
NFSv4 D. Noveck
Internet-Draft HPE
Updates: 5661 (if approved) January 15, 2016
Intended status: Standards Track
Expires: July 18, 2016

 NFSv4 Version Management
 draft-ietf-nfsv4-versioning-03

Abstract

 This document describes the management of versioning within the NFSv4
 family of protocols. It covers the creation of minor versions, the
 addition of optional features to existing minor versions, and the
 correction of flaws in features already published as Proposed
 Standards. The rules relating to the construction of minor versions
 and the interaction of minor version implementations that appear in
 this document supersede the minor versioning rules in RFC5661.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 18, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Noveck Expires July 18, 2016 [Page 1]

Internet-Draft NFSv4 Versioning January 2016

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Existing Minor Versions 4
 1.2. Updated NFSv4 Version Management Framework 4
 2. Terminology . 5
 2.1. Use of Keywords Defined in RFC2119 6
 2.2. Use of Feature Statuses 7
 2.3. NFSv4 Versions . 8
 3. Consolidation of Version Management Rules 9
 4. XDR Considerations . 11
 4.1. XDR Extension . 11
 4.1.1. XDR Extension in General 11
 4.1.2. Particulars of XDR Extension within NFSv4 12
 4.1.3. Rules for XDR Extension within NFSv4 13
 4.2. Handling of Protocol Elements 13
 4.3. Organization of Protocol Elements 15
 4.4. Inter-version Interoperability 15
 4.4.1. Requirements for Knowledge of Protocol Elements . . . 15
 4.4.2. Establishing Interoperability 16
 4.4.3. Determining Knowledge of Protocol Elements 18
 4.4.4. Interoperability Between Version Groups 19
 5. Other NFSv4 Protocol Changes 19
 5.1. Non-XDR Protocol Changes 19
 5.1.1. Field Interpretation and Use 20
 5.1.2. Behavioral Changes 21
 5.1.3. Rules for non-XDR changes 21
 5.2. Specification of Associated Protocols 22
 5.2.1. Associated Protocols via pNFS Mapping Types 22
 5.2.2. Additional Forms of Associated Protocols 23
 6. NFSv4 Protocol Features 24
 6.1. Previous Uses of the Feature Concept 25
 6.2. Rules for Protocol Feature Construction 25
 6.3. Statuses of Features 26
 6.4. Statuses of Protocol Elements Within Features 27
 6.5. Determining Protocol Element Support 29
 6.6. Feature Discovery . 30
 6.7. Feature Incorporation 31
 7. Extensions within Minor Versions 32
 7.1. Adding Features to Extensible Minor Versions 32
 7.2. Use of Feature Specification Documents 32
 7.3. Compatibility Issues 33
 7.3.1. Compatibility Issues for Messages Sent to Servers . . 34
 7.3.2. Compatibility Issues for Messages Sent to Clients . . 35

Noveck Expires July 18, 2016 [Page 2]

Internet-Draft NFSv4 Versioning January 2016

 7.4. Relationship Between Minor Versioning and Extensions
 within a Minor Version 36
 8. Minor Versions . 36
 8.1. Creation of New Minor Versions 36
 8.1.1. New Minor Versions within an Existing Group 37
 8.1.2. New Minor Version Groups 37
 8.1.3. Limits on Minor Version Groups 40
 8.2. Role of Minor Versions 41
 8.3. Minor Version Interaction Rules 41
 8.3.1. Minor Version Identifier Transfer Issues 42
 8.3.2. Minor Version Intra-Group Compatibility 42
 8.3.3. Minor Version Inter-Group Compatibility 43
 9. Correction of Existing Minor Versions and Features 44
 9.1. XDR Changes to Implement Protocol Corrections 45
 10. Documentation of Features, Extensions, Minor Versions, and
 Protocol Corrections . 46
 10.1. Documentation Approach 47
 10.2. Indexing material 47
 10.3. Feature Specification Documents 48
 10.4. XDR File Considerations 50
 10.5. Additional Documents to Support Protocol Extension . . . 51
 10.5.1. Minor Version Indexing Document 51
 10.5.2. Consolidated XDR Document 52
 10.5.3. XDR Assignment Document 52
 10.5.4. Transition of Documents to RFC’s 53
 10.6. Documentation of New Minor Versions 54
 10.7. Documentation of XDR Changes for Corrections 54
 11. Security Considerations 55
 12. IANA Considerations . 55
 13. References . 55
 13.1. Normative References 55
 13.2. Informative References 55
 Appendix A. Acknowledgements 57
 Author’s Address . 57

1. Introduction

 To address the requirement for an NFS protocol that can evolve as the
 need arises, the Network File System (NFS) version 4 (NFSv4) protocol
 provides a framework to allow for future changes via the creation of
 new protocol versions including minor versions and certain forms of
 modification of existing minor versions. The version management
 rules contained in this document allow extensions and other changes
 to be implemented in a way that maintains compatibility with existing
 clients and servers.

Noveck Expires July 18, 2016 [Page 3]

Internet-Draft NFSv4 Versioning January 2016

1.1. Existing Minor Versions

 Previously, all protocol changes had been part of new minor versions.
 The COMPOUND procedure (see Section 14.2 of [RFC7530]) specifies the
 minor version being used by the client in making requests. The
 CB_COMPOUND procedure (see Section 15.2 of [RFC7530]) specifies the
 minor version being used by the server on callback requests.

 Each existing minor version has been specified by one or more
 standards track RFCs:

 o Minor version 0 (NFSv4.0) is specified by [RFC7530] with the XDR
 description appearing in [RFC7531].

 o Minor version 1 (NFSv4.1) is specified by [RFC5661] with the XDR
 description appearing in [RFC5662].

 o Minor version 2 (NFSv4.2) is specified by [NFSv42] (in terms of
 changes from [RFC5661]). The XDR description appears in
 [NFSv42-dot-x]

 Existing minor versions can be divided into two groups, based on
 compatibility considerations. NFSv4.0 is one group, while NFSv4.1,
 NFSv4.2, and potentially other minor versions, form a second group.
 The definition of NFSv4 minor version groups is explained in more
 detail in Section 2.3, as is the concept of variants within minor
 versions and version groups.

