
Network Working Group S. Holmer
Internet-Draft H. Lundin
Intended status: Informational Google
Expires: January 9, 2017 G. Carlucci
 L. De Cicco
 S. Mascolo
 Politecnico di Bari
 July 8, 2016

 A Google Congestion Control Algorithm for Real-Time Communication
 draft-ietf-rmcat-gcc-02

Abstract

 This document describes two methods of congestion control when using
 real-time communications on the World Wide Web (RTCWEB); one delay-
 based and one loss-based.

 It is published as an input document to the RMCAT working group on
 congestion control for media streams. The mailing list of that
 working group is rmcat@ietf.org.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2017.

Holmer, et al. Expires January 9, 2017 [Page 1]

Internet-Draft Congestion Control for RTCWEB July 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Mathematical notation conventions 3
 2. System model . 4
 3. Feedback and extensions 4
 4. Sending Engine . 5
 5. Delay-based control . 5
 5.1. Arrival-time model 6
 5.2. Pre-filtering . 7
 5.3. Arrival-time filter 7
 5.4. Over-use detector . 8
 5.5. Rate control . 10
 5.6. Parameters settings 12
 6. Loss-based control . 13
 7. Interoperability Considerations 14
 8. Implementation Experience 14
 9. Further Work . 15
 10. IANA Considerations . 15
 11. Security Considerations 15
 12. Acknowledgements . 15
 13. References . 16
 13.1. Normative References 16
 13.2. Informative References 16
 Appendix A. Change log . 16
 A.1. Version -00 to -01 16
 A.2. Version -01 to -02 17
 A.3. Version -02 to -03 17
 A.4. rtcweb-03 to rmcat-00 17
 A.5. rmcat -00 to -01 . 17
 A.6. rmcat -01 to -02 . 17
 A.7. rmcat -02 to -03 . 18
 A.8. ietf-rmcat -00 to ietf-rmcat -01 18

Holmer, et al. Expires January 9, 2017 [Page 2]

Internet-Draft Congestion Control for RTCWEB July 2016

 A.9. ietf-rmcat -01 to ietf-rmcat -02 18
 Authors’ Addresses . 18

1. Introduction

 Congestion control is a requirement for all applications sharing the
 Internet resources [RFC2914].

 Congestion control for real-time media is challenging for a number of
 reasons:

 o The media is usually encoded in forms that cannot be quickly
 changed to accommodate varying bandwidth, and bandwidth
 requirements can often be changed only in discrete, rather large
 steps

 o The participants may have certain specific wishes on how to
 respond - which may not be reducing the bandwidth required by the
 flow on which congestion is discovered

 o The encodings are usually sensitive to packet loss, while the
 real-time requirement precludes the repair of packet loss by
 retransmission

 This memo describes two congestion control algorithms that together
 are able to provide good performance and reasonable bandwidth sharing
 with other video flows using the same congestion control and with TCP
 flows that share the same links.

 The signaling used consists of experimental RTP header extensions and
 RTCP messages RFC 3550 [RFC3550] as defined in [abs-send-time],
 [I-D.alvestrand-rmcat-remb] and
 [I-D.holmer-rmcat-transport-wide-cc-extensions].

1.1. Mathematical notation conventions

 The mathematics of this document have been transcribed from a more
 formula-friendly format.

 The following notational conventions are used:

 X_hat An estimate of the true value of variable X - conventionally
 marked by a circumflex accent on top of the variable name.

 X(i) The "i"th value of vector X - conventionally marked by a
 subscript i.

