
Operations T. Dahm
Internet-Draft A. Ota
Intended status: Informational Google Inc
Expires: December 22, 2016 D. Medway Gash
 Cisco Systems, Inc.
 D. Carrel
 vIPtela, Inc.
 L. Grant
 June 20, 2016

 The TACACS+ Protocol
 draft-ietf-opsawg-tacacs-03

Abstract

 TACACS+ provides Device Administration for routers, network access
 servers and other networked computing devices via one or more
 centralized servers. This document describes the protocol that is
 used by TACACS+.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Dahm, et al. Expires December 22, 2016 [Page 1]

Internet-Draft The TACACS+ Protocol June 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 3
 2. Technical Definitions . 4
 3. TACACS+ Connections and Sessions 5
 3.1. Connection . 5
 3.1.1. Security Considerations 6
 3.2. Session . 6
 3.3. Single Connect Mode 6
 3.4. The TACACS+ Packet Header 7
 3.5. The TACACS+ Packet Body 9
 3.6. Encryption . 9
 3.6.1. Body Encryption 9
 4. Authentication . 11
 4.1. The Authentication START Packet Body 11
 4.2. The Authentication REPLY Packet Body 13
 4.3. The Authentication CONTINUE Packet Body 15
 4.4. Description of Authentication Process 15
 4.4.1. Version Behaviour 16
 4.4.2. Common Authentication Flows 17
 4.4.3. Aborting an Authentication Session 20
 5. Authorization . 21
 5.1. The Authorization REQUEST Packet Body 21
 5.2. The Authorization RESPONSE Packet Body 24
 6. Accounting . 26
 6.1. The Account REQUEST Packet Body 26
 6.2. The Accounting REPLY Packet Body 27
 7. Attribute-Value Pairs . 29
 7.1. Authorization Attributes 30
 7.2. Accounting Attributes 32
 8. Privilege Levels . 34

Dahm, et al. Expires December 22, 2016 [Page 2]

Internet-Draft The TACACS+ Protocol June 2016

 9. References . 35
 Authors’ Addresses . 35

1. Introduction

 Terminal Access Controller Access-Control System Plus (TACACS+) was
 originally conceived as a general Authentication, Authorization and
 Accounting protocol. It is primarily used today for Device
 Administration: authenticating access to network devices, providing
 central authorization of operations, and audit of those operations.

 A wide range of TACACS+ clients and servers are already deployed in
 the field. The TACACS+ protocol they are based on is defined in a
 draft document that was originally intended for IETF publication.
 This document is known as ‘The Draft’ [TheDraft] .

 It is intended that all implementations which conform to this
 document will conform to ‘The Draft’. However, the following
 specific adjustments of the protocol specification from ’The Draft’
 should be noted:

 This document officially removes SENDPASS for security reasons.

 The normative description of Legacy features such as ARAP and
 outbound authentication have been removed, however the required
 enumerations are kept.

 Usernames and passwords are specifically mentioned as being
 encoded in UTF-8 rather than plain US-ASCII. US-ASCII text is
 valid UTF-8, and specification of UTF-8 specifically for username
 and password fields enhances interoperability with external
 identity systems.

 The TACACS+ protocol separates the functions of Authentication,
 Authorization and Accounting. It allows for arbitrary length and
 content authentication exchanges, which will support any
 authentication mechanism to be utilized with TACACS+ clients. It is
 extensible to provide for site customization and future development
 features, and it uses TCP to ensure reliable delivery. The protocol
 allows the TACACS+ client to request very fine-grained access control
 and allows the server to respond to each component of that request.

 The separation of authentication, authorization and accounting is a
 fundamental component of the design of TACACS+. The distinction
 between them is very important so this document will address each one
 separately. It is important to note that TACACS+ provides for all
 three, but an implementation or configuration is not required to

Dahm, et al. Expires December 22, 2016 [Page 3]

Internet-Draft The TACACS+ Protocol June 2016

 employ all three. Each one serves a unique purpose that alone is
 useful, and together can be quite powerful.

 This document restricts itself to a description of the protocol that
 is used by TACACS+. It does not cover deployment or best practices.

2. Technical Definitions

 This section provides a few basic definitions that are applicable to
 this document

 Authentication

 Authentication is the action of determining who a user (or entity)
 is. Authentication can take many forms. Traditional authentication
 utilizes a name and a fixed password. However, fixed passwords have
 limitations, mainly in the area of security. Many modern
 authentication mechanisms utilize "one-time" passwords or a
 challenge-response query. TACACS+ is designed to support all of
 these, and should be powerful enough to handle any future mechanisms.
 Authentication generally takes place when the user first logs in to a
 machine or requests a service of it.

 Authentication is not mandatory; it is a site-configured option.
 Some sites do not require it. Others require it only for certain
 services (see authorization below). Authentication may also take
 place when a user attempts to gain extra privileges, and must
 identify himself or herself as someone who possesses the required
 information (passwords, etc.) for those privileges.

 Authorization

 It is important to distinguish Authorization from Authentication.
 Authorization is the action of determining what a user is allowed to
 do. Generally authentication precedes authorization, but again, this
 is not required. An authorization request may indicate that the user
 is not authenticated (we don’t know who they are). In this case it
 is up to the authorization agent to determine if an unauthenticated
 user is allowed the services in question.

 In TACACS+, authorization does not merely provide yes or no answers,
 but it may also customize the service for the particular user.
 Examples of when authorization would be performed are: When a user
 first logs in and wants to start a shell, or when a user starts PPP
 and wants to use IP over PPP with a particular IP address. The
 TACACS+ server might respond to these requests by allowing the
 service, but placing a time restriction on the login shell, or by

Dahm, et al. Expires December 22, 2016 [Page 4]

Internet-Draft The TACACS+ Protocol June 2016

 requiring IP access lists on the PPP connection. For a list of
 authorization attributes, see the authorization section (Section 5) .

 Accounting

 Accounting is typically the third action after authentication and
 authorization. But again, neither authentication nor authorization
 is required. Accounting is the action of recording what a user is
 doing, and/or has done. Accounting in TACACS+ can serve two
 purposes: It may be used as an auditing tool for security services.
 It may also be used to account for services used, such as in a
 billing environment. To this end, TACACS+ supports three types of
 accounting records. Start records indicate that a service is about
 to begin. Stop records indicate that a service has just terminated,
 and Update records are intermediate notices that indicate that a
 service is still being performed. TACACS+ accounting records contain
 all the information used in the authorization records, and also
 contain accounting specific information such as start and stop times
 (when appropriate) and resource usage information. A list of
 accounting attributes is defined in the accounting section
 (Section 6) .

 Client

 The client is any device, (often a Network Access Server) that
 provides access services. The clients usually provide a character
 mode front end and then allow the user to telnet or rlogin to another
 host. A client may also support protocol based access services.

 Server

 The server receives TACACS+ protocol requests, and replies according
 to its business model, in accordance with the flows defined in this
 document.