1.2. Updated NFSv4 Version Management Framework

 A number of significant changes from previous version management
 practices should be noted here:

 o Creation of a new minor version is no longer the only way in which
 protocol changes may be made. Added optional features and
 protocol corrections can be proposed, specified and implemented
 within the context of a single minor version. Creation of new
 minor versions remains available to make other sorts of changes.

 o Specification of future minor versions in the way that was done
 for NFSv4.0 and NFSv4.1 (i.e. as a single document defining the
 entire protocol) is no longer practical and should not be
 attempted. All future minor versions will be documented by
 specifying the differences between the minor version being
 documented and the previous minor version. The documentation
 framework discussed in Section 10 should be used.

Noveck Expires July 18, 2016 [Page 4]

Internet-Draft NFSv4 Versioning January 2016

 After dealing with some preliminary matters, this document focuses on
 presenting the conceptual framework on which NFSv4 versioning is
 built.

 o First we discuss (in Section 4) how the XDR descriptions for
 various NFSv4 versions can be extended to produce the XDR
 descriptions for other versions while allowing clients and servers
 using the XDR descriptions associated with different versions to
 communicate.

 o We then complete the discussion (in Section 5) of the range of
 protocol changes that NFSv4 versioning is to deal with.

 o Then we discuss (in Section 6) how those changes are organized
 into features and feature packages.

 Using this framework, we look at the ways that those changes can be
 incorporated into the NFSv4 protocol.

 o The addition of new feature packages to existing minor versions is
 discussed in Section 7.

 o New Minor versions can be constructed, as described in Section 8.

 o Issues relating to the correction of protocol errors in existing
 features and minor versions are discussed in Section 9.

 We then discuss (in Section 10) how features, minor versions, and
 protocol corrections will be documented.

2. Terminology

 A basic familiarity with NFSv4 terminology is assumed in this
 document and the reader is pointed to [RFC7530].

 In this document, the term "version" is not limited to minor
 versions. When minor versions are meant, the term "minor version" is
 used explicitly. For more discussion of this and related terms, see
 Section 2.3

 In this document, the word "feature" is used , except in the case of
 quotations, to denote a key structuring concept. By organizing
 changes into features, defining RFCs can clearly specify what
 protocol elements a server must be able to recognize and what
 protocol elements a server must support. See Section 6 for more
 which allows the defining RFCs to clearly specify what protocol
 elements must be supported together by the server and when a given

Noveck Expires July 18, 2016 [Page 5]

Internet-Draft NFSv4 Versioning January 2016

 server must be able to correctly interpret the corresponding
 associated protocol constructs. See Section 6 for more details.

 A feature contains one or more "feature elements". Often, at least
 one feature element will be a protocol extension that can help a
 sender determine whether the receiver supports a given feature. See
 Section 4.1.3 for more details. A feature element may also be one of
 a set of other types of protocol change as described in Section 5.

 A "feature package" is a set of features that are defined together,
 either as part of a minor version or as part of the same protocol
 extension.

 We also need to introduce our vocabulary regarding specification of
 features and minor versions. Given the ongoing shift to a finer-
 grained documentation model, it is important to be clear here.

 o The term "minor version definition document" denotes the principal
 document defining a specific NFSv4 minor version. It may be in
 the form of a complete protocol definition (e.g. [RFC7530],
 [RFC5661]), a specification of changes relative to the previous
 minor version (e.g. [NFSv42]), or in a document that specifies
 the features to be included, either by referencing their
 definition document normatively (see Section 10.6) or implicitly
 (see Section 7.1).

 o The term "minor version documentation" includes the minor version
 definition document but also includes any corresponding XDR
 definition documents if they are published separately (e.g.
 [RFC7531], [RFC5662], [NFSv42-dot-x]). Also included are
 documents separately specifying features newly incorporated in the
 minor version and the ancillary documents described in
 Section 10.5.

 o The term "feature definition document" denotes a document
 describing a single feature or a set of closely related features,
 forming a feature package.

 o The term "protocol definition document" denotes a minor version
 definition document, a feature definition document or any
 standards-track document updating one of these.

2.1. Use of Keywords Defined in RFC2119

 The keywords defined by [RFC2119] have special meanings which this
 document intends to adhere to. However, due to the nature of this
 document and some special circumstances, there are some complexities
 to take note of:

Noveck Expires July 18, 2016 [Page 6]

Internet-Draft NFSv4 Versioning January 2016

 o Where this document does not directly specify implementation
 requirements, use of these capitalized terms is often not
 appropriate, since the guidance given in this document does not
 directly affect interoperability.

 o In this document, what authors of RFCs defining features and minor
 versions need to do is stated without these specialized terms.
 Although it is necessary to follow this guidance to provide
 successful NFSv4 version management, that sort of necessity is not
 of the sort defined as applicable to the use of the keywords
 defined in [RFC2119].

 The fact that these capitalized terms are not used should not be
 interpreted as indicating that this guidance does not need to be
 followed or is somehow not important.

 o In speaking of the possible statuses of features and feature
 elements, the terms "OPTIONAL" and "REQUIRED" are used. For
 further discussion, see Section 2.2.

 o When one of these upper-case keywords defined in [RFC2119] is used
 in this document, it is in the context of a rule directed to an
 implementer of NFSv4 minor versions, the status of a feature or
 protocol element, or in a quotation, sometimes indirect, from
 another document.

2.2. Use of Feature Statuses

 There has been some confusion, during the history of NFSv4, about the
 correct use of these terms, and instances in which the keywords
 defined in [RFC2119] were used in ways that appear to be at variance
 with the definitions in that document.

 o In [RFC3530], the lower-case terms "optional", "recommended", and
 "required" were used as feature statuses, Later, in [RFC5661] and
 [RFC7530], the corresponding upper-case keywords were used.
 However, it is not clear why this change was made.

 o In the case of "RECOMMENDED", its use as a feature status is
 inconsistent with [RFC2119] and it will not be used for this
 purpose in this document.

 o The word "RECOMMENDED" to denote the status of attributes in
 [RFC3530] and [RFC5661] raises similar issues. This has been
 recognized in [RFC7530] with regard to NFSV4.0, although the
 situation with regard to NFSv4.1 remains unresolved.

Noveck Expires July 18, 2016 [Page 7]

Internet-Draft NFSv4 Versioning January 2016

 In this document, the keywords "OPTIONAL" and "REQUIRED" and the
 phrase "mandatory to not implement" are used to denote the status of
 features and individual protocol elements within a given minor
 version. In using these terms, RFCs which specify the status of
 features or protocol elements inform:

 o client implementations whether they need to deal with the absence
 of support for the protocol elements

 o server implementations whether they need to provide support for
 the protocol elements

 When the status of a protocol feature is specified, the support
 requirements for associated protocol elements are defined by the
 status of the protocol elements with regard to the feature in
 question as described in Section 6.4.