 E{X} The expected value of the stochastic variable X

Holmer, et al. Expires January 9, 2017 [Page 3]

Internet-Draft Congestion Control for RTCWEB July 2016

2. System model

 The following elements are in the system:

 o RTP packet - an RTP packet containing media data.

 o Group of packets - a set of RTP packets transmitted from the
 sender uniquely identified by the group departure and group
 arrival time (absolute send time) [abs-send-time]. These could be
 video packets, audio packets, or a mix of audio and video packets.

 o Incoming media stream - a stream of frames consisting of RTP
 packets.

 o RTP sender - sends the RTP stream over the network to the RTP
 receiver. It generates the RTP timestamp and the abs-send-time
 header extension

 o RTP receiver - receives the RTP stream, marks the time of arrival.

 o RTCP sender at RTP receiver - sends receiver reports, REMB
 messages and transport-wide RTCP feedback messages.

 o RTCP receiver at RTP sender - receives receiver reports and REMB
 messages and transport-wide RTCP feedback messages, reports these
 to the sender side controller.

 o RTCP receiver at RTP receiver, receives sender reports from the
 sender.

 o Loss-based controller - takes loss rate measurement, round trip
 time measurement and REMB messages, and computes a target sending
 bitrate.

 o Delay-based controller - takes the packet arrival info, either at
 the RTP receiver, or from the feedback received by the RTP sender,
 and computes a maximum bitrate which it passes to the loss-based
 controller.

 Together, loss-based controller and delay-based controller implement
 the congestion control algorithm.

3. Feedback and extensions

 There are two ways to implement the proposed algorithm. One where
 both the controllers are running at the send-side, and one where the
 delay-based controller runs on the receive-side and the loss-based
 controller runs on the send-side.

Holmer, et al. Expires January 9, 2017 [Page 4]

Internet-Draft Congestion Control for RTCWEB July 2016

 The first version can be realized by using a per-packet feedback
 protocol as described in
 [I-D.holmer-rmcat-transport-wide-cc-extensions]. Here, the RTP
 receiver will record the arrival time and the transport-wide sequence
 number of each received packet, which will be sent back to the sender
 periodically using the transport-wide feedback message. The
 RECOMMENDED feedback interval is once per received video frame or at
 least once every 30 ms if audio-only or multi-stream. If the
 feedback overhead needs to be limited this interval can be increased
 to 100 ms.

 The sender will map the received {sequence number, arrival time}
 pairs to the send-time of each packet covered by the feedback report,
 and feed those timestamps to the delay-based controller. It will
 also compute a loss ratio based on the sequence numbers in the
 feedback message.

 The second version can be realized by having a delay-based controller
 at the receive-side, monitoring and processing the arrival time and
 size of incoming packets. The sender SHOULD use the abs-send-time
 RTP header extension [abs-send-time] to enable the receiver to
 compute the inter-group delay variation. The output from the delay-
 based controller will be a bitrate, which will be sent back to the
 sender using the REMB feedback message [I-D.alvestrand-rmcat-remb].
 The packet loss ratio is sent back via RTCP receiver reports. At the
 sender the bitrate in the REMB message and the fraction of packets
 lost are fed into the loss-based controller, which outputs a final
 target bitrate. It is RECOMMENDED to send the REMB message as soon
 as congestion is detected, and otherwise at least once every second.

4. Sending Engine

 Pacing is used to actuate the target bitrate computed by the
 controllers.

 When media encoder produces data, this is fed into a Pacer queue.
 The Pacer sends a group of packets to the network every burst_time
 interval. RECOMMENDED value for burst_time is 5 ms. The size of a
 group of packets is computed as the product between the target
 bitrate and the burst_time.

5. Delay-based control

 The delay-based control algorithm can be further decomposed into four
 parts: a pre-filtering, an arrival-time filter, an over-use detector,
 and a rate controller.

Holmer, et al. Expires January 9, 2017 [Page 5]

Internet-Draft Congestion Control for RTCWEB July 2016

5.1. Arrival-time model

 This section describes an adaptive filter that continuously updates
 estimates of network parameters based on the timing of the received
 groups of packets.