 Packet

 All uses of the word packet in this document refer to TACACS+
 protocol packets unless explicitly noted otherwise.

3. TACACS+ Connections and Sessions

3.1. Connection

 TACACS+ uses TCP for its transport. Server port 49 is allocated for
 TACACS+ traffic.

Dahm, et al. Expires December 22, 2016 [Page 5]

Internet-Draft The TACACS+ Protocol June 2016

3.1.1. Security Considerations

 The protocol includes an obfuscation mechanism referred to in the
 original draft as Body Encryption. It is intended to follow up this
 document with enhancements to TACACS+ security.

 It is recommended to separate the management traffic from the regular
 network access traffic, and to use Body Encryption in production
 environments.

3.2. Session

 The concept of a session is used throughout this document. A TACACS+
 session is a single authentication sequence, a single authorization
 exchange, or a single accounting exchange.

 An accounting and authorization session will consist of a single pair
 of packets (the request and its reply). An authentication session
 may involve an arbitrary number of packets being exchanged. The
 session is an operational concept that is maintained between the
 TACACS+ client and server. It does not necessarily correspond to a
 given user or user action.

3.3. Single Connect Mode

 The packet header (see below) contains a flag to allow sessions to be
 multiplexed on a connection.

 If a client sets this flag, this indicates that it supports
 multiplexing TACACS+ sessions over a single TCP connection. The
 client MUST NOT send a second packet on a connection until single-
 connect status has been established.

 If the server sets this flag in the first reply packet in response to
 the first packet from a client, this indicates its willingness to
 support single-connection over the current connection. The server
 may set this flag even if the client does not set it, but the client
 is under no obligation to honor it.

 The flag is only relevant for the first two packets on a connection,
 to allow the client and server to establish single connection mode.
 The flag MUST be ignored after these two packets since the single-
 connect status of a connection, once established, must not be
 changed. The connection must instead be closed and a new connection
 opened, if required.

 When single-connect status is established, multiple sessions MUST be
 allowed simultaneously and/or consecutively on a single TCP

Dahm, et al. Expires December 22, 2016 [Page 6]

Internet-Draft The TACACS+ Protocol June 2016

 connection. If single-connect status has not been established in the
 first two packets of a TCP connection, then the connection must be
 closed at the end of the first session.

3.4. The TACACS+ Packet Header

 All TACACS+ packets begin with the following 12 byte header. The
 header describes the remainder of the packet:

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 |major | minor | | | |
 |version| version| type | seq_no | flags |
 +----------------+----------------+----------------+----------------+
 | |
 | session_id |
 +----------------+----------------+----------------+----------------+
 | |
 | length |
 +----------------+----------------+----------------+----------------+

 major_version

 This is the major TACACS+ version number.

 TAC_PLUS_MAJOR_VER := 0xc

 minor_version

 The minor TACACS+ version number.

 TAC_PLUS_MINOR_VER_DEFAULT := 0x0

 TAC_PLUS_MINOR_VER_ONE := 0x1

 type

 This is the packet type. Legal values are:

 TAC_PLUS_AUTHEN := 0x01 (Authentication)

 TAC_PLUS_AUTHOR := 0x02 (Authorization)

 TAC_PLUS_ACCT := 0x03 (Accounting)

 seq_no

Dahm, et al. Expires December 22, 2016 [Page 7]

Internet-Draft The TACACS+ Protocol June 2016

 This is the sequence number of the current packet for the current
 session. The first packet in a session MUST have the sequence number
 1 and each subsequent packet will increment the sequence number by
 one. Thus clients only send packets containing odd sequence numbers,
 and TACACS+ servers only send packets containing even sequence
 numbers.

 The sequence number must never wrap i.e. if the sequence number 2^8-1
 is ever reached, that session must terminate and be restarted with a
 sequence number of 1.

 flags

 This field contains various bitmapped flags.

 The unencrypted flag bit says whether encryption is being used on the
 body of the packet (the entire portion after the header).

 TAC_PLUS_UNENCRYPTED_FLAG := 0x01

 If this flag is set, then body encryption is not used. If this flag
 is cleared, the packet is encrypted. Unencrypted packets are
 intended for testing, and are not recommended for normal use.

 The single-connection flag:

 TAC_PLUS_SINGLE_CONNECT_FLAG := 0x04

 This flag is used to allow a client and server to agree whether
 multiple sessions may be multiplexed onto a single connection.

 session_id

 The Id for this TACACS+ session. The session id should be randomly
 chosen. This field does not change for the duration of the TACACS+
 session. (If this value is not a cryptographically strong random
 number, it will compromise the protocol’s security, see RFC 1750
 [RFC1750])

 length

 The total length of the packet body (not including the header). This
 value is in network byte order. Packets are never padded beyond this
 length.

Dahm, et al. Expires December 22, 2016 [Page 8]

Internet-Draft The TACACS+ Protocol June 2016

3.5. The TACACS+ Packet Body

 The TACACS+ body types are defined in the packet header. The
 remainder of this document will address the contents of the different
 TACACS+ bodies. The following general rules apply to all TACACS+
 body types:

 - Any variable length data fields which are unused MUST have a
 length value equal to zero.

 - Unused fixed length fields SHOULD have values of zero.

 - All data and message fields in a packet MUST NOT be null
 terminated.

 - All length values are unsigned and in network byte order.

 - There should be no padding in any of the fields or at the end of
 a packet.

3.6. Encryption

3.6.1. Body Encryption

 The body of packets may be encrypted. The following sections
 describe the encryption mechanism that is supported to enable
 backwards compatibility with ’The Draft’.

 When the encryption mechanism relies on a secret key, it is referring
 to a shared secret value that is known to both the client and the
 server. This document does not discuss the management and storage of
 those keys. It is an implementation detail of the server and client,
 as to whether they will maintain only one key, or a different key for
 each client or server with which they communicate. For security
 reasons, the latter options should be available, but it is a site
 dependent decision as to whether the use of separate keys is
 appropriate.

 The encrypted flag field may be set as follows:

 TAC_PLUS_UNENCRYPTED_FLAG == 0x0

 In this case, the packet body is encrypted by XOR-ing it byte-wise
 with a pseudo random pad.

 ENCRYPTED {data} == data ^ pseudo_pad

Dahm, et al. Expires December 22, 2016 [Page 9]

Internet-Draft The TACACS+ Protocol June 2016

 The pad is generated by concatenating a series of MD5 hashes (each 16
 bytes long) and truncating it to the length of the input data.

 Whenever used in this document, MD5 refers to the "RSA Data Security,
 Inc. MD5 Message-Digest Algorithm" as specified in RFC 1321 [RFC1321]
 .

 pseudo_pad = {MD5_1 [,MD5_2 [... ,MD5_n]]} truncated to len(data)

 The first MD5 hash is generated by concatenating the session_id, the
 secret key, the version number and the sequence number and then
 running MD5 over that stream. All of those input values are
 available in the packet header, except for the secret key which is a
 shared secret between the TACACS+ client and server.

 The version number is the one byte concatenation of the major and
 minor version numbers.