 The fact that such statuses and the organization of protocol features
 may change between minor version groups may raise interoperability
 issues which the authors of minor version RFCs and the working group
 need to carefully consider. See Section 8.1.2 for guidance in this
 regard.

2.3. NFSv4 Versions

 The term "version" denotes any valid protocol variant constructed
 according to the rules in this document. It includes minor versions,
 but there are situations which allow multiple variant versions to be
 associated with and co-exist within a single minor version:

 o When there are feature specification documents published as
 Proposed Standards extending a given minor version, then the
 protocol defined by the minor version specification document, when
 combined with any subset (not necessarily proper) of the feature
 specification documents, is a valid NFSv4 version variant which is
 part of the minor version in question.

 o When there are protocol corrections published which update a given
 minor version, each set of published updates, up to the date of
 publication of the update, is a valid NFSv4 version variant which
 is part of the minor version in question.

 Because of the above, there can be multiple version variants that are
 part of a given minor version. Two of these are worthy of special
 terms:

 o The term "base minor version" denotes the version variant that
 corresponds to the minor version as originally defined, including

Noveck Expires July 18, 2016 [Page 8]

Internet-Draft NFSv4 Versioning January 2016

 all protocol elements specified in the minor version definition
 document but not incorporating any extensions or protocol
 corrections published subsequently.

 o At any given time, the term "current minor version" denotes the
 minor version variant including all extensions of and corrections
 to the minor version made by standard-track documents published
 subsequently.

 Each version variant which is part of a given minor version is a
 subset of the current minor version and a superset of the base minor
 version. When the term "minor version" is used without either of
 these qualifiers, it should refer to something which is true of all
 variants within that minor version. For example, one may refer the
 set of REQUIRED features in a given minor version since it is the
 same for all variants within the minor version.

 Each client and server which implements a specific minor version will
 implement some particular variant of that minor version. Each of
 these will be a superset of the appropriate base minor version.

 A minor version group is defined as a set of minor versions having
 exactly the same set of REQUIRED and mandatory to not implement
 protocol elements. The union of the sets of variants for all these
 minor versions provides a high degree of inter-variant compatibility.
 Clients and servers which implement variants within this group should
 be compatible as long as each takes proper care, as it should, to
 properly deal with the case in which the other party does not know of
 or has no support for OPTIONAL protocol elements.

3. Consolidation of Version Management Rules

 In the past, the only existing version management rules were the
 minor versioning rules that had been being maintained and specified
 in the Standards Track RFCs which defined the individual minor
 versions. In the past, these minor versioning rules were modified on
 an ad hoc basis for each new minor version.

 More recently, minor versioning rules were specified in [RFC5661]
 while modifications to those rules were allowed in subsequent minor
 versions.

 This document defines a set of version management rules, including
 rules for minor version construction. These rules apply to all
 future changes to the NFSv4 protocol. The rules are subject to
 change but any such change should be part of a standards track RFC
 obsoleting or updating this document.

Noveck Expires July 18, 2016 [Page 9]

Internet-Draft NFSv4 Versioning January 2016

 Rather than a single list of minor versioning rules, as in [RFC5661],
 this document defines multiple sets of rules that deal with the
 various forms of versioning provided for in the NFSv4 version
 management framework.

 o The kinds of changes that may be made are addressed in the rules
 in Sections 4.1.3, 5.1.3, 5.2.1, and 5.2.2.

 o Rules relating to the composition of changes into protocol
 features are addressed in Section 6.2

 o Rules limiting the protocol features which may be effected as an
 extension to an existing minor version appear in Section 7.

 o Minor version construction, including rules applicable to protocol
 features which cannot be used as extensions to existing minor
 versions are addressed in Sections 8.1.1 and 8.1.2.

 o Minor version interaction rules are discussed in Sections 8.3.2,
 8.3.3, and 8.3.1.

 This document supersedes minor versioning rules appearing in the
 minor version specification RFC’s, including those in [RFC5661]. As
 a result, potential conflicts among these documents should be
 addressed as follows:

 o The specification of the actual protocols for minor versions
 previously published as Proposed Standards take precedence over
 minor versioning rules in either this document or in the minor
 version specification RFC’s. In other words, if the transition
 from version A to version B violates a minor versioning rule, the
 version B protocol stays as it is. In particular, many of the
 changes made for NFSV4.1 would not be allowed in the version
 management framework defined here. See Section 5.1.3 for details.

 o Since minor versioning rules #11 and #13 from [RFC5661] deal with
 the interactions between multiple minor versions, the situation is
 more complicated. See Section 8.3 for a discussion of these
 issues, including how potential conflicts between rules are to be
 resolved.

 o Otherwise, any conflict between the version management rules in
 this document and those in minor version specification RFC’s are
 to be resolved based on the treatment in this document. In
 particular, corrections may be made as specified in Section 9 for
 all previously specified minor versions and the extensibility of
 previously specified minor versions is to be handled in accord
 with Section 7.1.

Noveck Expires July 18, 2016 [Page 10]

Internet-Draft NFSv4 Versioning January 2016

 Future minor version specification documents should avoid specifying
 minor versioning rules and reference this document in connection with
 rules for NFSv4 version management.

4. XDR Considerations

 As an extensible XDR-based protocol, NFSv4 has to ensure interversion
 compatibility, in situations in which the client and server use
 different XDR descriptions. For example, the client may implement
 different variants of the same minor version or different variants
 that are part of the same minor version group. The XDR extension
 paradigm, discussed in Section 4.1, assures that these descriptions
 are compatible, with clients and servers able to determine and use
 those portions of the protocol that they both share according to the
 methods described in Sections 4.4.2 and 4.4.4.

4.1. XDR Extension

 When an NFSv4 version change requires a modification to the protocol
 XDR, this is effected within a framework based on the idea of XDR
 extension. This is opposed to transitions between major NFS versions
 (including that between NFSv3 and NFSv4.0) in which the XDR for one
 version was replaced by a different XDR for a newer version.

 The use of XDR extension can facilitate compatibility between
 different versions of the NFSv4 protocol. When XDR extension is used
 to implement OPTIONAL features, the greatest degree of inter-version
 compatibility is obtained. For specifics regarding rules for
 interversion compatibility, see Section 8.3.2. For a discussion of
 compatibility issues that might arise between different version
 groups, see Sections 8.1.2 and 8.3.3.