 We define the inter-arrival time, t(i) - t(i-1), as the difference in
 arrival time of two groups of packets. Correspondingly, the inter-
 departure time, T(i) - T(i-1), is defined as the difference in
 departure-time of two groups of packets. Finally, the inter-group
 delay variation, d(i), is defined as the difference between the
 inter-arrival time and the inter-departure time. Or interpreted
 differently, as the difference between the delay of group i and group
 i-1.

 d(i) = t(i) - t(i-1) - (T(i) - T(i-1))

 An inter-departure time is computed between consecutive groups as
 T(i) - T(i-1), where T(i) is the departure timestamp of the last
 packet in the current packet group being processed. Any packets
 received out of order are ignored by the arrival-time model.

 Each group is assigned a receive time t(i), which corresponds to the
 time at which the last packet of the group was received. A group is
 delayed relative to its predecessor if t(i) - t(i-1) > T(i) - T(i-1),
 i.e., if the inter-arrival time is larger than the inter-departure
 time.

 We can model the inter-group delay variation as:

 d(i) = w(i)

 Here, w(i) is a sample from a stochastic process W, which is a
 function of the link capacity, the current cross traffic, and the
 current sent bitrate. We model W as a white Gaussian process. If we
 are over-using the channel we expect the mean of w(i) to increase,
 and if a queue on the network path is being emptied, the mean of w(i)
 will decrease; otherwise the mean of w(i) will be zero.

 Breaking out the mean, m(i), from w(i) to make the process zero mean,
 we get

 Equation 1

 d(i) = m(i) + v(i)

 The noise term v(i) represents network jitter and other delay effects
 not captured by the model.

Holmer, et al. Expires January 9, 2017 [Page 6]

Internet-Draft Congestion Control for RTCWEB July 2016

5.2. Pre-filtering

 The pre-filtering aims at handling delay transients caused by channel
 outages. During an outage, packets being queued in network buffers,
 for reasons unrelated to congestion, are delivered in a burst when
 the outage ends.

 The pre-filtering merges together groups of packets that arrive in a
 burst. Packets are merged in the same group if one of these two
 conditions holds:

 o A sequence of packets which are sent within a burst_time interval
 constitute a group.

 o A Packet which has an inter-arrival time less than burst_time and
 an inter-group delay variation d(i) less than 0 is considered
 being part of the current group of packets.

5.3. Arrival-time filter

 The parameter d(i) is readily available for each group of packets, i
 > 1. We want to estimate m(i) and use this estimate to detect
 whether or not the bottleneck link is over-used. The parameter can
 be estimated by any adaptive filter - we are using the Kalman filter.

 Let m(i) be the estimate at time i

 We model the state evolution from time i to time i+1 as

 m(i+1) = m(i) + u(i)

 where u(i) is the state noise that we model as a stationary process
 with Gaussian statistic with zero mean and variance

 q(i) = E{u(i)^2}

 q(i) is RECOMMENDED equal to 10^-3

 Given equation 1 we get

 d(i) = m(i) + v(i)

 where v(i) is zero mean white Gaussian measurement noise with
 variance var_v = E{v(i)^2}

 The Kalman filter recursively updates our estimate m_hat(i) as

Holmer, et al. Expires January 9, 2017 [Page 7]

Internet-Draft Congestion Control for RTCWEB July 2016

 z(i) = d(i) - m_hat(i-1)

 m_hat(i) = m_hat(i-1) + z(i) * k(i)

 e(i-1) + q(i)
 k(i) = --
 var_v_hat(i) + (e(i-1) + q(i))

 e(i) = (1 - k(i)) * (e(i-1) + q(i))

 The variance var_v(i) = E{v(i)^2} is estimated using an exponential
 averaging filter, modified for variable sampling rate

 var_v_hat(i) = max(alpha * var_v_hat(i-1) + (1-alpha) * z(i)^2, 1)

 alpha = (1-chi)^(30/(1000 * f_max))

 where f_max = max {1/(T(j) - T(j-1))} for j in i-K+1,...,i is the
 highest rate at which the last K packet groups have been received and
 chi is a filter coefficient typically chosen as a number in the
 interval [0.1, 0.001]. Since our assumption that v(i) should be zero
 mean WGN is less accurate in some cases, we have introduced an
 additional outlier filter around the updates of var_v_hat. If z(i) >
 3*sqrt(var_v_hat) the filter is updated with 3*sqrt(var_v_hat) rather
 than z(i). For instance v(i) will not be white in situations where
 packets are sent at a higher rate than the channel capacity, in which
 case they will be queued behind each other.