 The session id is used in network byte order.

 Subsequent hashes are generated by using the same input stream, but
 concatenating the previous hash value at the end of the input stream.

 MD5_1 = MD5{session_id, key, version, seq_no} MD5_2 = MD5{session_id,
 key, version, seq_no, MD5_1} MD5_n = MD5{session_id, key,
 version, seq_no, MD5_n-1}

 When a server detects that the secret(s) it has configured for the
 device mismatch, it MUST return ERROR. The handling of the TCP
 connection by the server is implementation independent.

 TAC_PLUS_UNENCRYPTED_FLAG == 0x1

 In this case, the entire packet body is in cleartext. Encryption and
 decryption are null operations. This method should only be used for
 debugging. It does not provide data protection or authentication and
 is highly susceptible to packet spoofing. Implementing this
 encryption method is optional.

 NOTE: Implementations should take care not to skip decryption simply
 because an incoming packet indicates that it is not encrypted. If
 the unencrypted flag is not set, and the packet is not encrypted, it
 must be dropped.

 After a packet body is decrypted, the lengths of the component values
 in the packet should be summed and checked against the cleartext
 datalength value from the header. Any packets which fail this check
 should be discarded and an error signalled. Commonly such failures

Dahm, et al. Expires December 22, 2016 [Page 10]

Internet-Draft The TACACS+ Protocol June 2016

 may be expected to be seen when there are mismatched keys between the
 client and the TACACS+ server.

 If an error must be declared but the type of the incoming packet
 cannot be determined, a packet with the identical cleartext header
 but with a sequence number incremented by one and the length set to
 zero MUST be returned to indicate an error.

4. Authentication

4.1. The Authentication START Packet Body

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 | action | priv_lvl | authen_type | authen_service |
 +----------------+----------------+----------------+----------------+
 | user len | port len | rem_addr len | data len |
 +----------------+----------------+----------------+----------------+
 | user ...
 +----------------+----------------+----------------+----------------+
 | port ...
 +----------------+----------------+----------------+----------------+
 | rem_addr ...
 +----------------+----------------+----------------+----------------+
 | data...
 +----------------+----------------+----------------+----------------+

 Packet fields are as follows:

 action

 This describes the authentication action to be performed. Legal
 values are:

 TAC_PLUS_AUTHEN_LOGIN := 0x01

 TAC_PLUS_AUTHEN_CHPASS := 0x02

 TAC_PLUS_AUTHEN_SENDAUTH := 0x04

 priv_lvl

 This indicates the privilege level that the user is authenticating
 as. Please refer to the Privilege Level section (Section 8) below.

 authen_type

Dahm, et al. Expires December 22, 2016 [Page 11]

Internet-Draft The TACACS+ Protocol June 2016

 The type of authentication that is being performed. Legal values
 are:

 TAC_PLUS_AUTHEN_TYPE_ASCII := 0x01

 TAC_PLUS_AUTHEN_TYPE_PAP := 0x02

 TAC_PLUS_AUTHEN_TYPE_CHAP := 0x03

 TAC_PLUS_AUTHEN_TYPE_ARAP := 0x04 (deprecated)

 TAC_PLUS_AUTHEN_TYPE_MSCHAP := 0x05

 TAC_PLUS_AUTHEN_TYPE_MSCHAPV2 := 0x06

 authen_service

 This is the service that is requesting the authentication. Legal
 values are:

 TAC_PLUS_AUTHEN_SVC_NONE := 0x00

 TAC_PLUS_AUTHEN_SVC_LOGIN := 0x01

 TAC_PLUS_AUTHEN_SVC_ENABLE := 0x02

 TAC_PLUS_AUTHEN_SVC_PPP := 0x03

 TAC_PLUS_AUTHEN_SVC_ARAP := 0x04

 TAC_PLUS_AUTHEN_SVC_PT := 0x05

 TAC_PLUS_AUTHEN_SVC_RCMD := 0x06

 TAC_PLUS_AUTHEN_SVC_X25 := 0x07

 TAC_PLUS_AUTHEN_SVC_NASI := 0x08

 TAC_PLUS_AUTHEN_SVC_FWPROXY := 0x09

 The TAC_PLUS_AUTHEN_SVC_NONE option is intended for the authorization
 application of this field that indicates that no authentication was
 performed by the device.

 The TAC_PLUS_AUTHEN_SVC_LOGIN option is identifies regular login (as
 opposed to ENABLE) to a client device.

Dahm, et al. Expires December 22, 2016 [Page 12]

Internet-Draft The TACACS+ Protocol June 2016

 The TAC_PLUS_AUTHEN_SVC_ENABLE option identifies the ENABLE service,
 which refers to a service requesting authentication in order to grant
 the user different privileges. This is comparable to the Unix
 "su(1)" command. A service value of NONE should only be used when
 none of the other service values are appropriate. ENABLE may be
 requested independently, no requirements for previous authentications
 or authorizations are imposed by the protocol.

 Other options are included for legacy/backwards compatibility.

 user

 The username. It is encoded in [UTF-8]. It is optional in this
 packet, depending upon the class of authentication.

 port

 The US-ASCII name of the client port on which the authentication is
 taking place. The value of this field is client specific. (For
 example, Cisco uses "tty10" to denote the tenth tty line and
 "Async10" to denote the tenth async interface).

 rem_addr

 An US-ASCII string this is a "best effort" description of the remote
 location from which the user has connected to the client. It is
 intended to hold a network address if the user is connected via a
 network, a caller ID is the user is connected via ISDN or a POTS, or
 any other remote location information that is available. This field
 is optional (since the information may not be available).

 data

 This field is used to send data appropriate for the action and
 authen_type. It is described in more detail in the section Common
 Authentication flows (Section 4.4.2) .

4.2. The Authentication REPLY Packet Body

 The TACACS+ server sends only one type of authentication packet (a
 REPLY packet) to the client. The REPLY packet body looks as follows:

Dahm, et al. Expires December 22, 2016 [Page 13]

Internet-Draft The TACACS+ Protocol June 2016

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 | status | flags | server_msg len |
 +----------------+----------------+----------------+----------------+
 | data len | server_msg ...
 +----------------+----------------+----------------+----------------+
 | data ...
 +----------------+----------------+

 status

 The current status of the authentication. Legal values are:

 TAC_PLUS_AUTHEN_STATUS_PASS := 0x01

 TAC_PLUS_AUTHEN_STATUS_FAIL := 0x02

 TAC_PLUS_AUTHEN_STATUS_GETDATA := 0x03

 TAC_PLUS_AUTHEN_STATUS_GETUSER := 0x04

 TAC_PLUS_AUTHEN_STATUS_GETPASS := 0x05

 TAC_PLUS_AUTHEN_STATUS_RESTART := 0x06

 TAC_PLUS_AUTHEN_STATUS_ERROR := 0x07

 TAC_PLUS_AUTHEN_STATUS_FOLLOW := 0x21

 flags

 Bitmapped flags that modify the action to be taken. The following
 values are defined:

 TAC_PLUS_REPLY_FLAG_NOECHO := 0x01

 server_msg

 c A message to be displayed to the user. This field is optional. If
 it exists, it is intended to be presented to the user. US-ASCII
 charset must be used.

 data

 This field holds data that is a part of the authentication exchange
 and is intended for the client, not the user. It is described in
 more detail in the section Common Authentication flows
 (Section 4.4.2) .