4.1.1. XDR Extension in General

 The XDR extension approach provides a way for an XDR description to
 be extended in a way which retains the structure of all previously
 valid messages. If a base XDR description is extended to create a
 second XDR description, the following will be true for the second
 description to be a valid extension of the first:

 o The set of valid messages described by the extended definition is
 a superset of that described by the first.

 o Each message within the set of valid messages described by the
 base definition is recognized as having exactly the same
 structure/interpretation using the extended definition.

Noveck Expires July 18, 2016 [Page 11]

Internet-Draft NFSv4 Versioning January 2016

 o Each message within the set of messages described as valid by the
 extended definition but not the base definition must be
 recognized, using the base definition, as part of an unsupported
 extension.

 In general, an extension of a given XDR description consists of any
 set of the following changes:

 o Addition of previously unspecified RPC operation codes.

 o Addition of new, previously unused, values to existing enums.

 o Addition of previously unassigned bit values to a flag word.

 o Addition of new cases to existing switches, provided that the
 existing switch did not contain a default case.

 However, none of the following may happen:

 o Deletion of existing RPC operations, enum values, flag bit values
 and switch cases. Note that changes may be made to define use of
 any of these as causing an error, as long as the XDR is
 unaffected.

 o Similarly, none of these items may be reused for a new purpose.

 o Any change to the XDR-defined structure of existing requests or
 replies other than those listed above.

4.1.2. Particulars of XDR Extension within NFSv4

 There are issues, particular to NFSv4, that affect the definition of
 a valid XDR extension within NFSv4.

 o Because NFSv4 has been structured around compound requests and
 callbacks, addition of previously unspecified RPC operation codes
 is not allowed.

 o Although they fit under the general category of enumerations,
 operation codes (including those for callbacks) are so central to
 the structure of NFSv4, that they merit special treatment.

 o The fact that attribute value sets are represented within NFSv4 by
 nominally opaque arrays calls for special handling.

Noveck Expires July 18, 2016 [Page 12]

Internet-Draft NFSv4 Versioning January 2016

4.1.3. Rules for XDR Extension within NFSv4

 In the context of NFSv4, an extension of a given XDR description
 consists of one or more of the following:

 o Addition of previously unspecified operation codes, within the
 framework established by COMPOUND and CB_COMPOUND.

 o Addition of previously unspecified attributes.

 o Addition of new, previously unused, values to existing enums.

 o Addition of previously unassigned bit values to a flag word.

 o Addition of new cases to existing switches, provided that the
 existing switch did not contain a default case.

 However, none of the following is allowed to happen:

 o Any change to the structure of existing requests or replies other
 than those listed above.

 o Addition of previously unspecified RPC operation codes, for either
 the nfsv4 program or the callback program, is not allowed.

 o Deletion of existing RPC operations, enum values, flag bit values
 and switch cases. Note that changes may be made to define use of
 any of these as causing an error, as long as the XDR is
 unaffected.

 o Similarly, none of these items may be reused for a new purpose.

4.2. Handling of Protocol Elements

 Implementations handle protocol elements in one of three ways. Which
 of the following ways are valid depends on the status of the protocol
 element in the variant being implemented:

 o The protocol element is not a part of definition of the variant in
 question and so is "unknown". The responder, when it does not
 report an RPC XDR decode error. reports an error indicative of
 the element not being defined in the XDR such as
 NFS4ERR_OP_ILLEGAL, NFS4ERR_BADXDR, or NFS4ERR_INVAL. See
 Section 4.4.3 for details.

 o The protocol element is a known part of the variant but is not
 supported by the particular implementation. The responder reports
 an error indicative of the element being recognized as one which

Noveck Expires July 18, 2016 [Page 13]

Internet-Draft NFSv4 Versioning January 2016

 is not supported such as NFS4ERR_NOTSUPP, NFS4ERR_UNION_NOTSUPP,
 or NFS4ERR_ATTRNOTSUPP. See Section 6.5 for details.

 o The protocol element is a known part of the variant which is
 supported by the particular implementation. The responder reports
 success or an error other than the special ones discussed above.

 Which of these are validly returned by the responder depends on the
 status of the feature element in the minor version specified in the
 COMPOUND or CB_COMPOUND. The possibilities which can exist are
 listed below.

 o The protocol element is not known in the current variant of minor
 version. In this case all implementations of the minor version
 MUST indicate that the protocol element is not known.

 o The protocol element is specified mandatory to not implement in
 the minor version. In this case as well, all implementations of
 the minor version MUST indicate that the protocol element is not
 known.

 o The protocol element is defined as part of the current variant of
 the minor version but is not part of the corresponding base
 variant. In this case, the requester can encounter situations in
 which the protocol element is either not known to the responder ,
 is known but not supported by the responder, or is both known to
 and supported by the responder.

 o The protocol element is defined as an OPTIONAL part of the base
 minor version. In this case, the requester can expect the
 protocol element to be known but must deal with cases in which it
 is supported or is not supported.

 o The protocol element is defined as a REQUIRED part of the base
 minor version. In this case, the requester can expect the
 protocol element to be both known and supported by the responder.

 The listing of possibilities above does not mean that a requester
 always needs to be prepared for all such possibilities. Often,
 depending on the scope of the feature of which the protocol element
 is a part, handling of a previous request using the same or related
 protocol elements, will allow the requester to be sure that certain
 of these possibilities cannot occur.

 Requesters, typically clients, may test for knowledge of or support
 for protocol elements as part of connection establishment. This may
 allow the requester to be aware of responder lack of knowledge of or
 support for problematic requests before they are actually issued.

Noveck Expires July 18, 2016 [Page 14]

Internet-Draft NFSv4 Versioning January 2016

4.3. Organization of Protocol Elements

 To enable compatible operation within a version group, all of the
 protocol elements within an NFSv4 minor version are organized as
 follows:

 o Each protocol element is defined as a member of exactly one
 feature. One important reason for this organization (see
 Section 6 for others) is to regularize and simplify the
 determination by the client and server as to what protocol
 elements the other party supports.

 o Each feature is defined as a member of a feature package, based on
 how it was defined. Features established as part of a minor
 version at the same time belong to the same feature package.

4.4. Inter-version Interoperability

 Because of NFSv4’s use of XDR extension, any communicating client and
 server versions have XDR definitions that are each valid extensions
 of a third version. Once that version is determined, it may be used
 by both client and server to communicate. Each party can
 successfully use a subset of protocol elements that are both known
 and supported by both parties.