5.4. Over-use detector

 The inter-group delay variation estimate m(i), obtained as the output
 of the arrival-time filter, is compared with a threshold
 del_var_th(i). An estimate above the threshold is considered as an
 indication of over-use. Such an indication is not enough for the
 detector to signal over-use to the rate control subsystem. A
 definitive over-use will be signaled only if over-use has been
 detected for at least overuse_time_th milliseconds. However, if m(i)
 < m(i-1), over-use will not be signaled even if all the above
 conditions are met. Similarly, the opposite state, under-use, is
 detected when m(i) < -del_var_th(i). If neither over-use nor under-
 use is detected, the detector will be in the normal state.

 The threshold del_var_th has a remarkable impact on the overall
 dynamics and performance of the algorithm. In particular, it has
 been shown that using a static threshold del_var_th, a flow
 controlled by the proposed algorithm can be starved by a concurrent
 TCP flow [Pv13]. This starvation can be avoided by increasing the
 threshold del_var_th to a sufficiently large value.

Holmer, et al. Expires January 9, 2017 [Page 8]

Internet-Draft Congestion Control for RTCWEB July 2016

 The reason is that, by using a larger value of del_var_th, a larger
 queuing delay can be tolerated, whereas with a small del_var_th, the
 over-use detector quickly reacts to a small increase in the offset
 estimate m(i) by generating an over-use signal that reduces the
 delay-based estimate of the available bandwidth A_hat (see
 Section 4.4). Thus, it is necessary to dynamically tune the
 threshold del_var_th to get good performance in the most common
 scenarios, such as when competing with loss-based flows.

 For this reason, we propose to vary the threshold del_var_th(i)
 according to the following dynamic equation:

del_var_th(i) =
 del_var_th(i-1) + (t(i)-t(i-1)) * K(i) * (|m(i)|-del_var_th(i-1))

 with K(i)=K_d if |m(i)| < del_var_th(i-1) or K(i)=K_u otherwise. The
 rationale is to increase del_var_th(i) when m(i) is outside of the
 range [-del_var_th(i-1),del_var_th(i-1)], whereas, when the offset
 estimate m(i) falls back into the range, del_var_th is decreased. In
 this way when m(i) increases, for instance due to a TCP flow entering
 the same bottleneck, del_var_th(i) increases and avoids the
 uncontrolled generation of over-use signals which may lead to
 starvation of the flow controlled by the proposed algorithm [Pv13].
 Moreover, del_var_th(i) SHOULD NOT be updated if this condition
 holds:

 |m(i)| - del_var_th(i) > 15

 It is also RECOMMENDED to clamp del_var_th(i) to the range [6, 600],
 since a too small del_var_th(i) can cause the detector to become
 overly sensitive.

 On the other hand, when m(i) falls back into the range
 [-del_var_th(i-1),del_var_th(i-1)] the threshold del_var_th(i) is
 decreased so that a lower queuing delay can be achieved.

 It is RECOMMENDED to choose K_u > K_d so that the rate at which
 del_var_th is increased is higher than the rate at which it is
 decreased. With this setting it is possible to increase the
 threshold in the case of a concurrent TCP flow and prevent starvation
 as well as enforcing intra-protocol fairness. RECOMMENDED values for
 del_var_th(0), overuse_time_th, K_u and K_d are respectively 12.5 ms,
 10 ms, 0.01 and 0.00018.