Dahm, et al. Expires December 22, 2016 [Page 14]

Internet-Draft The TACACS+ Protocol June 2016

4.3. The Authentication CONTINUE Packet Body

 This packet is sent from the client to the server following the
 receipt of a REPLY packet.

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 | user_msg len | data len |
 +----------------+----------------+----------------+----------------+
 | flags | user_msg ...
 +----------------+----------------+----------------+----------------+
 | data ...
 +----------------+

 user_msg

 This field is the string that the user entered, or the client
 provided on behalf of the user, in response to the server_msg from a
 REPLY packet.

 data

 This field carries information that is specific to the action and the
 authen_type for this session. Valid uses of this field are described
 below.

 flags

 This holds the bitmapped flags that modify the action to be taken.
 The following values are defined:

 TAC_PLUS_CONTINUE_FLAG_ABORT := 0x01

4.4. Description of Authentication Process

 The action, authen_type and service fields (described above) combine
 to determine what kind of authentication is to be performed Every
 authentication START, REPLY and CONTINUE packet includes a data
 field. The use of this field is dependent upon the kind of the
 Authentication.

 A set of standard kinds of authentication is defined in this
 document. Each authentication flow consists of a START packet. The
 server responds either with a request for more information (GETDATA,
 GETUSER or GETPASS) or a termination (PASS or FAIL). The actions and
 meanings when the server sends a RESTART, ERROR or FOLLOW are common
 and are described further below.

Dahm, et al. Expires December 22, 2016 [Page 15]

Internet-Draft The TACACS+ Protocol June 2016

 When the REPLY status equals TAC_PLUS_AUTHEN_STATUS_GETDATA,
 TAC_PLUS_AUTHEN_STATUS_GETUSER or TAC_PLUS_AUTHEN_STATUS_GETPASS,
 then authentication continues and the SHOULD provide server_msg
 content for the client to prompt the user for more information. The
 client MUST then return a CONTINUE packet containing the requested
 information in the user_msg field.

 All three cause the same action to be performed, but the use of
 TAC_PLUS_AUTHEN_STATUS_GETUSER, indicates to the client that the user
 response will be interpreted as a username, and for
 TAC_PLUS_AUTHEN_STATUS_GETPASS, that the user response represents
 will be interpreted as a password. TAC_PLUS_AUTHEN_STATUS_GETDATA is
 the generic request for more information to flexibly support future
 requirements. If the TAC_PLUS_REPLY_FLAG_NOECHO flag is set in the
 REPLY, then the user response must not be echoed as it is entered.
 The data field is only used in the REPLY where explicitly defined
 below.

4.4.1. Version Behaviour

 The TACACS+ protocol is versioned to allow revisions while
 maintaining backwards compatibility. The version number is in every
 packet header. The changes between minor_version 0 and 1 apply only
 to the authentication process, and all deal with the way that CHAP
 and PAP authentications are handled. minor_version 1 may only be used
 for authentication kinds that explicitly call for it in the table
 below:

 LOGIN CHPASS SENDAUTH
 ASCII v0 v0 -
 PAP v1 - v1
 CHAP v1 - v1
 MS-CHAPv1/2 v1 - v1

 The ’-’ symbol represents that the option is not valid.

 When a server receives a packet with a minor_version that it does not
 support, it should return an ERROR status with the minor_version set
 to the closest supported value.

 In minor_version 0, Inbound PAP performed a normal LOGIN, sending the
 username in the START packet and then waiting for a GETPASS and
 sending the password in a CONTINUE packet.

 In minor_version 1, CHAP and inbound PAP use LOGIN to perform inbound
 authentication and the exchanges use the data field so that the
 client only sends a single START packet and expects to receive a PASS

Dahm, et al. Expires December 22, 2016 [Page 16]

Internet-Draft The TACACS+ Protocol June 2016

 or FAIL. SENDAUTH is only used for PPP when performing outbound
 authentication.

 NOTE: Only those requests which have changed from their minor_version
 0 implementation (i.e. CHAP, MS-CHAP and PAP authentications) should
 use the new minor_version number of 1. All other requests (i.e. all
 authorisation and accounting and ASCII authentication) MUST continue
 to use the same minor_version number of 0. The removal of SENDPASS
 was prompted by security concerns, and is no longer considered part
 of the TACACS+ protocol.

4.4.2. Common Authentication Flows

 This section describes common authentication flows. If the options
 are implemented, they MUST follow the description. If the server
 does not implement an option, it should respond with
 TAC_PLUS_AUTHEN_STATUS_ERROR.

 Inbound ASCII Login

 action = TAC_PLUS_AUTHEN_LOGIN
 authen_type = TAC_PLUS_AUTHEN_TYPE_ASCII
 minor_version = 0x0

 This is a standard ASCII authentication. The START packet may
 contain the username, but need not do so. The data fields in both
 the START and CONTINUE packets are not used for ASCII logins. There
 is a single START followed by zero or more pairs of REPLYs and
 CONTINUEs, followed by a terminating REPLY (PASS or FAIL).

 Inbound PAP Login

 action = TAC_PLUS_AUTHEN_LOGIN
 authen_type = TAC_PLUS_AUTHEN_TYPE_PAP
 minor_version = 0x1

 The entire exchange MUST consist of a single START packet and a
 single REPLY. The START packet MUST contain a username and the data
 field MUST contain the PAP ASCII password. A PAP authentication only
 consists of a username and password RFC 1334 [RFC1334] . The REPLY
 from the server MUST be either a PASS or FAIL.

 Inbound CHAP login

Dahm, et al. Expires December 22, 2016 [Page 17]

Internet-Draft The TACACS+ Protocol June 2016

 action = TAC_PLUS_AUTHEN_LOGIN
 authen_type = TAC_PLUS_AUTHEN_TYPE_CHAP
 minor_version = 0x1

 The entire exchange MUST consist of a single START packet and a
 single REPLY. The START packet MUST contain the username in the user
 field and the data field will be a concatenation of the PPP id, the
 challenge and the response.

 The length of the challenge value can be determined from the length
 of the data field minus the length of the id (always 1 octet) and the
 length of the response field (always 16 octets).

 To perform the authentication, the server will run MD5 over the id,
 the user’s secret and the challenge, as defined in the PPP
 Authentication RFC RFC 1334 [RFC1334] and then compare that value
 with the response. The REPLY from the server MUST be a PASS or FAIL.

