custom
 Resource extensions.

1.1. Intended Audience

 This document is intended as a guide to SCIM API usage for both
 identity Service Providers and Consumers.

1.2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. These
 keywords are capitalized when used to unambiguously specify
 requirements of the protocol or application features and behavior
 that affect the interoperability and security of implementations.
 When these words are not capitalized, they are meant in their
 natural-language sense.

 For purposes of readability examples are not URL encoded.
 Implementers MUST percent encode URLs as described in RFC3896 2.1
 [1].

1.3. Definitions

 Base URL: The SCIM REST API is always relative to a Base URL. The
 Base URL MUST NOT contain a query string as Consumers may append
 additional path information and query parameters as part of
 forming the request. Example: https://example.com/scim/v1/

2. Authentication and Authorization

 The SCIM protocol does not define a scheme for authentication and
 authorization therefore implementers are free to choose mechanisms
 appropriate to their use cases. The choice of authentication
 mechanism will impact interoperability. It is RECOMMENDED that
 clients be implemented in such a way that new authentication schemes
 can be deployed. Implementers SHOULD support existing authentication

Drake, et al. Expires March 03, 2014 [Page 3]

Internet-Draft draft-scim-api-02 August 2013

 /authorization schemes. In particular, OAuth2 Bearer Token [2] is
 RECOMMENDED. Appropriate security considerations of the selected
 authentication and authorization schemes SHOULD be taken. Because
 this protocol uses HTTP response status codes as the primary means of
 reporting the result of a request, servers are advised to respond to
 unauthorized or unauthenticated requests using the 401 response code
 in accordance with section 10.4.2 of RFC2616 [3].

 All examples assume OAuth2 bearer token; e.g.,

 GET /Users/2819c223-7f76-453a-919d-413861904646 HTTP/1.1
 Host: example.com
 Authorization: Bearer h480djs93hd8

 The context of the request (i.e. the user for whom data is being
 requested) MUST be inferred by Service Providers.

3. API

 The SCIM protocol specifies well known endpoints and HTTP methods for
 managing Resources defined in the core schema; i.e., User and Group
 Resources correspond to /Users and /Groups respectively. Service
 Providers that support extended Resources SHOULD define Resource
 endpoints using the established convention; pluralize the Resource
 name defined in the extended schema by appending an ’s’. Given there
 are cases where Resource pluralization is ambiguous; e.g., a Resource
 named ’person’ is legitimately ’persons’ and ’people’ Consumers
 SHOULD discover Resource endpoints via the Resource Type attribute
 ’endpoint’.

 GET Retrieves a complete or partial Resource.

 POST Create new Resource, perform an extended Search, or bulk modify
 Resources.

 PUT Modifies a Resource with a complete, Consumer specified Resource
 (replace).

 PATCH Modifies a Resource with a set of Consumer specified changes
 (partial update).

 DELETE Deletes a Resource.

 +-------------+---------------------+-----------+-------------------+
 | Resource | Endpoint | Operation | Description |
 | | | s | |
 +-------------+---------------------+-----------+-------------------+

Drake, et al. Expires March 03, 2014 [Page 4]

Internet-Draft draft-scim-api-02 August 2013

User	/Users	GET	Retrieve/Add/Modi
		(Section	fy Users
		3.2.1),	
		POST	
		(Section	
		3.1), PUT	
		(Section	
		3.3.1),	
		PATCH	
		(Section	
		3.3.2),	
		DELETE	
		(Section	
		3.4)	
Group	/Groups	GET	Retrieve/Add/Modi
		(Section	fy Groups
		3.2.1),	
		POST	
		(Section	
		3.1), PUT	
		(Section	
		3.3.1),	
		PATCH	
		(Section	
		3.3.2),	
		DELETE	
		(Section	
		3.4)	
Service	/ServiceProviderCon	GET	Retrieve the
Provider Co	figs	(Section	Service
nfiguration		3.2.1)	Provider’s
			Configuration
Resource	/ResourceTypes	GET	Retrieve the
Type		(Section	supported
		3.2.1)	Resource Types
Schema	/Schemas	GET	Retrieve a
		(Section	Resource’s Schema
		3.2.1)	
Bulk	/Bulk	POST	Bulk modify
		(Section	Resources
		3.5)	
Search	[prefix]/.search	POST	Perform a search
		(Section	at system root or
		3.2.3)	within a resource
			endpoint for one
			or more resource
			types using POST.
 +-------------+---------------------+-----------+-------------------+

Drake, et al. Expires March 03, 2014 [Page 5]

Internet-Draft draft-scim-api-02 August 2013

 Table 1: Defined endpoints

 All requests to the Service Provider are made via HTTP operations [4]
 on a URL derived from the Base URL. Responses are returned in the
 body of the HTTP response, formatted as JSON. Response and error
 codes SHOULD be transmitted via the HTTP status code of the response
 (if possible), and SHOULD also be specified in the body of the
 response.

3.1. Creating Resources

 To create new Resources, clients send POST requests to the Resource
 endpoint; i.e., /Users or /Groups.

 Successful Resource creation is indicated with a 201 ("Created")
 response code. Upon successful creation, the response body MUST
 contain the newly created Resource. Since the server is free to
 alter and/or ignore POSTed content, returning the full representation
 can be useful to the client, enabling it to correlate the client and
 server views of the new Resource. When a Resource is created, its
 URI must be returned in the response Location header.

 If the Service Provider determines creation of the requested Resource
 conflicts with existing resources; e.g., a User Resource with a
 duplicate userName, the Service Provider MUST return a 409 error and
 SHOULD indicate the conflicting attribute(s) in the body of the
 response.

 Below, the client sends a POST request containing a User

Drake, et al. Expires March 03, 2014 [Page 6]

Internet-Draft draft-scim-api-02 August 2013

 POST /Users HTTP/1.1
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 Content-Length: ...

 {
 "schemas":["urn:scim:schemas:core:2.0:User"],
 "userName":"bjensen",
 "externalId":"bjensen",
 "name":{
 "formatted":"Ms. Barbara J Jensen III",
 "familyName":"Jensen",
 "givenName":"Barbara"
 }
 }

 The server signals a successful creation with a status code of 201.
 The response includes a Location header indicating the User URI, and
 a representation of that User in the body of the response.

 HTTP/1.1 201 Created
 Content-Type: application/json
 Location: https://example.com/v1/Users/2819c223-7f76-453a-919d-4138619046
46
 ETag: W/"e180ee84f0671b1"

 {
 "schemas":["urn:scim:schemas:core:2.0:User"],
 "id":"2819c223-7f76-453a-919d-413861904646",
 "externalId":"bjensen",
 "meta":{
 "resourceType":"User",
 "created":"2011-08-01T21:32:44.882Z",
 "lastModified":"2011-08-01T21:32:44.882Z",
 "location":"https://example.com/v1/Users/2819c223-7f76-453a-919d-4138
61904646",
 "version":"W\/\"e180ee84f0671b1\""
 },
 "name":{
 "formatted":"Ms. Barbara J Jensen III",
 "familyName":"Jensen",
 "givenName":"Barbara"
 },
 "userName":"bjensen"
 }

Drake, et al. Expires March 03, 2014 [Page 7]

Internet-Draft draft-scim-api-02 August 2013

3.1.1. Resource Types

 When adding a resource to a specific endpoint, the meta attribute
 "resourceType" SHALL be set by the Service Provider to the
 corresponding Resource Type for the endpoint. For example, "/Users"
 will set "resourceType" to "User", and "/Groups" will set
 "resourceType" to "Group".

3.2. Retrieving Resources

 Users and Group Resources are retrieved via opaque, unique URLs or
 via Query. Service Providers MAY choose to respond with a sub-set of
 Resource attributes, though MUST minimally return the Resource id and
 meta attributes.

3.2.1. Retrieving a known Resource

 To retrieve a known Resource, clients send GET requests to the
 Resource endpoint; e.g., /Users/{id} or /Groups/{id}.

 If the Resource exists the server responds with a status code of 200
 and includes the result in the body of the response.

 The below example retrieves a single User via the /Users endpoint.

 GET /Users/2819c223-7f76-453a-919d-413861904646
 Host: example.com
 Accept: application/json
 Authorization: Bearer h480djs93hd8

 The server responds with:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Location: https://example.com/v1/Users/2819c223-7f76-453a-919d-4138619046
46
 ETag: W/"f250dd84f0671c3"

 {
 "schemas":["urn:scim:schemas:core:2.0:User"],
 "id":"2819c223-7f76-453a-919d-413861904646,
 "externalId":"bjensen",
 "meta":{

Drake, et al. Expires March 03, 2014 [Page 8]

Internet-Draft draft-scim-api-02 August 2013

 "resourceType":"User",
 "created":"2011-08-01T18:29:49.793Z",
 "lastModified":"2011-08-01T18:29:49.793Z",
 "location":"https://example.com/v1/Users/2819c223-7f76-453a-919d-4138
61904646",
 "version":"W\/\"f250dd84f0671c3\""
 },
 "name":{
 "formatted":"Ms. Barbara J Jensen III",
 "familyName":"Jensen",
 "givenName":"Barbara"
 },
 "userName":"bjensen",
 "phoneNumbers":[
 {
 "value":"555-555-8377",
 "type":"work"
 }
],
 "emails":[
 {
 "value":"bjensen@example.com",
 "type":"work"
 }
]
 }

3.2.2. List/Query Resources

 SCIM defines a standard set of operations that can be used to filter,
 sort, and paginate response results. The operations are specified by
 adding query parameters to the Resource’s endpoint. Service
 Providers MAY support additional query parameters not specified here,
 and Providers SHOULD ignore any query parameters they don’t
 recognize.