4.4.1. Requirements for Knowledge of Protocol Elements

 With regard to requirements for knowledge of protocol elements, the
 following rules apply. These rules are the result of the use of XDR
 extension paradigm combined with the way in which extensions are
 incorporated in existing minor versions (for details of which see
 Section 7.1).

 o Any protocol element defined as part of the base variant of
 particular minor version is required to be known by that minor
 version. This occurs whether the specification happens in the
 body of the minor definition document or is in a feature
 definition document that is made part of the minor version by
 being normatively referenced by the minor version definition
 document.

 o Any protocol element required to be known in a given minor version
 is required to be known in subsequent minor version, unless and
 until a minor version has made that protocol element as mandatory
 to not implement.

 o When a protocol element is defined as part of an extension to an
 extensible minor version, it is not required to be known in that

Noveck Expires July 18, 2016 [Page 15]

Internet-Draft NFSv4 Versioning January 2016

 minor version but is required to be known by the next minor
 version. In the earlier minor version, it might not be defined in
 the XDR definition document for that minor, while in the later
 version it needs to be defined in the XDR definition document. In
 either case, if it is defined, it might or might not be supported.

 o When knowledge of protocol elements is optional in a given minor
 version, the responder’s knowledge of such optional elements must
 obey the rule that if one such element is known, then all the
 protocol elements defined in the same minor version definition
 document must be known as well.

 For many minor versions, all existing protocol elements, are required
 to be known by both the client and the server, and so requesters do
 not have to test for the presence or absence of knowledge regarding
 protocol elements for which knowledge might be optional. This is the
 case if there has been no extension for the minor version in
 question. Extensions can be added to extensible minor versions as
 described in Section 7.1 and can be used to correct protocol flaws as
 described in Section 9.

 Requesters can ascertain the knowledge of the responder in two ways:

 o By issuing a request using the protocol element and looking at the
 response. Note that, even if the protocol element used is not
 supported by the responder, the requester can still determine if
 the element is known by the responder.

 o By receiving a request from the responder, acting in the role of
 requester. For example, a client may issue a request enabling the
 server to infer that it is aware of a corresponding callback.

 In making this determination, the requester can rely on two basic
 facts:

 o If the responder is aware of a single protocol element within a
 feature package, it must be aware of all protocol elements within
 that feature package

 o If a protocol element is one defined by the minor version
 specified by a request (and not in an extension), or in a previous
 minor version, the responder must be aware of it.

4.4.2. Establishing Interoperability

 When a client and a server interact, they need to able to take
 advantage of the compatibility provided by NFSv4’s use of XDR
 extension.

Noveck Expires July 18, 2016 [Page 16]

Internet-Draft NFSv4 Versioning January 2016

 In this section, we will deal with situation in which the client and
 server are of the same version group. Later, in Section 4.4.4, we
 will discuss possible extensions to the inter-version-group case.

 In this context, the client and server would arrive at a common
 variant which the client would uses to send requests which the server
 would then accept. The server would use that variant to send
 callbacks which the client would then accept. This state of affairs
 could arise in a number of ways:

 o Client and server have been built using XDR variants that belong
 to the same minor version

 o The client’s minor version is lower than that of the server. In
 this case the server, in accord with Section 8.3.2, accepts the
 client’s minor version, and acts as if it has no knowledge of
 extensions made in subsequent minor versions. It has knowledge of
 protocol elements within the current (i.e. effectively final)
 variant of the lower minor version.

 o The client’s minor version is higher than that of the server. In
 this case the client, in accord with Section 8.3.2, uses a lower
 minor version that the server will accept. In this case, the
 server has no knowledge of extensions made in subsequent minor
 versions.

 There are a number of cases to consider based on the characteristics
 of the minor version chosen.

 o The minor version consists of only a single variant (no extension
 or XDR corrections), so the client and the server are using the
 same XDR description and have knowledge of the same protocol
 elements.

 o When the minor version consists of multiple variants (i.e. there
 are one or more XDR extensions or XDR corrections), the client and
 the server are using compatible XDR descriptions. The client is
 aware of some set of extensions while the server may be aware of a
 different set. The client can determine which of the extensions
 that he is aware of, are also known to the server by using the
 approach described in Section 4.4.3. Once this is done, the
 client and server will both be using a common variant. The
 variants that the client and the server were built with will both
 either be identical to this variant or a valid extension of it.
 Similarly, the variants that the client and the server actually
 use will be a subset of this variant, in that certain OPTIONAL
 features will not be used.

Noveck Expires July 18, 2016 [Page 17]

Internet-Draft NFSv4 Versioning January 2016

 In either case, the client must determine which of the OPTIONAL
 protocol elements within the common version are supported by the
 server as described in Section 6.6.

4.4.3. Determining Knowledge of Protocol Elements

 A requester may test the responder’s knowledge of particular protocol
 elements as defined below, based on the type of protocol element.

 o When a GETATTR request is made specifying an attribute bit to be
 tested and that attribute is not a set-only attribute, if the
 GETATTR returns with the error NFS4ERR_INVAL, then it can be
 concluded that the responder has no knowledge of the attribute in
 question. Other responses, including NFS4ERR_ATTRNOTSUPP,
 indicate that the responder is aware of the attribute in question.

 o When a SETATTR request is made specifying the attribute bit to be
 tested and that attribute is not a get-only attribute, if the
 SETATTR returns with the error NFS4ERR_INVAL, then it can be
 concluded that the responder has no knowledge of the attribute in
 question. Other responses, including NFS4ERR_ATTRNOTSUPP,
 indicate that the responder is aware of the attribute in question.

 o When a request is made including an operation with a new flag bit,
 if the operation returns with the error NFS4ERR_INVAL, then it can
 be concluded that the responder has no knowledge of the flag bit
 in question. Other responses indicate that the responder is aware
 of the flag bit in question.

 o When a request is made including the operation to be tested, if
 the responder returns an RPC XDR decode error, or a response
 indicating that the operation in question resulted in
 NFS4ERR_OP_ILLEGAL or NFS4ERR_BADXDR, then it can be concluded
 that the responder has no knowledge of the operation in question.
 Other responses, including NFS4ERR_NOTSUPP, indicate that the
 responder is aware of the operation in question.

 o When a request is made including the switch arm to be tested, if
 the responder returns an RPC XDR decode error, or a response
 indicating that the operation in question resulted in
 NFS4ERR_BADXDR, then it can be concluded that the responder has no
 knowledge of the operation in question. Other responses,
 including NFS4ERR_UNION_NOTSUPP, indicate that the responder is
 aware of the protocol element in question.