Holmer, et al. Expires January 9, 2017 [Page 9]

Internet-Draft Congestion Control for RTCWEB July 2016

5.5. Rate control

 The rate control is split in two parts, one controlling the bandwidth
 estimate based on delay, and one controlling the bandwidth estimate
 based on loss. Both are designed to increase the estimate of the
 available bandwidth A_hat as long as there is no detected congestion
 and to ensure that we will eventually match the available bandwidth
 of the channel and detect an over-use.

 As soon as over-use has been detected, the available bandwidth
 estimated by the delay-based controller is decreased. In this way we
 get a recursive and adaptive estimate of the available bandwidth.

 In this document we make the assumption that the rate control
 subsystem is executed periodically and that this period is constant.

 The rate control subsystem has 3 states: Increase, Decrease and Hold.
 "Increase" is the state when no congestion is detected; "Decrease" is
 the state where congestion is detected, and "Hold" is a state that
 waits until built-up queues have drained before going to "increase"
 state.

 The state transitions (with blank fields meaning "remain in state")
 are:

 +----+--------+-----------+------------+--------+
\ State	Hold	Increase	Decrease
\			
Signal\			
+--------+----+-----------+------------+--------+			
Over-use	Decrease	Decrease	
+-------------+-----------+------------+--------+			
Normal	Increase		Hold
+-------------+-----------+------------+--------+			
Under-use		Hold	Hold
 +-------------+-----------+------------+--------+

 The subsystem starts in the increase state, where it will stay until
 over-use or under-use has been detected by the detector subsystem.
 On every update the delay-based estimate of the available bandwidth
 is increased, either multiplicatively or additively, depending on its
 current state.

 The system does a multiplicative increase if the current bandwidth
 estimate appears to be far from convergence, while it does an
 additive increase if it appears to be closer to convergence. We
 assume that we are close to convergence if the currently incoming
 bitrate, R_hat(i), is close to an average of the incoming bitrates at

Holmer, et al. Expires January 9, 2017 [Page 10]

Internet-Draft Congestion Control for RTCWEB July 2016

 the time when we previously have been in the Decrease state. "Close"
 is defined as three standard deviations around this average. It is
 RECOMMENDED to measure this average and standard deviation with an
 exponential moving average with the smoothing factor 0.95, as it is
 expected that this average covers multiple occasions at which we are
 in the Decrease state. Whenever valid estimates of these statistics
 are not available, we assume that we have not yet come close to
 convergence and therefore remain in the multiplicative increase
 state.

 If R_hat(i) increases above three standard deviations of the average
 max bitrate, we assume that the current congestion level has changed,
 at which point we reset the average max bitrate and go back to the
 multiplicative increase state.

 R_hat(i) is the incoming bitrate measured by the delay-based
 controller over a T seconds window:

 R_hat(i) = 1/T * sum(L(j)) for j from 1 to N(i)

 N(i) is the number of packets received the past T seconds and L(j) is
 the payload size of packet j. A window between 0.5 and 1 second is
 RECOMMENDED.

 During multiplicative increase, the estimate is increased by at most
 8% per second.

 eta = 1.08^min(time_since_last_update_ms / 1000, 1.0)
 A_hat(i) = eta * A_hat(i-1)

 During the additive increase the estimate is increased with at most
 half a packet per response_time interval. The response_time interval
 is estimated as the round-trip time plus 100 ms as an estimate of
 over-use estimator and detector reaction time.

 response_time_ms = 100 + rtt_ms
 alpha = 0.5 * min(time_since_last_update_ms / response_time_ms, 1.0)
 A_hat(i) = A_hat(i-1) + max(1000, alpha * expected_packet_size_bits)

 expected_packet_size_bits is used to get a slightly slower slope for
 the additive increase at lower bitrates. It can for instance be
 computed from the current bitrate by assuming a frame rate of 30
 frames per second:

 bits_per_frame = A_hat(i-1) / 30
 packets_per_frame = ceil(bits_per_frame / (1200 * 8))
 avg_packet_size_bits = bits_per_frame / packets_per_frame