 List and query responses MUST be identified using the following URI:
 ’urn:scim:schemas:core:2.0:ListResponse’. The following attributes
 are defined for list and query responses:

 totalResults The total number of results returned by the list or
 query operation. This may not be equal to the number of elements
 in the Resources attribute of the list response if pagination
 (Section 3.2.2.4) is requested. REQUIRED.

 Resources A multi-valued list of complex objects containing the
 requested resources. This may be a subset of the full set of
 Resources if pagination (Section 3.2.2.4) is requested. REQUIRED.

Drake, et al. Expires March 03, 2014 [Page 9]

Internet-Draft draft-scim-api-02 August 2013

 startIndex The 1-based index of the first result in the current set
 of list results. REQUIRED if pagination (Section 3.2.2.4) is
 requested.

 itemsPerPage The number of Resources returned in a list response
 page. REQUIRED if pagination (Section 3.2.2.4) is requested.

 The below example returns the userName for all Users:

 GET /Users?attributes=userName
 Host: example.com
 Accept: application/json
 Authorization: Bearer h480djs93hd8

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "schemas":["urn:scim:schemas:core:2.0:ListResponse"],
 "totalResults":2,
 "Resources":[
 {
 "userName":"bjensen"
 },
 {
 "userName":"jsmith"
 }
]
 }

3.2.2.1. Query Endpoints

 Queries MAY be performed against a SCIM:

 Resource (e.g. /Users/{userid}),

 Resource Type endpoint (e.g. /Users or /Groups), or

 Server Root (e.g. /).

 A search against a server root indicates that ALL resources within
 the server SHALL be included subject to filtering. For example, a
 filter against ’meta.resourceType’ could be used to restrict results
 to one or more specific resource types.

Drake, et al. Expires March 03, 2014 [Page 10]

Internet-Draft draft-scim-api-02 August 2013

 When processing search operations across endpoints that include more
 than one SCIM resource type (e.g. a search from the server root
 endpoint), filters MUST be processed in the same fashion as outlined
 in Section 3.2.2.2. For filtered attributes that are not part of a
 particular resource type, the service provider SHALL treat the
 attribute as if there is no attribute value. For example, a presence
 or equality filter for an undefined attribute evaluates as FALSE.

3.2.2.2. Filtering

 Filtering is OPTIONAL. Consumers may request a subset of Resources
 by specifying the ’filter’ URL query parameter containing a filter
 expression. When specified only those Resources matching the filter
 expression SHALL be returned. The expression language that is used
 in the filter parameter supports references to attributes and
 literals. The literal values can be strings enclosed in double
 quotes, numbers, date times enclosed in double quotes, and Boolean
 values; i.e., true or false. String literals MUST be valid JSON
 strings [5].

 The attribute name and attribute operator are case insensitive. For
 example, the following two expressions will evaluate to the same
 logical value:

 filter=userName Eq "john"

 filter=Username eq "john"

 The filter parameter MUST contain at least one valid Boolean
 expression. Each expression MUST contain an attribute name followed
 by an attribute operator and optional value. Multiple expressions
 MAY be combined using the two logical operators. Furthermore
 expressions can be grouped together using "()".

 The operators supported in the expression are listed in the following
 table.

 +-----------+---------------+---------------------------------------+
 | Operator | Description | Behavior |
 +-----------+---------------+---------------------------------------+
eq	equal	The attribute and operator values
		must be identical for a match.
co	contains	The entire operator value must be a
		substring of the attribute value for
		a match.
sw	starts with	The entire operator value must be a
		substring of the attribute value,

Drake, et al. Expires March 03, 2014 [Page 11]

Internet-Draft draft-scim-api-02 August 2013

		starting at the beginning of the
		attribute value. This criterion is
		satisfied if the two strings are
		identical.
pr	present (has	If the attribute has a non-empty
	value)	value, or if it contains a non-empty
		node for complex attributes there is
		a match.
gt	greater than	If the attribute value is greater
		than operator value, there is a
		match. The actual comparison is
		dependent on the attribute type. For
		string attribute types, this is a
		lexicographical comparison and for
		DateTime types, it is a chronological
		comparison.
ge	greater than	If the attribute value is greater
	or equal	than or equal to the operator value,
		there is a match. The actual
		comparison is dependent on the
		attribute type. For string attribute
		types, this is a lexicographical
		comparison and for DateTime types, it
		is a chronological comparison.
lt	less than	If the attribute value is less than
		operator value, there is a match. The
		actual comparison is dependent on the
		attribute type. For string attribute
		types, this is a lexicographical
		comparison and for DateTime types, it
		is a chronological comparison.
le	less than or	If the attribute value is less than
	equal	or equal to the operator value, there
		is a match. The actual comparison is
		dependent on the attribute type. For
		string attribute types, this is a
		lexicographical comparison and for
		DateTime types, it is a chronological
		comparison.
 +-----------+---------------+---------------------------------------+

 Table 2: Attribute Operators

 +-------------+-----------------+-----------------------------------+
 | Operator | Description | Behavior |
 +-------------+-----------------+-----------------------------------+
 | and | Logical And | The filter is only a match if |
 | | | both expressions evaluate to |

Drake, et al. Expires March 03, 2014 [Page 12]

Internet-Draft draft-scim-api-02 August 2013

		true.
or	Logical or	The filter is a match if either
		expression evaluates to true.
 +-------------+-----------------+-----------------------------------+

 Table 3: Logical Operators

 +-------------+---------------+-------------------------------------+
 | Operator | Description | Behavior |
 +-------------+---------------+-------------------------------------+
()	Precedence	Boolean expressions may be grouped
	grouping	using parentheses to change the
		standard order of operations; i.e.,
		evaluate OR logical operators
		before logical AND operators.
 +-------------+---------------+-------------------------------------+

 Table 4: Grouping Operators

 Filters MUST be evaluated using standard order of operations [6].
 Attribute operators have the highest precedence, followed by the
 grouping operator (i.e, parentheses), followed by the logical AND
 operator, followed by the logical OR operator.

 If the specified attribute in a filter expression is a multi-valued
 attribute, the Resource MUST match if any of the instances of the
 given attribute match the specified criterion; e.g. if a User has
 multiple emails values, only one has to match for the entire User to
 match. For complex attributes, a fully qualified Sub-Attribute MUST
 be specified using standard attribute notation (Section 3.8). For
 example, to filter by userName the parameter value is userName and to
 filter by first name, the parameter value is name.givenName.

 Providers MAY support additional filter operations if they choose.
 Providers MUST decline to filter results if the specified filter
 operation is not recognized and return a HTTP 400 error with an
 appropriate human readable response. For example, if a Consumer
 specified an unsupported operator named ’regex’ the Service Provider
 should specify an error response description identifying the Consumer
 error; e.g., ’The operator ’regex’ is not supported.’

 String type attributes are case insensitive by default unless the
 attribute type is defined as a caseExact string. Attribute operators
 ’eq’, ’co’, and ’sw’ MUST perform caseIgnore matching for all string
 attributes unless the attribute is defined as caseExact. By default
 all string attributes are caseIgnore.

 Examples:

Drake, et al. Expires March 03, 2014 [Page 13]

Internet-Draft draft-scim-api-02 August 2013

 filter=userName eq "bjensen"

 filter=name.familyName co "O’Malley"

 filter=userName sw "J"

 filter=title pr

 filter=meta.lastModified gt "2011-05-13T04:42:34Z"

 filter=meta.lastModified ge "2011-05-13T04:42:34Z"

 filter=meta.lastModified lt "2011-05-13T04:42:34Z"

 filter=meta.lastModified le "2011-05-13T04:42:34Z"

 filter=title pr and userType eq "Employee"

 filter=title pr or userType eq "Intern"

 filter=userType eq "Employee" and (emails co "example.com" or emails
 co "example.org")

3.2.2.3. Sorting

 Sort is OPTIONAL. Sorting allows Consumers to specify the order in
 which Resources are returned by specifying a combination of sortBy
 and sortOrder URL parameters.

 sortBy: The sortBy parameter specifies the attribute whose value
 SHALL be used to order the returned responses. If the sortBy
 attribute corresponds to a Singular Attribute, Resources are
 sorted according to that attribute’s value; if it’s a Multi-valued
 Attribute, Resources are sorted by the value of the primary
 attribute, if any, or else the first value in the list, if any.
 If the attribute is complex the attribute name must be a path to a
 Sub-Attribute in standard attribute notation (Section 3.8) ; e.g.,
 sortBy=name.givenName. For all attribute types, if there is no
 data for the specified sortBy value they are sorted via the
 ’sortOrder’ parameter; i.e., they are ordered last if ascending
 and first if descending.

 sortOrder: The order in which the sortBy parameter is applied.
 Allowed values are "ascending" and "descending". If a value for
 sortBy is provided and no sortOrder is specified, the sortOrder
 SHALL default to ascending. String type attributes are case
 insensitive by default unless the attribute type is defined as a

Drake, et al. Expires March 03, 2014 [Page 14]

Internet-Draft draft-scim-api-02 August 2013

 caseExact string. sortOrder MUST sort according to the attribute
 type; i.e., for caseIgnore attributes, sort the result using case
 insensitive, Unicode alphabetic sort order, with no specific
 locale implied and for caseExact attribute types, sort the result
 using case sensitive, Unicode alphabetic sort order.