 Inbound MS-CHAP v1 login

 action = TAC_PLUS_AUTHEN_LOGIN
 authen_type = TAC_PLUS_AUTHEN_TYPE_MSCHAP
 minor_version = 0x1

 The entire exchange MUST consist of a single START packet and a
 single REPLY. The START packet MUST contain the username in the user
 field and the data field will be a concatenation of the PPP id, the
 MS-CHAP challenge and the MS-CHAP response.

 The length of the challenge value can be determined from the length
 of the data field minus the length of the id (always 1 octet) and the
 length of the response field (always 49 octets).

 To perform the authentication, the server will use a combination of
 MD4 and DES on the user’s secret and the challenge, as defined in RFC
 2433 [RFC2433] and then compare the resulting value with the
 response. The REPLY from the server MUST be a PASS or FAIL.

 For best practices, please refer to RFC 2433 [RFC2433]

 Inbound MS-CHAP v2 login

 action = TAC_PLUS_AUTHEN_LOGIN
 authen_type = TAC_PLUS_AUTHEN_TYPE_MSCHAPV2
 minor_version = 0x1

Dahm, et al. Expires December 22, 2016 [Page 18]

Internet-Draft The TACACS+ Protocol June 2016

 The entire exchange MUST consist of a single START packet and a
 single REPLY. The START packet MUST contain the username in the user
 field and the data field will be a concatenation of the PPP id, the
 MS-CHAP challenge and the MS-CHAP response.

 The length of the challenge value can be determined from the length
 of the data field minus the length of the id (always 1 octet) and the
 length of the response field (always 49 octets).

 To perform the authentication, the server will use a the algorithm
 specified RFC2759 [RFC2759] on the user’s secret and challenge and
 then compare the resulting value with the response. The REPLY from
 the server MUST be a PASS or FAIL.

 For best practices for MS-CHAP v2, please refer to RFC2759 [RFC2759]

 Enable Requests

 action = TAC_PLUS_AUTHEN_LOGIN
 priv_lvl = implementation dependent
 authen_type = not used
 service = TAC_PLUS_AUTHEN_SVC_ENABLE

 This is an ENABLE request, used to change the current running
 privilege level of a principal. The exchange MAY consist of multiple
 messages while the server collects the information it requires in
 order to allow changing the principal’s privilege level. This
 exchange is very similar to an Inbound ASCII login.

 In order to readily distinguish enable requests from other types of
 request, the value of the service field MUST be set to
 TAC_PLUS_AUTHEN_SVC_ENABLE when requesting an ENABLE. It MUST NOT be
 set to this value when requesting any other operation.

 ASCII change password request

 action = TAC_PLUS_AUTHEN_CHPASS
 authen_type = TAC_PLUS_AUTHEN_TYPE_ASCII

 This exchange consists of multiple messages while the server collects
 the information it requires in order to change the user’s password.
 It is very similar to an ASCII login. The status value
 TAC_PLUS_AUTHEN_STATUS_GETPASS MUST only be used when requesting the
 "new" password. It MAY be sent multiple times. When requesting the
 "old" password, the status value MUST be set to
 TAC_PLUS_AUTHEN_STATUS_GETDATA.

Dahm, et al. Expires December 22, 2016 [Page 19]

Internet-Draft The TACACS+ Protocol June 2016

4.4.3. Aborting an Authentication Session

 The client may prematurely terminate a session by setting the
 TAC_PLUS_CONTINUE_FLAG_ABORT flag in the CONTINUE message. If this
 flag is set, the data portion of the message may contain an ASCII
 message explaining the reason for the abort. The session is
 terminated and no REPLY message is sent.

 There are three other possible return status values that can be used
 in a REPLY packet. These can be sent regardless of the action or
 authen_type. Each of these indicates that the TACACS+ authentication
 session should be terminated. In each case, the server_msg may
 contain a message to be displayed to the user.

 When the status equals TAC_PLUS_AUTHEN_STATUS_FOLLOW the packet
 indicates that the TACACS+ server requests that authentication should
 be performed with an alternate server. The data field MUST contain
 ASCII text describing one or more servers. A server description
 appears like this:

 [@<protocol>@]<host>>[@<key>]

 If more than one host is specified, they MUST be separated into rows
 by an ASCII Carriage Return (0x0D).

 The protocol and key are optional, and apply only to host in the same
 row. The protocol can describe an alternate way of performing the
 authentication, other than TACACS+. If the protocol is not present,
 then TACACS+ is assumed.

 Protocols are ASCII numbers corresponding to the methods listed in
 the authen_method field of authorization packets (defined below).
 The host is specified as either a fully qualified domain name, or an
 ASCII numeric IPV4 address specified as octets separated by dots
 (‘.’), or IPV6

 If a key is supplied, the client MAY use the key in order to
 authenticate to that host. The client may use a preconfigured key
 for the host if it has one. If not then the client may communicate
 with the host using unencrypted option.

 Use of the hosts in a TAC_PLUS_AUTHEN_STATUS_FOLLOW packet is at the
 discretion of the TACACS+ client. It may choose to use any one, all
 or none of these hosts. If it chooses to use none, then it MUST
 treat the authentication as if the return status was
 TAC_PLUS_AUTHEN_STATUS_FAIL.

Dahm, et al. Expires December 22, 2016 [Page 20]

Internet-Draft The TACACS+ Protocol June 2016

 While the order of hosts in this packet indicates a preference, but
 the client is not obliged to use that ordering.

 If the status equals TAC_PLUS_AUTHEN_STATUS_ERROR, then the host is
 indicating that it is experiencing an unrecoverable error and the
 authentication should proceed as if that host could not be contacted.
 The data field may contain a message to be printed on an
 administrative console or log.

 If the status equals TAC_PLUS_AUTHEN_STATUS_RESTART, then the
 authentication sequence should be restarted with a new START packet
 from the client. This REPLY packet indicates that the current
 authen_type value (as specified in the START packet) is not
 acceptable for this session, but that others may be.

 If a client chooses not to accept the TAC_PLUS_AUTHEN_STATUS_RESTART
 packet, then it should be TREATED as if the status was
 TAC_PLUS_AUTHEN_STATUS_FAIL.

5. Authorization

 This part of the TACACS+ protocol provides an extensible way of
 providing remote authorization services. An authorization session is
 defined as a single pair of messages, a REQUEST followed by a
 RESPONSE.

 The authorization REQUEST message contains a fixed set of fields that
 indicate how the user was authenticated or processed and a variable
 set of arguments that describe the services and options for which
 authorization is requested.

 The RESPONSE contains a variable set of response arguments
 (attribute-value pairs) that can restrict or modify the clients
 actions.

 The arguments in both a REQUEST and a RESPONSE can be specified as
 either mandatory or optional. An optional argument is one that may
 or may not be used, modified or even understood by the recipient.

 A mandatory argument MUST be both understood and used. This allows
 for extending the attribute list while providing secure backwards
 compatibility.