 A determination of the knowledge or lack of knowledge of a particular
 protocol element is expected to remain valid as long as the clientid
 associated with the request remains valid.

Noveck Expires July 18, 2016 [Page 18]

Internet-Draft NFSv4 Versioning January 2016

 The above assumes, as should be the case, that the server will accept
 the minor version used by the client. For more detail regarding this
 issue, see Section 8.3.2.

4.4.4. Interoperability Between Version Groups

 Within a minor version group, we have complete compatibility in the
 sense that:

 o Servers are REQUIRED to implement a core set of features which
 cannot change within the minor version group, allowing clients to
 depend on the continued existence of and support for these
 features as long as one remains within the minor version group.

 o The set of OPTIONAL features supported or known by servers may
 change but clients, in using such OPTIONAL features need to be
 prepared for the fact that they might not be implemented on all
 servers implementing a minor version within the same version
 group.

 The same level of compatibility is not provided between different
 minor version groups. Nevertheless, the same guarantees of inter-XDR
 comprehensibility apply across minor version groups. For a
 discussion of how this comprehensibility can be used between minor
 version groups, see Section 8.3.3.

5. Other NFSv4 Protocol Changes

 There are a number of types of protocol changes that are outside the
 XDR extension framework discussed in Section 4. These changes are
 also managed within the NFSv4 versioning framework and may be of a
 number of types, which are discussed in the sections below

 Each such change will be organized, documented and effected as part
 of a given feature, just as changes discussed in Section 4 are. The
 way such features will be incorporated in the NFSv4 protocol depends
 on a number of factors, including the types of changes included in
 the feature. This subject is discussed in Sections 6.7 and 7.

5.1. Non-XDR Protocol Changes

 Despite the previous emphasis on XDR changes, additions and changes
 to the NFSv4 protocols have not been limited to those that involve
 changes (in the form of extensions) to the protocol XDR. Examples of
 other sorts of changes have been taken from NFSv4.1.

Noveck Expires July 18, 2016 [Page 19]

Internet-Draft NFSv4 Versioning January 2016

5.1.1. Field Interpretation and Use

 The XDR description of a protocol does not constitute a complete
 description of the protocol. Therefore, versioning needs to consider
 the role of changes in the use of fields, even when there is no
 change to the underlying XDR.

 Although any XDR element is potentially subject to a change in its
 interpretation and use, the likelihood of such change will vary with
 the XDR-specified type of the element, as discussed below:

 o When XDR elements are defined as strings, rules regarding the
 appropriate string values are specified in protocol specification
 text with changes in such rules documented in minor version
 definition documents. Some types of strings within NFS4 are used
 in server names (in location-related attributes), user and group
 names, and in the names of file objects within directories. Rules
 regarding what strings are acceptable appear in [RFC7530] and
 [RFC5661] with the role of the XDR limited to hints regarding
 UTF-8 and capitalization issues via XDR typedefs.

 o Fields that are XDR-defined as opaque elements and which are truly
 opaque, do not raise versioning issues, except as regards inter-
 version use, which is effectively foreclosed by the rules in
 Section 8.3.1.

 Note that sometimes a field will seem to be opaque but not
 actually be fully opaque when considered carefully. For example,
 the "other" field of stateids is defined as an opaque array, while
 the specification text specially defines appropriate treatment
 when the "other" field within it is either all zeros or all ones.
 Given this context, creation or deletion of reserved values for
 "special" stateids will be a protocol change which versioning
 rules need to deal with.

 o Some nominally opaque elements have external XDR definitions that
 overlay the nominally opaque arrays. This technique is useful
 when the same element may be used in several ways when a switched
 union is not appropriate.

 For example, each pNFS mapping type provides its own XDR
 definition for various pNFS-related fields defined in [RFC5661] as
 opaque arrays. For more information about the handling of pNFS
 within the NFSv4 versioning framework, see Section 5.2.1.

 Another form of protocol change that changes how fields are
 presented, without affecting the XDR occurs when there is a change in
 the data elements which may be presented as RDMA chunks.

Noveck Expires July 18, 2016 [Page 20]

Internet-Draft NFSv4 Versioning January 2016

5.1.2. Behavioral Changes

 Changes in the behavior of NFSv4 operations are possible, even if
 there is no change in the underlying XDR or change to field
 interpretation and use.

 One class of behavioral change involves changes in the set of errors
 to be returned in the event of various errors. When the set of valid
 requests remain the same, and the behavior for each of them remains
 the same, such changes can be implemented with only limited
 disruption to existing clients.

 Many more substantial behavioral changes have occurred in connection
 with the addition of the session concept in NFSv4.1.

 o Because exactly-once is semantics provided by sessions, the use of
 owner-based sequence values in such operations as OPEN, LOCK,
 LOCKU are now longer needed and the server is to ignore them.

 o Because of the requirement to begin almost all COMPOUNDs with a
 SEQUENCE operation, the semantics of previously defined operations
 was changed and all formerly valid COMPOUNDs were defined as
 resulting in errors.

 o Because the clientid is inferable from a previous SEQUENCE
 operation, the clientid is not needed in operations such as OPEN
 and LOCK, and the client is required to pass a value of zero.

 Also, changes were made regarding the required server behavior as to
 the interaction of the MODE and ACL attributes.

5.1.3. Rules for non-XDR changes

 In the past (e.g. in [RFC5661]) there was often uncertainty about
 whether any particular difference from NFSv4.0 was:

 o A purely editorial change, which may be relevant to other minor
 versions.

 o The correction of a protocol mistake, best handled as described in
 Section 9.

 o A protocol improvement relevant to a new minor version or feature,
 to be documented as described in Section 10.3.

 In order to avoid such situations, all such changes will be
 documented as part of a feature, specifying the specific changes
 relative to protocol versions that do not incorporate that new

Noveck Expires July 18, 2016 [Page 21]

Internet-Draft NFSv4 Versioning January 2016

 feature. Also, to provide greater clarity about such changes, the
 following sets of rules apply.

 The following rules apply to "substantive behavior changes", i.e.
 all changes in which there is a substantive change to non-error
 behavior. In other words, the change is not one which only changes
 the set of valid error codes or prescribes that different error codes
 are to be returned in particular situations.

 o Any substantive behavior change must be part of a feature in which
 there is also an XDR extension present, to enable testing for
 presence of the feature.

 o No feature including a substantive behavior change can be made
 REQUIRED at initial introduction.