3.2.2.4. Pagination

 Pagination parameters can be used together to "page through" large
 numbers of Resources so as not to overwhelm the Consumer or Service
 Provider. Pagination is not session based hence Consumers SHOULD
 never assume repeatable results. For example, a request for a list
 of 10 Resources beginning with a startIndex of 1 may return different
 results when repeated as a Resource in the original result could be
 deleted or new ones could be added in-between requests. Pagination
 parameters and general behavior are derived from the OpenSearch
 Protocol [7].

 The following table describes the URL pagination parameters.

 +-------------+----------------------+------------------------------+
 | Parameter | Description | Default |
 +-------------+----------------------+------------------------------+
startIndex	The 1-based index of	1
	the first search	
	result.	
count	Non-negative	None. When specified the
	Integer. Specifies	Service Provider MUST not
	the desired maximum	return more results than
	number of search	specified though MAY return
	results per page;	fewer results. If
	e.g., 10.	unspecified, the maximum
		number of results is set by
		the Service Provider.
 +-------------+----------------------+------------------------------+

 Table 5: Pagination Request parameters

 The following table describes the query response pagination
 attributes specified by the Service Provider.

 +------------------+--+
 | Element | Description |
 +------------------+--+
itemsPerPage	Non-negative Integer. Specifies the number of
	search results returned in a query response
	page; e.g., 10.
totalResults	Non-negative Integer. Specifies the total

Drake, et al. Expires March 03, 2014 [Page 15]

Internet-Draft draft-scim-api-02 August 2013

	number of results matching the Consumer query;
	e.g., 1000.
startIndex	The 1-based index of the first result in the
	current set of search results; e.g., 1.
 +------------------+--+

 Table 6: Pagination Response Elements

 For example, to retrieve the first 10 Users set the startIndex to 1
 and the count to 10.

 GET /Users?startIndex=1&count=10
 Host: example.com
 Accept: application/json
 Authorization: Bearer h480djs93hd8

 {
 "totalResults":100,
 "itemsPerPage":10,
 "startIndex":1,
 "schemas":["urn:scim:schemas:core:2.0"],
 "Resources":[{
 ...
 }]
 }

 Given the example above, to continue paging set the startIndex to 11
 and re-fetch; i.e., /Users?startIndex=11&count=10

3.2.3. Querying Resources Using HTTP POST

 Clients MAY execute queries without passing parameters on the URL by
 using the HTTP POST verb combined with the ’/.search’ path extension.
 The inclusion of ’/.search’ on the end of a valid SCIM endpoint SHALL
 be used to indicate the HTTP POST verb is intended to be a query
 operation.

 To create a new search result set, a SCIM client sends an HTTP POST
 request to the desired SCIM resource endpoint (ending in ’/.search’).
 The body of the POST request MAY include any of the parameters as
 defined in Section 3.2.2.

 Search requests MUST be identified using the following URI:
 ’urn:scim:schemas:core:2.0:SearchRequest’. The following attributes
 are defined for search requests:

Drake, et al. Expires March 03, 2014 [Page 16]

Internet-Draft draft-scim-api-02 August 2013

 attributes A multi-valued list of strings indicating the names of
 Resource attributes to return in the response. Attribute names
 MUST be in standard attribute notation (Section 3.8) form. See
 additional retrieval query parameters (Section 3.7). OPTIONAL.

 filter The filter string used to request a subset of Resources. The
 filter string MUST be a valid filter (Section 3.2.2.2) expression.
 OPTIONAL.

 sortBy A string indicating the attribute whose value SHALL be used
 to order the returned responses. The sortBy attribute MUST be in
 standard attribute notation (Section 3.8) form. See sorting
 (Section 3.2.2.3). OPTIONAL.

 sortOrder A string indicating the order in which the sortBy
 parameter is applied. Allowed values are "ascending" and
 "descending". See sorting (Section 3.2.2.3). OPTIONAL.

 startIndex An integer indicating the 1-based index of the first
 search result. See pagination (Section 3.2.2.4). OPTIONAL.

 count An integer indicating the desired maximum number of search
 results per page. See pagination (Section 3.2.2.4). OPTIONAL.

 After receiving a HTTP POST request, a response is returned as
 specified in Section 3.2.2.

 The following example shows an HTTP POST Search request with search
 parameters attributes, filter, and count included:

 POST /.search
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 Content-Length: ...

 {
 "schemas": ["urn:scim:schemas:core:2.0:SearchRequest"],
 "attributes": ["displayName", "username"],
 "filter": "displayName sw \"smith\"",
 "startIndex": 1,
 "count": 10
 }

 Figure 1: Example POST Search Request

Drake, et al. Expires March 03, 2014 [Page 17]

Internet-Draft draft-scim-api-02 August 2013

 A search response is shown with the first page of results. For
 brevity reasons, only two matches are shown: one User and one Group.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Location: https://example.com/.search
 {
 "schemas": ["urn:scim:schemas:core:2.0:ListResponse"],
 "totalResults":100,
 "itemsPerPage":10,
 "startIndex":1,
 "Resources":[
 {
 "meta":{
 "location":
 "https://example.com/Users/2819c223-7f76-413861904646",
 "resourceType":"User",
 "lastModified": ...
 }
 "username":"jsmith",
 "displayName":"Smith, James"
 },
 {
 "meta":{
 "location":
 "https://example.com/Groups/c8596b90-7539-4f20968d1908",
 "resourceType":"Group",
 "lastModified": ...
 }
 "displayName":"Smith Family"
 },
 ...
]
 }

 Figure 2: Example POST Search Response

3.3. Modifying Resources

 Resources can be modified in whole or in part via PUT or PATCH,
 respectively. Implementers MUST support PUT as specified in RFC2616
 [8] . Resources such as Groups may be very large hence implementers
 SHOULD support PATCH [9] to enable partial resource modifications.

3.3.1. Modifying with PUT

 PUT performs a full update. Consumers must retrieve the entire
 Resource and PUT the desired modifications as the operation

Drake, et al. Expires March 03, 2014 [Page 18]

Internet-Draft draft-scim-api-02 August 2013

 overwrites all previously stored data with the exception of the
 password attribute. If the password attribute of the User resource
 is unspecified, it should be left in-tact. Since this performs a
 full update, Consumers MAY send read-only attributes of the retrieved
 resource and the Service Provider MUST ignore any read-only
 attributes that are present in the payload of a PUT request. Unless
 otherwise specified a successful PUT operation returns a 200 OK
 response code and the entire Resource within the response body,
 enabling the Consumer to correlate the Consumer’s and Provider’s
 views of the updated Resource. Example:

 PUT /Users/2819c223-7f76-453a-919d-413861904646
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 If-Match: W/"a330bc54f0671c9"

 {
 "schemas":["urn:scim:schemas:core:2.0:User"],
 "id":"2819c223-7f76-453a-919d-413861904646",
 "userName":"bjensen",
 "externalId":"bjensen",
 "name":{
 "formatted":"Ms. Barbara J Jensen III",
 "familyName":"Jensen",
 "givenName":"Barbara",
 "middleName":"Jane"
 },
 "emails":[
 {
 "value":"bjensen@example.com"
 },
 {
 "value":"babs@jensen.org"
 }
]
 }

 The service responds with the entire, updated User

 HTTP/1.1 200 OK
 Content-Type: application/json
 ETag: W/"b431af54f0671a2"

Drake, et al. Expires March 03, 2014 [Page 19]

Internet-Draft draft-scim-api-02 August 2013

 Location:"https://example.com/v1/Users/2819c223-7f76-453a-919d-4138619046
46"
 {
 "schemas":["urn:scim:schemas:core:2.0:User"],
 "id":"2819c223-7f76-453a-919d-413861904646",
 "userName":"bjensen",
 "externalId":"bjensen",
 "name":{
 "formatted":"Ms. Barbara J Jensen III",
 "familyName":"Jensen",
 "givenName":"Barbara",
 "middleName":"Jane"
 },
 "emails":[
 {
 "value":"bjensen@example.com"
 },
 {
 "value":"babs@jensen.org"
 }
],
 "meta": {
 "resourceType":"User",
 "created":"2011-08-08T04:56:22Z",
 "lastModified":"2011-08-08T08:00:12Z",
 "location":"https://example.com/v1/Users/2819c223-7f76-453a-919d-4138
61904646",
 "version":"W\/\"b431af54f0671a2\""
 }
 }

3.3.2. Modifying with PATCH

 PATCH is OPTIONAL. PATCH enables consumers to send only those
 attributes requiring modification, reducing network and processing
 overhead. Attributes may be deleted, replaced, merged, or added in a
 single request.