Holmer, et al. Expires January 9, 2017 [Page 11]

Internet-Draft Congestion Control for RTCWEB July 2016

 Since the system depends on over-using the channel to verify the
 current available bandwidth estimate, we must make sure that our
 estimate does not diverge from the rate at which the sender is
 actually sending. Thus, if the sender is unable to produce a bit
 stream with the bitrate the congestion controller is asking for, the
 available bandwidth estimate should stay within a given bound.
 Therefore we introduce a threshold

 A_hat(i) < 1.5 * R_hat(i)

 When an over-use is detected the system transitions to the decrease
 state, where the delay-based available bandwidth estimate is
 decreased to a factor times the currently incoming bitrate.

 A_hat(i) = beta * R_hat(i)

 beta is typically chosen to be in the interval [0.8, 0.95], 0.85 is
 the RECOMMENDED value.

 When the detector signals under-use to the rate control subsystem, we
 know that queues in the network path are being emptied, indicating
 that our available bandwidth estimate A_hat is lower than the actual
 available bandwidth. Upon that signal the rate control subsystem
 will enter the hold state, where the receive-side available bandwidth
 estimate will be held constant while waiting for the queues to
 stabilize at a lower level - a way of keeping the delay as low as
 possible. This decrease of delay is wanted, and expected,
 immediately after the estimate has been reduced due to over-use, but
 can also happen if the cross traffic over some links is reduced.

 It is RECOMMENDED that the routine to update A_hat(i) is run at least
 once every response_time interval.

5.6. Parameters settings

Holmer, et al. Expires January 9, 2017 [Page 12]

Internet-Draft Congestion Control for RTCWEB July 2016

 +-----------------+-----------------------------------+-------------+
 | Parameter | Description | RECOMMENDED |
 | | | Value |
 +-----------------+-----------------------------------+-------------+
burst_time	Time limit in milliseconds	5 ms
	between packet bursts which	
	identifies a group	
q	State noise covariance matrix	q = 10^-3
e(0)	Initial value of the system	e(0) = 0.1
	error covariance	
chi	Coefficient used for the	[0.1,
	measured noise variance	0.001]
del_var_th(0)	Initial value for the adaptive	12.5 ms
	threshold	
overuse_time_th	Time required to trigger an	10 ms
	overuse signal	
K_u	Coefficient for the adaptive	0.01
	threshold	
K_d	Coefficient for the adaptive	0.00018
	threshold	
T	Time window for measuring the	[0.5, 1] s
	received bitrate	
beta	Decrease rate factor	0.85
 +-----------------+-----------------------------------+-------------+

 Table 1: RECOMMENDED values for delay based controller

 Table 1

6. Loss-based control

 A second part of the congestion controller bases its decisions on the
 round-trip time, packet loss and available bandwidth estimates A_hat
 received from the delay-based controller. The available bandwidth
 estimates computed by the loss-based controller are denoted with
 As_hat.

 The available bandwidth estimates A_hat produced by the delay-based
 controller are only reliable when the size of the queues along the
 path sufficiently large. If the queues are very short, over-use will
 only be visible through packet losses, which are not used by the
 delay-based controller.

 The loss-based controller SHOULD run every time feedback from the
 receiver is received.

Holmer, et al. Expires January 9, 2017 [Page 13]

Internet-Draft Congestion Control for RTCWEB July 2016

 o If 2-10% of the packets have been lost since the previous report
 from the receiver, the sender available bandwidth estimate
 As_hat(i) will be kept unchanged.

 o If more than 10% of the packets have been lost a new estimate is
 calculated as As_hat(i) = As_hat(i-1)(1-0.5p), where p is the loss
 ratio.

 o As long as less than 2% of the packets have been lost As_hat(i)
 will be increased as As_hat(i) = 1.05(As_hat(i-1))

 The loss-based estimate As_hat is compared with the delay-based
 estimate A_hat. The actual sending rate is set as the minimum
 between As_hat and A_hat.