 The following rules apply to all behavioral changes.

 o No feature including such a change can be introduced as an
 extension. While the feature may be documented in a separate
 feature definition document in such cases, that document should be
 referenced normatively by the minor version specification.

 o While it is allowed to include multiple such changes in the same
 feature this should only be done if there is a good reason for all
 of these to be included or not included together. Such changes
 should not be included in the same feature simply because all such
 changes were introduced in the same minor version.

5.2. Specification of Associated Protocols

 The definition of ancillary protocols is a form of protocol extension
 that is provided as part of pNFS and might be made available for
 other uses in the future.

 As in the case of pNFS, the NFSv4 protocol proper would provide the
 basic framework for performing some protocol-related task, while
 allowing multiple independent means of performing that task to be
 defined. The version management considerations appropriate to
 creating such additional forms of protocol extension are discussed in
 Section 5.2.2

5.2.1. Associated Protocols via pNFS Mapping Types

 pNFS is structured around the ability to define alternative mapping
 types in addition to the one defined in [RFC5661], (e.g. [RFC5663],
 [RFC5664]). Each mapping type specifies the data-transfer protocol

Noveck Expires July 18, 2016 [Page 22]

Internet-Draft NFSv4 Versioning January 2016

 to be used to access data represented by layouts as well as mapping-
 type-specific XDR definitions of layout-related data structures.

 Specifying a new mapping type is an additional form of protocol
 change within the NFSv4 version management framework. A feature
 consisting of the new mapping type is not tied to a specific minor
 version. As explained in Section 7, if a feature consists only of
 that single change, it is available in multiple minor versions upon
 publication.

 Such a feature has a file system scope and the attribute
 fs_layout_type can used to determine whether support is present.

5.2.2. Additional Forms of Associated Protocols

 The same sort of approach used for pNFS might be used in other
 circumstances where there is a clear need to standardize a set of
 protocol-related requirements and where it is desirable, for various
 reasons, to leave open the choice of mechanism by which those
 requirements might be met.

 Such cases might arise where the function to be performed is likely
 to be too enmeshed with the structure of the file system
 implementation to allow a single protocol mechanism to be specified.
 In such cases, multiple approaches might themselves be standardized,
 each fitting into a template established previously using any or all
 of the elements used by pNFS:

 o The establishment of a registry of identifiers for the
 standardized mechanisms to satisfy the established requirements.

 o Definition of data structures related to the function to be
 performed to include both a mechanism identifier, and a nominally
 opaque portion, the real format of which is to have a mechanism-
 specific definition.

 o The ability to specify multiple protocols to perform the same
 function, which may include a minor version of NFSv4, a particular
 use of an established protocol, or a new protocol designed for the
 purpose.

 New instances of such a two-level approach might be established in
 the future, subject to the following restrictions:

 o That there is a template feature establishing the requirements
 that the associated protocols are to meet.

Noveck Expires July 18, 2016 [Page 23]

Internet-Draft NFSv4 Versioning January 2016

 o That the template feature is defined as an integral part of a
 particular minor version and not as an extension. This does not
 exclude this feature being defined in a separate document to which
 the minor version specification has a normative reference.

 o The template feature defines the scope that the individual feature
 instances will have.

 o The template feature defines a means by which support for
 particular feature instances might be determined by a client.

 o That there be at least one instance of a specific protocol
 mechanism meeting the established requirements. To limit
 confusion, the requirements and the initial mechanism (an instance
 of the template feature) should be defined in separate documents.

 The above are a minimal set of restrictions for establishing such an
 additional extension mechanism. The working group may, as part of
 defining the core feature establishing the extension mechanism
 specify further restrictions governing as to when minor versions are
 allowed to incorporate particular instances of that extension
 mechanism. In the absence of such restrictions, particular
 extensions will be incorporated, as is the case with pNFS mapping
 types, in all minor versions upon publication of the instance as a
 Proposed Standard.

6. NFSv4 Protocol Features

 Individual changes, whether they are XDR extensions or other sorts of
 changes, are organized in term of protocol features. This is in
 order to

 o allow the protocol documentation to more clearly specify what XDR
 extensions and other changes must be supported together.

 o help the client determine which particular changes are present and
 implemented by the server.

 o support the independent development and specification of changes
 to the protocol, without artificially tying features together in a
 paradigm solely based on minor versions.

 o provide support for a feature-based documentation structure, as
 described in Section 10.3.

 In contrast with some previous uses of the feature concept, every
 protocol element is defined as a member of exactly one protocol
 feature.

Noveck Expires July 18, 2016 [Page 24]

Internet-Draft NFSv4 Versioning January 2016

 Because support for particular protocol features may depend on
 facilities provided by the underlying file systems, or may vary based
 on characteristics of the session within which communication is
 occurring, each protocol feature will be defined as having a
 particular scope, which may be any of the following:

 o Client scope in which case support for a given feature is assumed
 to be uniform between given client and server as long as neither
 reboots.

 o Session scope in which case different sessions associated with the
 same client may have differences as to feature support but
 otherwise support is uniform.

 o file system scope in which case different file systems may have
 differences as to feature support but otherwise support is
 uniform.

6.1. Previous Uses of the Feature Concept

 The word "feature" has been used inconsistently in previous documents
 bearing on issues related NFSv4 versioning, making it necessary to
 offer some clarification here.

 o In some cases, the term "feature" is used colloquially

 o In some cases, the word "feature" is used to refer to protocol
 extensions which are incorporated in the protocol that we refer to
 as "protocol elements." The term "feature elements" is similar
 but it differs in that it includes changes in field interpretation
 and use (Section 5.1.1) and protocol behavior (See Section 5.1.2).

 o In some cases the word is used to refer to groups of feature
 elements, as defined by tables in [RFC5661] and [NFSv42]. This is
 similar to, but not exactly the same as the way we use the word
 "feature" is used in this document.

 Often, as in previous minor versioning rules, it is not always clear
 which sense of the word "feature" is meant.

6.2. Rules for Protocol Feature Construction

 A protocol feature consists of one or more valid NFSv4 changes, which
 work together as a functional whole. The change elements may be of
 any of the types described in Section 5 although the specific types
 of changes will affect how the feature can be integrated in the NFSv4
 protocol.