 The body of a PATCH request MUST contain a partial Resource with the
 desired modifications. The server MUST return either a 200 OK
 response code and the entire Resource (subject to the "attributes"
 query parameter - see Additional Retrieval Query Parameters
 (Section 3.7)) within the response body, or a 204 No Content response
 code and the appropriate response headers for a successful PATCH
 request. The server MUST return a 200 OK if the "attributes"
 parameter is specified on the request.

 The server MUST process a PATCH request by first removing any
 attributes specified in the meta.attributes Sub-Attribute (if

Drake, et al. Expires March 03, 2014 [Page 20]

Internet-Draft draft-scim-api-02 August 2013

 present) and then merging the attributes in the PATCH request body
 into the Resource.

 The meta.attributes Sub-Attribute MAY contain a list of attributes to
 be removed from the Resource. If the PATCH request body contains an
 attribute that is present in the meta.attributes list, the attribute
 on the Resource is replaced with the value from the PATCH body. If
 the attribute is complex the attribute name must be a path to a Sub-
 Attribute in standard attribute notation (Section 3.8); e.g.,
 name.givenName.

 Attributes that exist in the PATCH request body but not in the
 meta.attributes Sub-Attribute will be either be updated or added to
 the Resource according to the following rules.

 Singular attributes: Singular attributes in the PATCH request body
 replace the attribute on the Resource.

 Complex attributes: Complex Sub-Attribute values in the PATCH
 request body are merged into the complex attribute on the
 Resource.

 Multi-valued attributes: An attribute value in the PATCH request
 body is added to the value collection if the value does not exist
 and merged if a matching value is present. Values are matched by
 comparing the value Sub-Attribute from the PATCH request body to
 the value Sub-Attribute of the Resource. Attributes that do not
 have a value Sub-Attribute; e.g., addresses, or do not have unique
 value Sub-Attributes cannot be matched and must instead be deleted
 then added. Specific values can be removed from a Resource by
 adding an "operation" Sub-Attribute with the value "delete" to the
 attribute in the PATCH request body. As with adding/updating
 attribute value collections, the value to delete is determined by
 comparing the value Sub-Attribute from the PATCH request body to
 the value Sub-Attribute of the Resource. Attributes that do not
 have a value Sub-Attribute or that have a non-unique value Sub-
 Attribute are matched by comparing all Sub-Attribute values from
 the PATCH request body to the Sub-Attribute values of the
 Resource. A delete operation is ignored if the attribute’s name
 is in the meta.attributes list. If the requested value to delete
 does not match a unique value on the Resource the server MAY
 return a HTTP 400 error.

 The following example shows how to add a member to a group:

 PATCH /Groups/acbf3ae7-8463-4692-b4fd-9b4da3f908ce
 Host: example.com
 Accept: application/json

Drake, et al. Expires March 03, 2014 [Page 21]

Internet-Draft draft-scim-api-02 August 2013

 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 If-Match: W/"a330bc54f0671c9"

 {
 "schemas": ["urn:scim:schemas:core:2.0:Group"],
 "members": [
 {
 "display": "Babs Jensen",
 "$ref": "https://example.com/v1/Users/2819c223-7f76-453a-919d-41386
1904646",
 "value": "2819c223-7f76-453a-919d-413861904646"
 }
]
 }

 The "display" Sub-Attribute in this request is optional since the
 value attribute uniquely identifies the user to be added. If the
 user was already a member of this group, no changes should be made to
 the Resource and a success response should be returned. The server
 responds with either the entire updated Group or no response body:

 HTTP/1.1 204 No Content
 Authorization: Bearer h480djs93hd8
 ETag: W/"b431af54f0671a2"
 Location: "https://example.com/v1/Groups/acbf3ae7-8463-4692-b4fd-9b4da3f9
08ce"

 The following example shows how to remove a member from a group. As
 with the previous example, the "display" Sub-Attribute is optional.
 If the user was not a member of this group, no changes should be made
 to the Resource and a success response should be returned.

 Note that server responses have been omitted for the rest of the
 PATCH examples.

 PATCH /Groups/acbf3ae7-8463-4692-b4fd-9b4da3f908ce
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 If-Match: W/"a330bc54f0671c9"

 {
 "schemas": ["urn:scim:schemas:core:2.0:Group"],
 "members": [
 {
 "display": "Babs Jensen",

Drake, et al. Expires March 03, 2014 [Page 22]

Internet-Draft draft-scim-api-02 August 2013

 "$ref": "https://example.com/v1/Users/2819c223-7f76-453a-919d-41386
1904646",
 "value": "2819c223-7f76-453a-919d-413861904646"
 "operation": "delete"
 }
]
 }

 The following example shows how to remove all members from a group:

 PATCH /Groups/acbf3ae7-8463-4692-b4fd-9b4da3f908ce
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 If-Match: W/"a330bc54f0671c9"

 {
 "schemas": ["urn:scim:schemas:core:2.0:Group"],
 "meta": {
 "attributes": [
 "members"
]
 }
 }

 The following example shows how to replace all of the members of a
 group with a different members list:

 PATCH /Groups/acbf3ae7-8463-4692-b4fd-9b4da3f908ce
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 If-Match: W/"a330bc54f0671c9"

 {
 "schemas": ["urn:scim:schemas:core:2.0:Group"],
 "meta": {
 "attributes": [
 "members"
]
 },
 "members": [
 {
 "display": "Babs Jensen",
 "$ref": "https://example.com/v1/Users/2819c223-7f76-453a-919d-41386
1904646",

Drake, et al. Expires March 03, 2014 [Page 23]

Internet-Draft draft-scim-api-02 August 2013

 "value": "2819c223-7f76-453a-919d-413861904646"
 },
 {
 "display": "James Smith",
 "$ref": "https://example.com/v1/Users/08e1d05d-121c-4561-8b96-473d9
3df9210",
 "value": "08e1d05d-121c-4561-8b96-473d93df9210"
 }
]
 }

 The following example shows how to add a member to and remove a
 member from a Group in a single request:

 PATCH /Groups/acbf3ae7-8463-4692-b4fd-9b4da3f908ce
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 If-Match: W/"a330bc54f0671c9"

 {
 "schemas": ["urn:scim:schemas:core:2.0:Group"],
 "members": [
 {
 "display": "Babs Jensen",
 "$ref": "https://example.com/v1/Users/2819c223-7f76-453a-919d-41386
1904646",
 "value": "2819c223-7f76-453a-919d-413861904646"
 "operation": "delete"
 },
 {
 "display": "James Smith",
 "$ref": "https://example.com/v1/Users/08e1d05d-121c-4561-8b96-473d9
3df9210",
 "value": "08e1d05d-121c-4561-8b96-473d93df9210"
 }
]
 }

 The following example shows how to change a User’s primary email. If
 the User already has the email address, it is made the primary
 address and the current primary address (if present) is made non-
 primary. If the User does not already have the email address, it is
 added and made the primary address.

 PATCH /Users/2819c223-7f76-453a-919d-413861904646
 Host: example.com
 Accept: application/json

Drake, et al. Expires March 03, 2014 [Page 24]

Internet-Draft draft-scim-api-02 August 2013

 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 If-Match: W/"a330bc54f0671c9"

 {
 "schemas": ["urn:scim:schemas:core:2.0:User"],
 "emails": [
 {
 "value": "bjensen@example.com",
 "primary": true
 }
]
 }

 The following example shows how to change a User’s address. Since
 address does not have a value Sub-Attribute, the existing address
 must be removed and the modified address added.

 PATCH /Users/2819c223-7f76-453a-919d-413861904646
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 If-Match: W/"a330bc54f0671c9"

 {
 "schemas": ["urn:scim:schemas:core:2.0:User"],
 "addresses": [
 {
 "type": "work",
 "streetAddress": "100 Universal City Plaza",
 "locality": "Hollywood",
 "region": "CA",
 "postalCode": "91608",
 "country": "US",
 "formatted": "100 Universal City Plaza\nHollywood, CA 91608 US",
 "primary": true
 "operation": "delete"
 },
 {
 "type": "work",
 "streetAddress": "911 Universal City Plaza",
 "locality": "Hollywood",
 "region": "CA",
 "postalCode": "91608",
 "country": "US",
 "formatted": "911 Universal City Plaza\nHollywood, CA 91608 US",

Drake, et al. Expires March 03, 2014 [Page 25]

Internet-Draft draft-scim-api-02 August 2013

 "primary": true
 }
]
 }

 The following example shows how to change a User’s nickname:

 PATCH /Users/2819c223-7f76-453a-919d-413861904646
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 If-Match: W/"a330bc54f0671c9"

 {
 "schemas": ["urn:scim:schemas:core:2.0:User"],
 "nickName": "Barbie"
 }

 The following example shows how to remove a User’s nickname:

 PATCH /Users/2819c223-7f76-453a-919d-413861904646
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 If-Match: W/"a330bc54f0671c9"

 {
 "schemas": ["urn:scim:schemas:core:2.0:User"],
 "meta": {
 "attributes": [
 "nickName"
]
 }
 }

 The following example shows how to change a User’s familyName. This
 only updates the familyName and formatted on the "name" complex
 attribute. Any other name Sub-Attributes on the Resource remain
 unchanged.