 We motivate the packet loss thresholds by noting that if the
 transmission channel has a small amount of packet loss due to over-
 use, that amount will soon increase if the sender does not adjust his
 bitrate. Therefore we will soon enough reach above the 10% threshold
 and adjust As_hat(i). However, if the packet loss ratio does not
 increase, the losses are probably not related to self-inflicted
 congestion and therefore we should not react on them.

7. Interoperability Considerations

 In case a sender implementing these algorithms talks to a receiver
 which do not implement any of the proposed RTCP messages and RTP
 header extensions, it is suggested that the sender monitors RTCP
 receiver reports and uses the fraction of lost packets and the round-
 trip time as input to the loss-based controller. The delay-based
 controller should be left disabled.

8. Implementation Experience

 This algorithm has been implemented in the open-source WebRTC
 project, has been in use in Chrome since M23, and is being used by
 Google Hangouts.

 Deployment of the algorithm have revealed problems related to, e.g,
 congested or otherwise problematic WiFi networks, which have led to
 algorithm improvements. The algorithm has also been tested in a
 multi-party conference scenario with a conference server which
 terminates the congestion control between endpoints. This ensures
 that no assumptions are being made by the congestion control about
 maximum send and receive bitrates, etc., which typically is out of
 control for a conference server.

Holmer, et al. Expires January 9, 2017 [Page 14]

Internet-Draft Congestion Control for RTCWEB July 2016

9. Further Work

 This draft is offered as input to the congestion control discussion.

 Work that can be done on this basis includes:

 o Considerations of integrated loss control: How loss and delay
 control can be better integrated, and the loss control improved.

 o Considerations of locus of control: evaluate the performance of
 having all congestion control logic at the sender, compared to
 splitting logic between sender and receiver.

 o Considerations of utilizing ECN as a signal for congestion
 estimation and link over-use detection.

10. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

11. Security Considerations

 An attacker with the ability to insert or remove messages on the
 connection would have the ability to disrupt rate control. This
 could make the algorithm to produce either a sending rate under-
 utilizing the bottleneck link capacity, or a too high sending rate
 causing network congestion.

 In this case, the control information is carried inside RTP, and can
 be protected against modification or message insertion using SRTP,
 just as for the media. Given that timestamps are carried in the RTP
 header, which is not encrypted, this is not protected against
 disclosure, but it seems hard to mount an attack based on timing
 information only.

12. Acknowledgements

 Thanks to Randell Jesup, Magnus Westerlund, Varun Singh, Tim Panton,
 Soo-Hyun Choo, Jim Gettys, Ingemar Johansson, Michael Welzl and
 others for providing valuable feedback on earlier versions of this
 draft.

Holmer, et al. Expires January 9, 2017 [Page 15]

Internet-Draft Congestion Control for RTCWEB July 2016

13. References

13.1. Normative References

 [I-D.alvestrand-rmcat-remb]
 Alvestrand, H., "RTCP message for Receiver Estimated
 Maximum Bitrate", draft-alvestrand-rmcat-remb-03 (work in
 progress), October 2013.

 [I-D.holmer-rmcat-transport-wide-cc-extensions]
 Holmer, S., Flodman, M., and E. Sprang, "RTP Extensions
 for Transport-wide Congestion Control", draft-holmer-
 rmcat-transport-wide-cc-extensions-00 (work in progress),
 March 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [abs-send-time]
 "RTP Header Extension for Absolute Sender Time",
 <http://www.webrtc.org/experiments/rtp-hdrext/
 abs-send-time>.