5.1. The Authorization REQUEST Packet Body

Dahm, et al. Expires December 22, 2016 [Page 21]

Internet-Draft The TACACS+ Protocol June 2016

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 | authen_method | priv_lvl | authen_type | authen_service |
 +----------------+----------------+----------------+----------------+
 | user len | port len | rem_addr len | arg_cnt |
 +----------------+----------------+----------------+----------------+
 | arg 1 len | arg 2 len | ... | arg N len |
 +----------------+----------------+----------------+----------------+
 | user ...
 +----------------+----------------+----------------+----------------+
 | port ...
 +----------------+----------------+----------------+----------------+
 | rem_addr ...
 +----------------+----------------+----------------+----------------+
 | arg 1 ...
 +----------------+----------------+----------------+----------------+
 | arg 2 ...
 +----------------+----------------+----------------+----------------+
 | ...
 +----------------+----------------+----------------+----------------+
 | arg N ...
 +----------------+----------------+----------------+----------------+

 authen_method

 This indicates the authentication method used by the client to
 acquire the user information.

 TAC_PLUS_AUTHEN_METH_NOT_SET := 0x00

 TAC_PLUS_AUTHEN_METH_NONE := 0x01

 TAC_PLUS_AUTHEN_METH_KRB5 := 0x02

 TAC_PLUS_AUTHEN_METH_LINE := 0x03

 TAC_PLUS_AUTHEN_METH_ENABLE := 0x04

 TAC_PLUS_AUTHEN_METH_LOCAL := 0x05

 TAC_PLUS_AUTHEN_METH_TACACSPLUS := 0x06

 TAC_PLUS_AUTHEN_METH_GUEST := 0x08

 TAC_PLUS_AUTHEN_METH_RADIUS := 0x10

 TAC_PLUS_AUTHEN_METH_KRB4 := 0x11

Dahm, et al. Expires December 22, 2016 [Page 22]

Internet-Draft The TACACS+ Protocol June 2016

 TAC_PLUS_AUTHEN_METH_RCMD := 0x20

 KRB5 and KRB4 are Kerberos version 5 and 4. LINE refers to a fixed
 password associated with the terminal line used to gain access.
 LOCAL is a client local user database. ENABLE is a command that
 authenticates in order to grant new privileges. TACACSPLUS is, of
 course, TACACS+. GUEST is an unqualified guest authentication, such
 as an ARAP guest login. RADIUS is the Radius authentication
 protocol. RCMD refers to authentication provided via the R-command
 protocols from Berkeley Unix. (One should be aware of the security
 limitations to R-command authentication.)

 priv_lvl

 This field is used in the same way as the priv_lvl field in
 authentication request and is described in the Privilege Level
 section (Section 8) below. It indicates the users current privilege
 level.

 authen_type

 This field matches the authen_type field in the authentication
 section (Section 4) above. It indicates the type of authentication
 that was performed. If this information is not available, then the
 client should set authen_type to: TAC_PLUS_AUTHEN_TYPE_NOT_SET :=
 0x00. This value is valid only in authorization and accounting
 requests.

 authen_service

 This field matches the service field in the authentication section
 (Section 4) above. It indicates the service through which the user
 authenticated.

 user

 This field contains the user’s account name.

 port

 This field matches the port field in the authentication section
 (Section 4) above.

 rem_addr

 This field matches the rem_addr field in the authentication section
 (Section 4) above.

Dahm, et al. Expires December 22, 2016 [Page 23]

Internet-Draft The TACACS+ Protocol June 2016

 arg_cnt

 The number of authorization arguments to follow

 arg

 An attribute-value pair that describes the command to be performed.
 (see below)

 The authorization arguments in both the REQUEST and the RESPONSE are
 attribute-value pairs. The attribute and the value are in a single
 US-ASCII string and are separated by either a "=" (0X3D) or a "*"
 (0X2A). The equals sign indicates a mandatory argument. The
 asterisk indicates an optional one.

 It is not legal for an attribute name to contain either of the
 separators. It is legal for attribute values to contain the
 separators.

 Optional arguments are ones that may be disregarded by either client
 or server. Mandatory arguments require that the receiving side
 understands the attribute and will act on it. If the client receives
 a mandatory argument that it cannot oblige or does not understand, it
 MUST consider the authorization to have failed. It is legal to send
 an attribute-value pair with a NULL (zero length) value.

 Attribute-value strings are not NULL terminated, rather their length
 value indicates their end. The maximum length of an attribute-value
 string is 255 characters. the minimum is two characters (one name
 value and the separator)

5.2. The Authorization RESPONSE Packet Body

Dahm, et al. Expires December 22, 2016 [Page 24]

Internet-Draft The TACACS+ Protocol June 2016

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 | status | arg_cnt | server_msg len |
 +----------------+----------------+----------------+----------------+
 + data len | arg 1 len | arg 2 len |
 +----------------+----------------+----------------+----------------+
 | ... | arg N len | server_msg ...
 +----------------+----------------+----------------+----------------+
 | data ...
 +----------------+----------------+----------------+----------------+
 | arg 1 ...
 +----------------+----------------+----------------+----------------+
 | arg 2 ...
 +----------------+----------------+----------------+----------------+
 | ...
 +----------------+----------------+----------------+----------------+
 | arg N ...
 +----------------+----------------+----------------+----------------+

 status This field indicates the authorization status

 TAC_PLUS_AUTHOR_STATUS_PASS_ADD := 0x01

 TAC_PLUS_AUTHOR_STATUS_PASS_REPL := 0x02

 TAC_PLUS_AUTHOR_STATUS_FAIL := 0x10

 TAC_PLUS_AUTHOR_STATUS_ERROR := 0x11

 TAC_PLUS_AUTHOR_STATUS_FOLLOW := 0x21

 server_msg

 This is an US-ASCII string that may be presented to the user. The
 decision to present this message is client specific.

 data

 This is an US-ASCII string that may be presented on an administrative
 display, console or log. The decision to present this message is
 client specific.

 arg_cnt

 The number of authorization arguments to follow.

 arg

Dahm, et al. Expires December 22, 2016 [Page 25]

Internet-Draft The TACACS+ Protocol June 2016

 An attribute-value pair that describes the command to be performed.
 (see below)

 If the status equals TAC_PLUS_AUTHOR_STATUS_FAIL, then the
 appropriate action is to deny the user action.

 If the status equals TAC_PLUS_AUTHOR_STATUS_PASS_ADD, then the
 arguments specified in the request are authorized and the arguments
 in the response are to be used IN ADDITION to those arguments.

 If the status equals TAC_PLUS_AUTHOR_STATUS_PASS_REPL then the
 arguments in the request are to be completely replaced by the
 arguments in the response.

 If the intended action is to approve the authorization with no
 modifications, then the status should be set to
 TAC_PLUS_AUTHOR_STATUS_PASS_ADD and the arg_cnt should be set to 0.

 A status of TAC_PLUS_AUTHOR_STATUS_ERROR indicates an error occurred
 on the server.

 When the status equals TAC_PLUS_AUTHOR_STATUS_FOLLOW, then the
 arg_cnt MUST be 0. In that case, the actions to be taken and the
 contents of the data field are identical to the
 TAC_PLUS_AUTHEN_STATUS_FOLLOW status for Authentication. None of the
 arg values have any relevance if an ERROR is set, and must be
 ignored.