 PATCH /Users/2819c223-7f76-453a-919d-413861904646
 Host: example.com
 Accept: application/json

Drake, et al. Expires March 03, 2014 [Page 26]

Internet-Draft draft-scim-api-02 August 2013

 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 If-Match: W/"a330bc54f0671c9"

 {
 "schemas": ["urn:scim:schemas:core:2.0:User"],
 "name": {
 "formatted": "Ms. Barbara J Jensen III",
 "familyName": "Jensen"
 }
 }

 The following example shows how to remove a complex Sub-Attribute and
 an extended schema attribute from a User.

 PATCH /Users/2819c223-7f76-453a-919d-413861904646
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 If-Match: W/"a330bc54f0671c9"

 {
 "schemas": ["urn:scim:schemas:core:2.0:User"],
 "meta": {
 "attributes": [
 "name.formatted",
 "urn:hr:schemas:user:age"
]
 }
 }

3.4. Deleting Resources

 Consumers request Resource removal via DELETE. Service Providers MAY
 choose not to permanently delete the Resource, but MUST return a 404
 error code for all operations associated with the previously deleted
 Id. Service Providers MUST also omit the Resource from future query
 results. In addition the Service Provider MUST not consider the
 deleted resource in conflict calculation. For example if a User
 resource is deleted, a CREATE request for a User resource with the
 same userName as the previously deleted resource should not fail with
 a 409 error due to userName conflict.

Drake, et al. Expires March 03, 2014 [Page 27]

Internet-Draft draft-scim-api-02 August 2013

 DELETE /Users/2819c223-7f76-453a-919d-413861904646
 Host: example.com
 Authorization: Bearer h480djs93hd8
 If-Match: W/"c310cd84f0281b7"

 Server Response:

 HTTP/1.1 200 OK

 Example: Consumer attempt to retrieve the previously deleted User

 GET /Users/2819c223-7f76-453a-919d-413861904646
 Host: example.com
 Authorization: Bearer h480djs93hd8

 Server Response:

 HTTP/1.1 404 NOT FOUND

 {
 "schemas": ["urn:scim:schemas:core:2.0:Error"],
 "Errors":[
 {
 "description":"Resource 2819c223-7f76-453a-919d-413861904646 not fo
und",
 "code":"404"
 }
]
 }

3.5. Bulk

 Bulk is OPTIONAL. The bulk operation enables Consumers to send a
 potentially large collection of Resource operations in a single
 request. The body of a a bulk operation contains a set of HTTP
 Resource operations using one of the API supported HTTP methods;
 i.e., POST, PUT, PATCH or DELETE.

Drake, et al. Expires March 03, 2014 [Page 28]

Internet-Draft draft-scim-api-02 August 2013

 Bulk requests are identified using the following URI:
 ’urn:scim:schemas:core:2.0:BulkRequest’. Bulk responses are
 identified using the following URI:
 ’urn:scim:schemas:core:2.0:BulkResponse’. Bulk requests and bulk
 responses share many attributes. Unless otherwise specified, each
 attribute below is present in both bulk requests and bulk responses.

 The following Singular Attribute is defined in addition to the common
 attributes defined in SCIM core schema.

 failOnErrors An Integer specifying the number of errors that the
 Service Provider will accept before the operation is terminated
 and an error response is returned. OPTIONAL in a request. Not
 valid in a response.

 The following Complex Multi-valued Attribute is defined in addition
 to the common attributes defined in core schema.

 Operations Defines operations within a bulk job. Each operation
 corresponds to a single HTTP request against a Resource endpoint.
 REQUIRED.

 method The HTTP method of the current operation. Possible values
 are POST, PUT, PATCH or DELETE. REQUIRED.

 bulkId The transient identifier of a newly created Resource,
 unique within a bulk request and created by the Consumer.
 The bulkId serves as a surrogate Resource id enabling
 Consumers to uniquely identify newly created Resources in
 the Response and cross reference new Resources in and across
 operations within a bulk request. REQUIRED when method is
 POST.

 version The current Resource version. Version is REQUIRED if the
 Service Provider supports ETags and the method is PUT,
 DELETE, or PATCH.

 path The Resource’s relative path. If the method is POST the
 value must specify a Resource type endpoint; e.g., /Users or
 /Groups whereas all other method values must specify the
 path to a specific Resource; e.g., /Users/2819c223-7f76
 -453a-919d-413861904646. REQUIRED in a request.

 data The Resource data as it would appear for a single POST, PUT
 or PATCH Resource operation. REQUIRED in a request when
 method is POST, PUT and PATCH.

Drake, et al. Expires March 03, 2014 [Page 29]

Internet-Draft draft-scim-api-02 August 2013

 location The Resource endpoint URL. REQUIRED in a response,
 except in the event of a POST failure.

 status A complex type that contains information about the success
 or failure of one operation within the bulk job. REQUIRED
 in a response.

 code The HTTP response code that would have been
 returned if a a single HTTP request would have been
 used. REQUIRED.

 description A human readable error message. REQUIRED when
 an error occurred.

 If a bulk job is processed successfully the HTTP response code 200 OK
 MUST be returned, otherwise an appropriate HTTP error code MUST be
 returned.

 The Service Provider MUST continue performing as many changes as
 possible and disregard partial failures. The Consumer MAY override
 this behavior by specifying a value for failOnErrors attribute. The
 failOnErrors attribute defines the number of errors that the Service
 Provider should accept before failing the remaining operations
 returning the response.

 To be able to reference a newly created Resource the attribute bulkId
 MUST be specified when creating new Resources. The bulkId is defined
 by the Consumer as a surrogate identifier in a POST operation. The
 Service Provider MUST return the same bulkId together with the newly
 created Resource. The bulkId can then be used by the Consumer to map
 the Service Provider id with the bulkId of the created Resource.

 There can be more then one operation per Resource in each bulk job.
 The Service Consumer MUST take notice of the unordered structure of
 JSON and the Service Provider can process operations in any order.
 For example, if the Service Consumer sends two PUT operations in one
 request, the outcome is non-deterministic.

 The Service Provider response MUST include the result of all
 processed operations. A location attribute that includes the
 Resource’s end point MUST be returned for all operations excluding
 failed POSTs. The status attribute includes information about the
 success or failure of one operation within the bulk job. The
 attribute status MUST include the code attribute that holds the HTTP
 response code that would have been returned if a single HTTP request
 would have been used. If an error occurred the status MUST also
 include the description attribute containing a human readable
 explanation of the error.

Drake, et al. Expires March 03, 2014 [Page 30]

Internet-Draft draft-scim-api-02 August 2013

 "status": {
 "code": "201"
 }

 The following is an example of a status in a failed operation.

 "status": {
 "code": "400",
 "description": "Request is unparseable, syntactically incorrect, or vio
lates schema."
 }

 The following example shows how to add, update, and remove a user.
 The failOnErrors attribute is set to ’1’ indicating the Service
 Provider should return on the first error. The POST operation’s
 bulkId value is set to ’qwerty’ enabling the Consumer to match the
 new User with the returned Resource id ’92b725cd-9465-4e7d-
 8c16-01f8e146b87a’.

 POST /v1/Bulk
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 Content-Length: ...

 {
 "schemas": ["urn:scim:schemas:core:2.0:BulkRequest"],
 "failOnErrors":1,
 "Operations":[
 {
 "method":"POST",
 "path":"/Users",
 "bulkId":"qwerty",
 "data":{
 "schemas": ["urn:scim:schemas:core:2.0:User"],
 "userName":"Alice"
 }
 },
 {
 "method":"PUT",
 "path":"/Users/b7c14771-226c-4d05-8860-134711653041",
 "version":"W\/\"3694e05e9dff591\"",
 "data":{
 "schemas": ["urn:scim:schemas:core:2.0:User"],

Drake, et al. Expires March 03, 2014 [Page 31]

Internet-Draft draft-scim-api-02 August 2013

 "id":"b7c14771-226c-4d05-8860-134711653041",
 "userName":"Bob"
 }
 },
 {
 "method":"PATCH",
 "path":"/Users/5d8d29d3-342c-4b5f-8683-a3cb6763ffcc",
 "version":"W\/\"edac3253e2c0ef2\"",
 "data":{
 "schemas":["urn:scim:schemas:core:2.0:User"],
 "id":"5d8d29d3-342c-4b5f-8683-a3cb6763ffcc",
 "userName":"Dave",
 "meta":{
 "attributes":[
 "nickName"
]
 }
 }
 },
 {
 "method":"DELETE",
 "path":"/Users/e9025315-6bea-44e1-899c-1e07454e468b",
 "version":"W\/\"0ee8add0a938e1a\""
 }
]
 }

 The Service Provider returns the following response.