13.2. Informative References

 [Pv13] De Cicco, L., Carlucci, G., and S. Mascolo, "Understanding
 the Dynamic Behaviour of the Google Congestion Control",
 Packet Video Workshop , December 2013.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41, RFC
 2914, September 2000.

Appendix A. Change log

A.1. Version -00 to -01

 o Added change log

 o Added appendix outlining new extensions

 o Added a section on when to send feedback to the end of section 3.3
 "Rate control", and defined min/max FB intervals.

Holmer, et al. Expires January 9, 2017 [Page 16]

Internet-Draft Congestion Control for RTCWEB July 2016

 o Added size of over-bandwidth estimate usage to "further work"
 section.

 o Added startup considerations to "further work" section.

 o Added sender-delay considerations to "further work" section.

 o Filled in acknowledgments section from mailing list discussion.

A.2. Version -01 to -02

 o Defined the term "frame", incorporating the transmission time
 offset into its definition, and removed references to "video
 frame".

 o Referred to "m(i)" from the text to make the derivation clearer.

 o Made it clearer that we modify our estimates of available
 bandwidth, and not the true available bandwidth.

 o Removed the appendixes outlining new extensions, added pointers to
 REMB draft and RFC 5450.

A.3. Version -02 to -03

 o Added a section on how to process multiple streams in a single
 estimator using RTP timestamps to NTP time conversion.

 o Stated in introduction that the draft is aimed at the RMCAT
 working group.

A.4. rtcweb-03 to rmcat-00

 Renamed draft to link the draft name to the RMCAT WG.

A.5. rmcat -00 to -01

 Spellcheck. Otherwise no changes, this is a "keepalive" release.

A.6. rmcat -01 to -02

 o Added Luca De Cicco and Saverio Mascolo as authors.

 o Extended the "Over-use detector" section with new technical
 details on how to dynamically tune the offset del_var_th for
 improved fairness properties.

Holmer, et al. Expires January 9, 2017 [Page 17]

Internet-Draft Congestion Control for RTCWEB July 2016

 o Added reference to a paper analyzing the behavior of the proposed
 algorithm.

A.7. rmcat -02 to -03

 o Swapped receiver-side/sender-side controller with delay-based/
 loss-based controller as there is no longer a requirement to run
 the delay-based controller on the receiver-side.

 o Removed the discussion about multiple streams and transmission
 time offsets.

 o Introduced a new section about "Feedback and extensions".

 o Improvements to the threshold adaptation in the "Over-use
 detector" section.

 o Swapped the previous MIMD rate control algorithm for a new AIMD
 rate control algorithm.

A.8. ietf-rmcat -00 to ietf-rmcat -01

 o Arrival-time filter converted from a two dimensional Kalman filter
 to a scalar Kalman filter.

 o The use of the TFRC equation was removed from the loss-based
 controller, as it turned out to have little to no effect in
 practice.

A.9. ietf-rmcat -01 to ietf-rmcat -02

 o Added a section which better describes the pre-filtering
 algorithm.

Authors’ Addresses

 Stefan Holmer
 Google
 Kungsbron 2
 Stockholm 11122
 Sweden

 Email: holmer@google.com

Holmer, et al. Expires January 9, 2017 [Page 18]

Internet-Draft Congestion Control for RTCWEB July 2016

 Henrik Lundin
 Google
 Kungsbron 2
 Stockholm 11122
 Sweden

 Email: hlundin@google.com

 Gaetano Carlucci
 Politecnico di Bari
 Via Orabona, 4
 Bari 70125
 Italy

 Email: gaetano.carlucci@poliba.it

 Luca De Cicco
 Politecnico di Bari
 Via Orabona, 4
 Bari 70125
 Italy

 Email: l.decicco@poliba.it

 Saverio Mascolo
 Politecnico di Bari
 Via Orabona, 4
 Bari 70125
 Italy

 Email: mascolo@poliba.it

Holmer, et al. Expires January 9, 2017 [Page 19]