6. Accounting

6.1. The Account REQUEST Packet Body

 TACACS+ accounting is very similar to authorization. The packet
 format is also similar. There is a fixed portion and an extensible
 portion. The extensible portion uses all the same attribute-value
 pairs that authorization uses, and adds several more.

Dahm, et al. Expires December 22, 2016 [Page 26]

Internet-Draft The TACACS+ Protocol June 2016

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 | flags | authen_method | priv_lvl | authen_type |
 +----------------+----------------+----------------+----------------+
 | authen_service | user len | port len | rem_addr len |
 +----------------+----------------+----------------+----------------+
 | arg_cnt | arg 1 len | arg 2 len | ... |
 +----------------+----------------+----------------+----------------+
 | arg N len | user ...
 +----------------+----------------+----------------+----------------+
 | port ...
 +----------------+----------------+----------------+----------------+
 | rem_addr ...
 +----------------+----------------+----------------+----------------+
 | arg 1 ...
 +----------------+----------------+----------------+----------------+
 | arg 2 ...
 +----------------+----------------+----------------+----------------+
 | ...
 +----------------+----------------+----------------+----------------+
 | arg N ...
 +----------------+----------------+----------------+----------------+

 flags

 This holds bitmapped flags.

 TAC_PLUS_ACCT_FLAG_START := 0x02

 TAC_PLUS_ACCT_FLAG_STOP := 0x04

 TAC_PLUS_ACCT_FLAG_WATCHDOG := 0x08

 All other fields are defined in the authorization and authentication
 sections above and have the same semantics.

 See section 12 Accounting Attribute-value Pairs for the dictionary of
 attributes relevant to accounting.

6.2. The Accounting REPLY Packet Body

 The response to an accounting message is used to indicate that the
 accounting function on the server has completed. The server should
 reply with success only when the record has been committed to the
 required level of security, relieving the burden on the client from
 ensuring any better form of accounting is required.

Dahm, et al. Expires December 22, 2016 [Page 27]

Internet-Draft The TACACS+ Protocol June 2016

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 | server_msg len | data len |
 +----------------+----------------+----------------+----------------+
 | status | server_msg ...
 +----------------+----------------+----------------+----------------+
 | data ...
 +----------------+

 status

 This is the return status. Values are:

 TAC_PLUS_ACCT_STATUS_SUCCESS := 0x01

 TAC_PLUS_ACCT_STATUS_ERROR := 0x02

 TAC_PLUS_ACCT_STATUS_FOLLOW := 0x21

 server_msg

 This is a US-ASCII string that may be presented to the user. The
 decision to present this message is client specific.

 data

 This is a US-ASCII string that may be presented on an administrative
 display, console or log. The decision to present this message is
 client specific.

 When the status equals TAC_PLUS_ACCT_STATUS_FOLLOW, then the actions
 to be taken and the contents of the data field are identical to the
 TAC_PLUS_AUTHEN_STATUS_FOLLOW status for Authentication.

 The server MUST terminate the session after sending a REPLY.

 The TAC_PLUS_ACCT_FLAG_START flag indicates that this is a start
 accounting message. Start messages should only be sent once when a
 task is started. The TAC_PLUS_ACCT_FLAG_STOP indicates that this is
 a stop record and that the task has terminated. The
 TAC_PLUS_ACCT_FLAG_WATCHDOG flag means that this is an update record.
 Update records are sent at the client’s discretion when the task is
 still running.

 Summary of Accounting Packets

Dahm, et al. Expires December 22, 2016 [Page 28]

Internet-Draft The TACACS+ Protocol June 2016

 +----------+-------+-------+-------------+-------------------------+
 | Watchdog | Stop | Start | Flags & 0xE | Meaning |
 +----------+-------+-------+-------------+-------------------------+
0	0	0	0	INVALID
0	0	1	2	Start Accounting Record
0	1	0	4	Stop Accounting Record
0	1	1	6	INVALID
1	0	0	8	Watchdog, no update
1	0	1	A	Watchdog, with update
1	1	0	C	INVALID
1	1	1	E	INVALID
 +----------+-------+-------+-------------+-------------------------+

 The START and STOP flags are mutually exclusive. When the WATCHDOG
 flag is set along with the START flag, it indicates that the update
 record is a duplicate of the original START record. If the START
 flag is not set, then this indicates a minimal record indicating only
 that task is still running. The STOP flag MUST NOT be set in
 conjunction with the WATCHDOG flag.

 The Server MUST respond with TAC_PLUS_ACCT_STATUS_ERROR if the client
 requests an INVALID option.

7. Attribute-Value Pairs

 TACACS+ is intended to be an extensible protocol. The attributes
 used in Authorization and Accounting are not fixed. Some attributes
 are defined below for common use cases, clients MUST use these
 attributes when supporting the corresponding use cases.

 All numeric values in an attribute-value string are provided as
 decimal US-ASCII numbers, unless otherwise stated.

 All boolean attributes are encoded with values "true" or "false".

 It is recommended that hosts be specified as a numeric address so as
 to avoid any ambiguities.

 Absolute times should be specified in seconds since the epoch,
 12:00am Jan 1 1970. The timezone MUST be UTC unless a timezone
 attribute is specified.

 Attributes may be submitted with no value, in which case they consist
 of the name and the mandatory or optional separator. For example,
 the attribute "cmd" which has no value is transmitted as a string of
 4 characters "cmd="

Dahm, et al. Expires December 22, 2016 [Page 29]

Internet-Draft The TACACS+ Protocol June 2016

7.1. Authorization Attributes

 service

 The primary service. Specifying a service attribute indicates that
 this is a request for authorization or accounting of that service.
 Current values are "slip", "ppp", "shell", "tty-server",
 "connection", "system" and "firewall". This attribute MUST always be
 included.

 protocol

 a protocol that is a subset of a service. An example would be any
 PPP NCP. Currently known values are "lcp", "ip", "ipx", "atalk",
 "vines", "lat", "xremote", "tn3270", "telnet", "rlogin", "pad",
 "vpdn", "ftp", "http", "deccp", "osicp" and "unknown".

 cmd

 a shell (exec) command. This indicates the command name for a shell
 command that is to be run. This attribute MUST be specified if
 service equals "shell". If no value is present then the shell itself
 is being referred to.

 cmd-arg

 an argument to a shell (exec) command. This indicates an argument
 for the shell command that is to be run. Multiple cmd-arg attributes
 may be specified, and they are order dependent.

 acl

 US-ASCII number representing a connection access list. Used only
 when value of service is "shell"" and cmd has no value.

 inacl

 US-ASCII identifier for an interface input access list.

 outacl

 US-ASCII identifier for an interface output access list.

 zonelist

 A numeric zonelist value. (Applicable to AppleTalk only).

 addr

Dahm, et al. Expires December 22, 2016 [Page 30]

Internet-Draft The TACACS+ Protocol June 2016

 a network address

 addr-pool

 The identifier of an address pool from which the client should assign
 an address.

 routing

 A boolean. Specifies whether routing information is to be propagated
 to, and accepted from this interface.

 route

 Indicates a route that is to be applied to this interface. Values
 MUST be of the form "<dst_address> <mask> [<routing_addr>]". If a
 <routing_addr> is not specified, the resulting route should be via
 the requesting peer.

 timeout

 an absolute timer for the connection (in minutes). A value of zero
 indicates no timeout.

 idletime

 an idle-timeout for the connection (in minutes). A value of zero
 indicates no timeout.

 autocmd

 an auto-command to run. Used only when service=shell and cmd=NULL

 noescape

 Boolean. Prevents user from using an escape character. Used only
 when service=shell and cmd=NULL

 nohangup

 Boolean. Do not disconnect after an automatic command. Used only
 when service=shell and cmd=NULL

 priv-lvl

 privilege level to be assigned. Please refer to the Privilege Level
 section (Section 8) below.