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "schemas": ["urn:scim:schemas:core:2.0:BulkResponse"],
 "Operations": [
 {
 "location": "https://example.com/v1/Users/92b725cd-9465-4e7d-
8c16-01f8e146b87a",
 "method": "POST",
 "bulkId": "qwerty",
 "version": "W\/\"oY4m4wn58tkVjJxK\"",
 "status": {
 "code": "201"
 }
 },
 {
 "location": "https://example.com/v1/Users/b7c14771-226c-4d05-
8860-134711653041",

Drake, et al. Expires March 03, 2014 [Page 32]

Internet-Draft draft-scim-api-02 August 2013

 "method": "PUT",
 "version": "W\/\"huJj29dMNgu3WXPD\"",
 "status": {
 "code": "200"
 }
 },
 {
 "location": "https://example.com/v1/Users/5d8d29d3-342c-4b5f-
8683-a3cb6763ffcc",
 "method": "PATCH",
 "version": "W\/\"huJj29dMNgu3WXPD\"",
 "status": {
 "code": "200"
 }
 },
 {
 "location": "https://example.com/v1/Users/e9025315-6bea-44e1-
899c-1e07454e468b",
 "method": "DELETE",
 "status": {
 "code": "200"
 }
 }
]
 }

 The following response is returned if an error occurred when
 attempting to create the User ’Alice’. The Service Provider stops
 processing the bulk operation and immediately returns a response to
 the Consumer. The response contains the error and any successful
 results prior to the error.

Drake, et al. Expires March 03, 2014 [Page 33]

Internet-Draft draft-scim-api-02 August 2013

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "schemas": ["urn:scim:schemas:core:2.0:BulkResponse"],
 "Operations": [
 {
 "method": "POST",
 "bulkId": "qwerty",
 "status": {
 "code": "400",
 "description": "Request is unparseable, syntactically incorrect,
or violates schema."
 }
 }
]
 }

 If the failOnErrors attribute is not specified or the Service
 Provider has not reached the error limit defined by the Consumer the
 Service Provider will continue to process all operations. The
 following is an example in which all operations failed.

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "schemas": ["urn:scim:schemas:core:2.0:BulkResponse"],
 "Operations": [
 {
 "method": "POST",
 "bulkId": "qwerty",
 "status": {
 "code": "400",
 "description": "Request is unparseable, syntactically incorrect,
or violates schema."
 }
 },
 {
 "location": "https://example.com/v1/Users/b7c14771-226c-4d05-8860-1
34711653041",
 "method": "PUT",
 "status": {
 "code": "412",
 "description": "Failed to update as user changed on the server si
nce you last retrieved it."
 }
 },
 {
 "location": "https://example.com/v1/Users/5d8d29d3-342c-4b5f-8683-a
3cb6763ffcc",

Drake, et al. Expires March 03, 2014 [Page 34]

Internet-Draft draft-scim-api-02 August 2013

 "method": "PATCH",
 "status": {
 "code": "412",
 "description": "Failed to update as user changed on the server si
nce you last retrieved it."
 }
 },
 {
 "location": "https://example.com/v1/Users/e9025315-6bea-44e1-899c-1
e07454e468b",
 "method": "DELETE",
 "status": {
 "code": "404",
 "description": "Specified resource; e.g., User, does not exist."
 }
 }
]
 }

 The Consumer can, within one bulk operation, create a new User, a new
 Group and add the newly created User to the newly created Group. In
 order to add the new User to the Group the Consumer must use the
 surrogate id attribute, bulkId, to reference the User. The bulkId
 attribute value must be pre-pended with the literal "bulkId:"; e.g.,
 if the bulkId is ’qwerty’ the value is "bulkId:qwerty". The Service
 Provider MUST replace the string "bulkId:qwerty" with the permanent
 Resource id once created.

 The following example creates a User with the userName ’Alice’ and a
 Group with the displayName ’Tour Guides’ with Alice as a member.

 POST /v1/Bulk
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 Content-Length: ...

 {
 "schemas": ["urn:scim:schemas:core:2.0:BulkRequest"],
 "Operations": [
 {
 "method": "POST",
 "path": "/Users",
 "bulkId": "qwerty",
 "data": {
 "schemas": ["urn:scim:schemas:core:2.0:User"],
 "userName": "Alice"

Drake, et al. Expires March 03, 2014 [Page 35]

Internet-Draft draft-scim-api-02 August 2013

 }
 },
 {
 "method": "POST",
 "path": "/Groups",
 "bulkId": "ytrewq",
 "data": {
 "schemas": ["urn:scim:schemas:core:2.0:Group"],
 "displayName": "Tour Guides",
 "members": [
 {
 "type": "user",
 "value": "bulkId:qwerty"
 }
]
 }
 }
]
 }

 The Service Provider returns the following response.

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "schemas": ["urn:scim:schemas:core:2.0:BulkResponse"],
 "Operations": [
 {
 "location": "https://example.com/v1/Users/92b725cd-9465-4e7d-8c16-0
1f8e146b87a",
 "method": "POST",
 "bulkId": "qwerty",
 "version": "W\/\"4weymrEsh5O6cAEK\"",
 "status": {
 "code": "201"
 }
 },
 {
 "location": "https://example.com/v1/Groups/e9e30dba-f08f-4109-8486-
d5c6a331660a",
 "method": "POST",
 "bulkId": "ytrewq",
 "version": "W\/\"lha5bbazU3fNvfe5\"",
 "status": {
 "code": "201"
 }
 }

Drake, et al. Expires March 03, 2014 [Page 36]

Internet-Draft draft-scim-api-02 August 2013

]
 }

 A subsequent request for the ’Tour Guides’ Group (’e9e30dba-
 f08f-4109-8486-d5c6a331660a’) returns the following:

 GET /v1/Groups/e9e30dba-f08f-4109-8486-d5c6a331660a
 Host: example.com
 Accept: application/json
 Authorization: Bearer h480djs93hd8

 HTTP/1.1 200 OK
 Content-Type: application/json
 Location: https://example.com/v1/Groups/e9e30dba-f08f-4109-8486-d5c6a3316
60a
 ETag: W/"lha5bbazU3fNvfe5"

 {
 "schemas": ["urn:scim:schemas:core:2.0:Group"],
 "id": "e9e30dba-f08f-4109-8486-d5c6a331660a",
 "displayName": "Tour Guides",
 "meta": {
 "resourceType": "Group",
 "created": "2011-08-01T18:29:49.793Z",
 "lastModified": "2011-08-01T20:31:02.315Z",
 "location": "https://example.com/v1/Groups/e9e30dba-f08f-4109-8486-d5
c6a331660a",
 "version": "W\/\"lha5bbazU3fNvfe5\""
 },
 "members": [
 {
 "value": "92b725cd-9465-4e7d-8c16-01f8e146b87a",
 "$ref": "https://example.com/v1/Users/92b725cd-9465-4e7d-8c16-01f8e
146b87a",
 "type": "User"
 }
]
 }

 Extensions that include references to other Resources MUST be handled
 in the same way by the Service Provider. The following example uses
 the bulkId attribute within the enterprise extension managerId
 attribute.

 POST /v1/Bulk

Drake, et al. Expires March 03, 2014 [Page 37]

Internet-Draft draft-scim-api-02 August 2013

 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 Content-Length: ...

 {
 "schemas": ["urn:scim:schemas:core:2.0:BulkRequest"],
 "Operations": [
 {
 "method": "POST",
 "path": "/Users",
 "bulkId": "qwerty",
 "data": {
 "schemas": ["urn:scim:schemas:core:2.0:User"],
 "userName": "Alice"
 }
 },
 {
 "method": "POST",
 "path": "/Users",
 "bulkId": "ytrewq",
 "data": {
 "schemas": [
 "urn:scim:schemas:core:2.0:User",
 "urn:scim:schemas:extension:enterprise:2.0:User"
],
 "userName": "Bob",
 "urn:scim:schemas:extension:enterprise:2.0:User": {
 "employeeNumber": "11250",
 "manager": {
 "managerId": "batchId:qwerty",
 "displayName": "Alice"
 }
 }
 }
 }
]
 }

 The Service Provider MUST try to resolve circular cross references
 between Resources in a single bulk job but MAY stop after a failed
 attempt and instead return the status code 409 Conflict. The
 following example exhibits the potential conflict.

 POST /v1/Bulk

Drake, et al. Expires March 03, 2014 [Page 38]

Internet-Draft draft-scim-api-02 August 2013

 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 Content-Length: ...

 {
 "schemas": ["urn:scim:schemas:core:2.0:BulkRequest"],
 "Operations": [
 {
 "method": "POST",
 "path": "/Groups",
 "bulkId": "qwerty",
 "data": {
 "schemas": ["urn:scim:schemas:core:2.0:Group"],
 "displayName": "Group A",
 "members": [
 {
 "type": "group",
 "value": "bulkId:ytrewq"
 }
]
 }
 },
 {
 "method": "POST",
 "path": "/Groups",
 "bulkId": "ytrewq",
 "data": {
 "schemas": ["urn:scim:schemas:core:2.0:Group"],
 "displayName": "Group B",
 "members": [
 {
 "type": "group",
 "value": "bulkId:qwerty"
 }
]
 }
 }
]
 }

 If the Service Provider resolved the above circular references the
 following is returned from a subsequent GET request.

 GET /v1/Groups?filter=displayName sw ’Group’

Drake, et al. Expires March 03, 2014 [Page 39]

Internet-Draft draft-scim-api-02 August 2013

 Host: example.com
 Accept: application/json
 Authorization: Bearer h480djs93hd8

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "schemas": ["urn:scim:schemas:core:2.0:ListResponse"],
 "totalResults": 2,
 "Resources": [
 {
 "id": "c3a26dd3-27a0-4dec-a2ac-ce211e105f97",
 "schemas": ["urn:scim:schemas:core:2.0:Group"],
 "displayName": "Group A",
 "meta": {
 "resourceType": "Group",
 "created": "2011-08-01T18:29:49.793Z",
 "lastModified": "2011-08-01T18:29:51.135Z",
 "location": "https://example.com/v1/Groups/c3a26dd3-27a0-4dec-a2a
c-ce211e105f97",
 "version": "W\/\"mvwNGaxB5SDq074p\""
 },
 "members": [
 {
 "value": "6c5bb468-14b2-4183-baf2-06d523e03bd3",
 "$ref": "https://example.com/v1/Groups/6c5bb468-14b2-4183-baf2-
06d523e03bd3",
 "type": "Group"
 }
]
 },
 {
 "id": "6c5bb468-14b2-4183-baf2-06d523e03bd3",
 "schemas": ["urn:scim:schemas:core:2.0:Group"],
 "displayName": "Group B",
 "meta": {
 "resourceType": "Group",
 "created": "2011-08-01T18:29:50.873Z",
 "lastModified": "2011-08-01T18:29:50.873Z",
 "location": "https://example.com/v1/Groups/6c5bb468-14b2-4183-baf
2-06d523e03bd3",
 "version": "W\/\"wGB85s2QJMjiNnuI\""
 },
 "members": [
 {
 "value": "c3a26dd3-27a0-4dec-a2ac-ce211e105f97",
 "$ref": "https://example.com/v1/Groups/c3a26dd3-27a0-4dec-a2ac-
ce211e105f97",
 "type": "Group"

Drake, et al. Expires March 03, 2014 [Page 40]

Internet-Draft draft-scim-api-02 August 2013

 }
]
 }
]
 }

 The Service Provider MUST define the maximum number of operations and
 maximum payload size a Consumer may send in a single request. If
 either limits are exceeded the Service Provider MUST return the HTTP
 response code 413 Request Entity Too Large. The returned response
 MUST specify the limit exceeded in the body of the error response.

 The following example the Consumer sent a request exceeding the
 Service Provider’s max payload size of 1 megabyte.

 POST /v1/Bulk
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 Content-Length: 4294967296

 ...

 HTTP/1.1 413 Request Entity Too Large
 Content-Type: application/json
 Location: https://example.com/v1/Bulk/yfCrVJhFIJagAHj8

 {
 "schemas":["urn:scim:schemas:core:2.0:Error"],
 "Errors":[
 {
 "description":"The size of the bulk operation exceeds the maxPayloa
dSize (1048576).",
 "code":"413"
 }
]
 }

Drake, et al. Expires March 03, 2014 [Page 41]

Internet-Draft draft-scim-api-02 August 2013

3.6. Data Input/Output Formats

 Consumers MUST specify the format in which the data is submitted via
 the HTTP header content-type [10] and MAY specify the desired
 response data format via an HTTP Accept Header; e.g.,"Accept:
 application/json" or via URI suffix; e.g.,

 GET /Users/2819c223-7f76-453a-919d-413861904646.json
 Host: example.com

 Service Providers MUST support the Accept Headers "Accept:
 application/json" for JSON [11]. The format defaults to JSON if no
 format is specified.

 Singular attributes are encoded as string name-value-pairs in JSON;
 e.g.,

 "attribute": "value"

 Multi-valued attributes in JSON are encoded as arrays; e.g.,

 "attributes": ["value1", "value2"]

 Elements with nested elements are represented as objects in JSON;
 e.g,

 "attribute": { "subattribute1": "value1", "subattribute2": "value2" }

3.7. Additional retrieval query parameters

 Consumers MAY request a partial Resource representation on any
 operation that returns a Resource within the response by specifying
 the URL query parameter ’attributes’. When specified, each Resource
 returned MUST contain the minimal set of Resource attributes and MUST
 contain no other attributes or Sub-Attributes than those explicitly
 requested. The query parameter attributes value is a comma separated
 list of Resource attribute names in standard attribute notation
 (Section 3.8) form (e.g. userName, name, emails).

 GET /Users/2819c223-7f76-453a-919d-413861904646?attributes=userName
 Host: example.com
 Accept: application/json
 Authorization: Bearer h480djs93hd8

Drake, et al. Expires March 03, 2014 [Page 42]

Internet-Draft draft-scim-api-02 August 2013

 Giving the response

 HTTP/1.1 200 OK
 Content-Type: application/json
 Location: https://example.com/v1/Users/2819c223-7f76-453a-919d-4138619046
46
 ETag: W/"a330bc54f0671c9"

 {
 "schemas":["urn:scim:schemas:core:2.0:User"],
 "id":"2819c223-7f76-453a-919d-413861904646",
 "userName":"bjensen",
 "meta":{
 "resourceType": "User",
 "created":"2011-08-01T18:29:49.793Z",
 "lastModified":"2011-08-01T18:29:49.793Z",
 "location":"https://example.com/v1/Users/2819c223-7f76-453a-919d-4138
61904646",
 "version":"W\/\"a330bc54f0671c9\""
 }
 }

3.8. Attribute Notation

 All operations share a common scheme for referencing simple and
 complex attributes. In general, attributes are identified by
 prefixing the attribute name with its schema URN separated by a ’:’
 character; e.g., the core User Resource attribute ’userName’ is
 identified as ’urn:scim:schemas:core:2.0:userName’. Consumers MAY
 omit core schema attribute URN prefixes though MUST fully qualify
 extended attributes with the associated Resource URN; e.g., the
 attribute ’age’ defined in ’urn:hr:schemas:user’ is fully encoded as
 ’urn:hr:schemas:user:age’. A Complex attributes’ Sub-Attributes are
 referenced via nested, dot (’.’) notation; i.e., {urn}:{Attribute
 name}.{Sub-Attribute name}. For example, the fully qualified path
 for a User’s givenName is urn:scim:schemas:core:2.0:name.givenName
 All facets (URN, attribute and Sub-Attribute name) of the fully
 encoded Attribute name are case insensitive.

3.9. HTTP Response Codes

 The SCIM Protocol uses the response status codes defined in HTTP [12]
 to indicate operation success or failure. In addition to returning a
 HTTP response code implementers MUST return the errors in the body of
 the response in the client requested format containing the error
 response and, per the HTTP specification, human-readable
 explanations. Error responses are identified using the following

Drake, et al. Expires March 03, 2014 [Page 43]

Internet-Draft draft-scim-api-02 August 2013

 URI: ’urn:scim:schemas:core:2.0:Error’. The following multi-valued
 attribute is defined in addition to those attributes defined in SCIM
 Core Schema:

 Errors The list of errors encountered by the Service Provider. The
 value attribute is a complex type with the following sub-
 attributes.

 description A human-readable explanation of the error. REQUIRED.

 code A string indicating the HTTP response code. REQUIRED.

 Implementers SHOULD handle the identified errors as described below.

 +----------------+---------------------------+----------------------+
 | Code | Applicability | Suggested |
 | | | Explanation |
 +----------------+---------------------------+----------------------+
400 BAD	GET,POST,PUT,PATCH,DELETE	Request is
REQUEST		unparseable,
		syntactically
		incorrect, or
		violates schema
401	GET,POST,PUT,PATCH,DELETE	Authorization
UNAUTHORIZED		failure
403 FORBIDDEN	GET,POST,PUT,PATCH,DELETE	Server does not
		support requested
		operation
404 NOT FOUND	GET,PUT,PATCH,DELETE	Specified resource;
		e.g., User, does not
		exist
409 CONFLICT	POST, PUT,PATCH,DELETE	The specified
		version number does
		not match the
		resource’s latest
		version number or a
		Service Provider
		refused to create a
		new, duplicate
		resource
412	PUT,PATCH,DELETE	Failed to update as
PRECONDITION		Resource {id}
FAILED		changed on the
		server last
		retrieved
413 REQUEST	POST	{"maxOperations":
ENTITY TOO		1000,"maxPayload":
LARGE		1048576}

Drake, et al. Expires March 03, 2014 [Page 44]

Internet-Draft draft-scim-api-02 August 2013

500 INTERNAL	GET,POST,PUT,PATCH,DELETE	An internal error.
SERVER ERROR		Implementers SHOULD
		provide descriptive
		debugging advice
501 NOT	GET,POST,PUT,PATCH,DELETE	Service Provider
IMPLEMENTED		does not support the
		request operation;
		e.g., PATCH
 +----------------+---------------------------+----------------------+

 Table 7: Defined error cases

 Error example in response to a non-existent GET request.