Dahm, et al. Expires December 22, 2016 [Page 31]

Internet-Draft The TACACS+ Protocol June 2016

 remote_user

 remote userid (authen_method must have the value
 TAC_PLUS_AUTHEN_METH_RCMD). In the case of rcmd authorizations, the
 authen_method will be set to TAC_PLUS_AUTHEN_METH_RCMD and the
 remote_user and remote_host attributes will provide the remote user
 and host information to enable rhost style authorization. The
 response may request that a privilege level be set for the user.

 remote_host

 remote host (authen_method must have the value
 TAC_PLUS_AUTHEN_METH_RCMD)

 callback-dialstring

 Indicates that callback should be done. Value is NULL, or a
 dialstring. A NULL value indicates that the service MAY choose to
 get the dialstring through other means.

 callback-line

 The line number to use for a callback.

 callback-rotary

 The rotary number to use for a callback.

 nocallback-verify

 Do not require authentication after callback.

7.2. Accounting Attributes

 The following new attributes are defined for TACACS+ accounting only.
 When these attribute-value pairs are included in the argument list,
 they should precede any attribute-value pairs that are defined in the
 authorization section (Section 5) above.

 task_id

 Start and stop records for the same event MUST have matching task_id
 attribute values. The client must not reuse a specific task_id in a
 start record until it has sent a stop record for that task_id.

 start_time

 The time the action started ().

Dahm, et al. Expires December 22, 2016 [Page 32]

Internet-Draft The TACACS+ Protocol June 2016

 stop_time

 The time the action stopped (in seconds since the epoch.)

 elapsed_time

 The elapsed time in seconds for the action. Useful when the device
 does not keep real time.

 timezone

 The timezone abbreviation for all timestamps included in this packet.

 event

 Used only when "service=system". Current values are "net_acct",
 "cmd_acct", "conn_acct", "shell_acct" "sys_acct" and "clock_change".
 These indicate system level changes. The flags field SHOULD indicate
 whether the service started or stopped.

 reason

 Accompanies an event attribute. It describes why the event occurred.

 bytes

 The number of bytes transferred by this action

 bytes_in

 The number of input bytes transferred by this action

 bytes_out

 The number of output bytes transferred by this action

 paks

 The number of packets transferred by this action.

 paks_in

 The number of input packets transferred by this action.

 paks_out

 The number of output packets transferred by this action.

Dahm, et al. Expires December 22, 2016 [Page 33]

Internet-Draft The TACACS+ Protocol June 2016

 status

 The numeric status value associated with the action. This is a
 signed four (4) byte word in network byte order. 0 is defined as
 success. Negative numbers indicate errors. Positive numbers
 indicate non-error failures. The exact status values may be defined
 by the client.

 err_msg

 An US-ASCII string describing the status of the action.

8. Privilege Levels

 The TACACS+ Protocol supports flexible authorization schemes through
 the extensible attributes. One scheme is built in to the protocol:
 Privilege Levels. Privilege Levels are ordered values from 0 to 15
 with each level representing a privilege level that is a superset of
 the next lower value. Pre-defined values are:

 TAC_PLUS_PRIV_LVL_MAX := 0x0f

 TAC_PLUS_PRIV_LVL_ROOT := 0x0f

 TAC_PLUS_PRIV_LVL_USER := 0x01

 TAC_PLUS_PRIV_LVL_MIN := 0x00

 If a client uses a different privilege level scheme, then it must map
 the privilege level to scheme above.

 Privilege Levels are applied in two ways in the TACACS+ protocol:

 - As an argument in authorization EXEC phase (when service=shell
 and cmd=NULL), where it is primarily used to set the initial
 privilege level for the EXEC session.

 - In the packet headers for Authentication, Authorization and
 Accounting. The privilege level in the header is primarily
 significant in the Authentication phase for enable authentication
 where a different privilege level is required.

 The use of Privilege levels to determine session-based access to
 commands and resources is not mandatory for clients, but it is in
 common use so SHOULD be supported by servers.

Dahm, et al. Expires December 22, 2016 [Page 34]

Internet-Draft The TACACS+ Protocol June 2016

9. References

 [TheDraft]
 Carrel, D. and L. Grant, "The TACACS+ Protocol Version
 1.78", June 1997, <https://tools.ietf.org/html/draft-
 grant-tacacs-02>.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC1334] Lloyd, B. and W. Simpson, "PPP Authentication Protocols",
 RFC 1334, DOI 10.17487/RFC1334, October 1992,
 <http://www.rfc-editor.org/info/rfc1334>.

 [RFC1750] Eastlake 3rd, D., Crocker, S., and J. Schiller,
 "Randomness Recommendations for Security", RFC 1750,
 DOI 10.17487/RFC1750, December 1994,
 <http://www.rfc-editor.org/info/rfc1750>.

 [RFC2433] Zorn, G. and S. Cobb, "Microsoft PPP CHAP Extensions",
 RFC 2433, DOI 10.17487/RFC2433, October 1998,
 <http://www.rfc-editor.org/info/rfc2433>.

 [RFC2759] Zorn, G., "Microsoft PPP CHAP Extensions, Version 2",
 RFC 2759, DOI 10.17487/RFC2759, January 2000,
 <http://www.rfc-editor.org/info/rfc2759>.

Authors’ Addresses

 Thorsten Dahm
 Google Inc
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 US

 EMail: thorstendlux@google.com

 Andrej Ota
 Google Inc
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 US

 EMail: aota@google.com

Dahm, et al. Expires December 22, 2016 [Page 35]

Internet-Draft The TACACS+ Protocol June 2016

 Douglas C. Medway Gash
 Cisco Systems, Inc.
 170 West Tasman Dr.
 San Jose, CA 95134
 US

 Phone: +44 0208 8244508
 EMail: dcmgash@cisco.com

 David Carrel
 vIPtela, Inc.
 1732 North First St.
 San Jose, CA 95112
 US

 EMail: dcarrel@viptela.com

 Lol Grant

Dahm, et al. Expires December 22, 2016 [Page 36]