 HTTP/1.1 404 NOT FOUND

 {
 "schemas": ["urn:scim:schemas:core:2.0:Error"],
 "Errors":[
 {
 "description":"Resource 2819c223-7f76-453a-919d-413861904646 not fo
und",
 "code":"404"
 }
]
 }

3.10. API Versioning

 The Base URL MAY be appended with a version identifier as a separate
 segment in the URL path. At this time the only valid identifier is
 ’v1’. If specified, the version identifier MUST appear in the URL
 path immediately preceding the Resource endpoint and conform to the
 following scheme: the character ’v’ followed by the desired SCIM
 version number; e.g., a version ’v1’ User request is specified as /v1
 /Users. When specified Service Providers MUST perform the operation
 using the desired version or reject the request. When omitted
 Service Providers SHOULD perform the operation using the most recent
 API supported by the Service Provider.

3.11. Versioning Resources

 The API supports resource versioning via standard HTTP ETags [13].
 Service providers MAY support weak ETags as the preferred mechanism
 for performing conditional retrievals and ensuring Consumers do not
 inadvertently overwrite each others changes, respectively. When
 supported SCIM ETags MUST be specified as an HTTP header and SHOULD

Drake, et al. Expires March 03, 2014 [Page 45]

Internet-Draft draft-scim-api-02 August 2013

 be specified within the ’version’ attribute contained in the
 Resource’s ’meta’ attribute.

 Example:

 POST /Users HTTP/1.1
 Host: example.com
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 Content-Length: ...

 {
 "schemas":["urn:scim:schemas:core:2.0:User"],
 "userName":"bjensen",
 "externalId":"bjensen",
 "name":{
 "formatted":"Ms. Barbara J Jensen III",
 "familyName":"Jensen",
 "givenName":"Barbara"
 }
 }

 The server responds with an ETag in the response header and meta
 structure.

Drake, et al. Expires March 03, 2014 [Page 46]

Internet-Draft draft-scim-api-02 August 2013

 HTTP/1.1 201 Created
 Content-Type: application/json
 Location: https://example.com/v1/Users/2819c223-7f76-453a-919d-4138619046
46
 ETag: W/"e180ee84f0671b1"

 {
 "schemas":["urn:scim:schemas:core:2.0:User"],
 "id":"2819c223-7f76-453a-919d-413861904646",
 "meta":{
 "resourceType":"User",
 "created":"2011-08-01T21:32:44.882Z",
 "lastModified":"2011-08-01T21:32:44.882Z",
 "location":"https://example.com/v1/Users/2819c223-7f76-453a-919d-4138
61904646",
 "version":"W\/\"e180ee84f0671b1\""
 },
 "name":{
 "formatted":"Ms. Barbara J Jensen III",
 "familyName":"Jensen",
 "givenName":"Barbara"
 },
 "userName":"bjensen"
 }

 With the returned ETag, Consumers MAY choose to retrieve the Resource
 only if the Resource has been modified.

 Conditional retrieval example using If-None-Match [14] header:

 GET /Users/2819c223-7f76-453a-919d-413861904646?attributes=displayName
 Host: example.com
 Accept: application/json
 Authorization: Bearer h480djs93hd8
 If-None-Match: W/"e180ee84f0671b1"

 If the Resource has not changed the Service Provider simply returns
 an empty body with a 304 "Not Modified" response code.

 If the Service Providers supports versioning of resources the
 Consumer MUST supply an If-Match [15] header for PUT and PATCH
 operations to ensure that the requested operation succeeds only if
 the supplied ETag matches the latest Service Provider Resource; e.g.,
 If-Match: W/"e180ee84f0671b1"

3.12. HTTP Method Overloading

Drake, et al. Expires March 03, 2014 [Page 47]

Internet-Draft draft-scim-api-02 August 2013

 In recognition that some clients, servers and firewalls prevent PUT,
 PATCH and DELETE operations a client MAY override the POST operation
 by specifying the custom header "X-HTTP-Method-Override" with the
 desired PUT, PATCH, DELETE operation. For example:

 POST /Users/2819c223-7f76-453a-919d-413861904646
 X-HTTP-Method-Override: DELETE

4. Multi-Tenancy

 A single Service Provider may expose the SCIM protocol to multiple
 Consumers. Depending on the nature of the service, the Consumers may
 have authority to access and alter Resources initially created by
 other Consumers. Alternatively, Consumers may expect to access
 disjoint sets of Resources, and may expect that their resources are
 inaccessible by other Consumers. These scenarios are called "multi-
 tenancy", where each Consumer is understood to be or represent a
 "tenant" of the Service Provider. Consumers may also be multi-
 tenanted.

 The following common cases may occur:

 1. All Consumers share all Resources (no tenancy)

 2. Each single Consumer creates and accesses a private subset of
 Resources (1 Consumer:1 Tenant)

 3. Sets of Consumers share sets of Resources (M Consumers:1 Tenant)

 4. One Consumer to Multiple Tenants (1 Consumer:M Tenants)

 Service Providers may implement any subset of the above cases.

 Multi-Tenancy is OPTIONAL. The SCIM protocol does not define a
 scheme for multi-tenancy.

 The SCIM protocol does not prescribe the mechanisms whereby Consumers
 and Service Providers interact for:

 o Registering or provisioning Tenants

 o Associating a subset of Consumers with a subset of the Tenants

 o Indicating which tenant is associated with the data in a request
 or response, or indicating which Tenant is the subject of a query

Drake, et al. Expires March 03, 2014 [Page 48]

Internet-Draft draft-scim-api-02 August 2013

 o Implementers are encouraged to use mechanisms which comply with
 RESTful conventions.

4.1. Associating Consumers to Tenants

 The Service Provider MAY use the authentication mechanism (Section 2)
 to determine the identity of the Consumer, and thus infer the
 associated Tenant.

 For implementations where a Consumer is associated with more than one
 Tenant, the Service Provider MAY use one of the following methods for
 explicit specification of the Tenant.

 If any of these methods of allowing the Consumer to explicitly
 specify the Tenant are employed, the Service Provider should ensure
 that access controls are in place to prevent or allow cross-tenant
 use cases.

 The Service Provider should consider precedence in cases where a
 Consumer may explicitly specify a Tenant while being implicitly
 associated with a different Tenant.

4.1.1. URL Prefix Example

 https://www.example.com/Tenants/{tenant_id}/v1/Users

4.1.2. Subdomain Example

 https://{tenant_id}.example.com/v1/Groups

4.1.3. HTTP Header

 The Service Provider may recognize a {tenant_id} provided by the
 Consumer in the HTTP Header "SCIM_TENANT_ID" as the indicator of the
 desired target Tenant.

 In all of these methods, the {tenant_id} is a unique identifier for
 the Tenant as defined by the Service Provider.

4.2. SCIM Identifiers with Multiple Tenants

 Considerations for a Multi-Tenant Implementation:

 The Service Provider may choose to implement SCIM ids which are
 unique across all Resources for all Tenants, but this is not
 required.

Drake, et al. Expires March 03, 2014 [Page 49]

Internet-Draft draft-scim-api-02 August 2013

 The externalId, defined by the Consumer, is required to be unique
 ONLY within the Resources associated with the associated Tenant.

5. Security Considerations

 The SCIM Protocol is based on HTTP and thus subject to the security
 considerations found in Section 15 of [RFC2616] [16]. SCIM Resources
 (e.g., Users and Groups) can contain sensitive information.
 Therefore, SCIM Consumers and Service Providers MUST implement TLS.
 Which version(s) ought to be implemented will vary over time, and
 depend on the widespread deployment and known security
 vulnerabilities at the time of implementation. At the time of this
 writing, TLS version 1.2 [RFC5246 [17]] is the most recent version,
 but has very limited actual deployment, and might not be readily
 available in implementation toolkits. TLS version 1.0 [RFC2246 [18]]
 is the most widely deployed version, and will give the broadest
 interoperability.

6. Contributors

 Samuel Erdtman (samuel@erdtman.se)

 Patrick Harding (pharding@pingidentity.com)

7. Acknowledgments

 The editor would like to thank the participants in the the SCIM
 working group for their support of this specification.

8. References

Authors’ Addresses

 Trey Drake (editor)
 UnboundID

 Email: trey.drake@unboundid.com

 Chuck Mortimore
 SalesForce

 Email: cmortimore@salesforce.com

Drake, et al. Expires March 03, 2014 [Page 50]

Internet-Draft draft-scim-api-02 August 2013

 Morteza Ansari
 Cisco

 Email: morteza.ansari@cisco.com

 Kelly Grizzle
 SailPoint

 Email: kelly.grizzle@sailpoint.com

 Erik Wahlstroem
 Technology Nexus

 Email: erik.wahlstrom@nexussafe.com

Drake, et al. Expires March 03, 2014 [Page 51]