Noveck Expires July 18, 2016 [Page 25]

Internet-Draft NFSv4 Versioning January 2016

 A critical distinction in this regard is the one between features
 which can added to the protocol without a new minor version and those
 which require a new minor version. In this document:

 o Features which do not require a new minor version are discussed in
 Section 7, while the process of incorporation depends on the type
 of features and is discussed in Sections 7.1, 9, 5.2.1, and 5.2.2,

 o For handling of the remaining features which do require a new
 minor version, see Section 8.

6.3. Statuses of Features

 Each feature has one of three statuses with regard to each minor
 version of which it might be a part.

 o The feature is a REQUIRED part of the minor version.

 o The feature is not a REQUIRED part of the minor version, but may
 be implemented as part of that version, i.e. it is OPTIONAL

 o The feature is not a valid part of the minor version.

 For features which have been previously defined as valid, this is
 represented as being "mandatory to not implement" as opposed to
 simply not being undefined.

 These statuses define whether a client implementing the minor version
 has to be prepared for the protocol feature’s non-support by a server
 implementation, even if the feature in question is known by the
 server.

 The working group is still free to make recommendations regarding the
 desirability of server and client support for particular features in
 particular minor versions in the minor version definition document,
 or in other, presumably informational, documents.

 Particular protocol elements have similar statuses, which are derived
 from a combination of the status of feature of which the protocol
 element, the status of that protocol element within its feature, and,
 in some cases, within other supported features. See Section 6.4 for
 details.

 In addition to feature status, there may be other constraints that
 define when an implementation must or may support a feature. In
 particular, support for one feature may require support for another,
 or the presence of one feature may require that another feature not
 be supported.

Noveck Expires July 18, 2016 [Page 26]

Internet-Draft NFSv4 Versioning January 2016

6.4. Statuses of Protocol Elements Within Features

 The status of a protocol element within its containing feature
 reflects two pieces of information that are used in determining
 support for feature and associated protocol elements.

 o A status value that allows support for the feature to be inferred
 based on support for the protocol element. This is referred to as
 the protocol element’s E-to-F status.

 o A status value that allows support for the feature element to be
 inferred based on support for the feature. This is referred to as
 the protocol element’s F-to-E status with regard to the feature.

 The purpose of defining these status values is to allow the support
 or non-support for one protocol elements to be determined based on
 responses for others, avoiding the complexity that a client would
 have to deal with if each such support decision were independent. A
 simpler model would have been to simply assign protocol elements to
 feature-based support equivalence classes and require all protocol
 elements in a feature to be supported or not supported together.
 This approach was not adopted because it is not compatible with many
 current and expected feature patterns:

 o Many existing protocol features contain protocol elements that are
 optional in the context of the feature.

 o Some existing protocol elements are used by more than one feature.

 o Boolean attributes that indicate the presence of support for a
 given feature are tied to that feature, even though the attribute
 can be supported when the feature is not, in which case the
 attribute is supported and has the value FALSE.

 The following are possible E-to-F statuses.

 o Support or non-support for the feature is always the same as that
 for the protocol element. This is represented as an "IFF" value.

 o Support for the feature can be inferred from support for the
 protocol element but not necessarily the reverse. This is
 represented as an "SINF" value.

 o Lack of support for the feature can be inferred from lack of
 support for the protocol element but not necessarily the reverse.
 This is represented as an "NSINF" value.

Noveck Expires July 18, 2016 [Page 27]

Internet-Draft NFSv4 Versioning January 2016

 o Lack of support for the feature can be inferred from lack of
 support for the protocol element but the reverse can be determined
 by using the protocol element to determine whether support for the
 feature is present. An example would be a Boolean attribute
 indicating whether support for the feature is present. This is
 represented as an "SVAL" value.

 Generally, it will be clear how a client may determine whether any
 particular OPTIONAL feature is supported. Typically there will be
 one or more protocol elements belonging to the feature whose E-F
 status is "IFF" or "SVAL". In these cases, support for the protocol
 elements in question can be determined as described in Section 6.4

 In more complicated cases, the feature specification should clearly
 specify how to determine whether support is present.

 The following are possible F-to-E statuses.

 o Support for the protocol element is REQUIRED when support for the
 feature is present.

 o Support for the protocol element is OPTIONAL when support for the
 feature is present.

 o Support for the protocol element unaffected by the presence of
 support for the feature.

 The overall status of a feature element within a minor version is
 generally determined as follows:

 o If there are one or more REQUIRED features which give the protocol
 element an F-to-E status of REQUIRED, then the overall status of
 the protocol element within the minor version is REQUIRED.

 o Otherwise, if there are one or more REQUIRED or OPTIONAL features
 which give the protocol element an F-to-E status of REQUIRED or
 OPTIONAL, then the overall status of the protocol element within
 the minor version is OPTIONAL.

 o If neither of the above is true, the protocol element is treated
 as not a part of the minor version. That is, it is treated as
 mandatory to not implement.

 In some cases the overall status may be different from that specified
 above. For example, it could be that there were two features, each
 of which is OPTIONAL, and it is specified that exactly one of these
 must always me supported. In such a case, if both features assign a

Noveck Expires July 18, 2016 [Page 28]

Internet-Draft NFSv4 Versioning January 2016

 protocol element an F-to-E status of REQUIRED, then the overall
 status of the protocol element is REQUIRED.

6.5. Determining Protocol Element Support

 If it has already been determined that a particular protocol element
 is known to the server, the client can determine whether it is
 supported based on its type, as follows:

 o If the protocol element is an attribute, the supported_attr
 attribute can be interrogated to determine if support is present.

 o If the protocol element is an operation, the operation can be
 attempted, with an error of NFS4ERR_NOTSUPP indicating the
 operation is known but not supported.

 o If the protocol element is a switch case, use of that case can be
 attempted, with an error of NFS4ERR_UNION_NOTSUPP indicating t the
 operation is known but not supported.

 o If the protocol element is an operation flag bit and the operation
 is REQUIRED, use of that flag bit can be attempted with an error
 of NFS4ERR_NOTSUPP indicating the protocol element is known but
 not supported.

 o If the protocol element is an operation flag bit and the operation
 defines an error to return in the case of unsupported flag bits,
 use if that flag bit can be attempted with the specified error
 indicating the operation is known but not supported.

 Once this is done, all of the protocol elements the client is aware
 of can be divided into three sets:

 o Those that the server is unaware of and thus cannot support.

 o Those that the server knows about but does not support.

 o Those that the server supports.

 Information obtained in the process of determining knowledge of
 protocol elements (see Section 4.4.3) may be saved and used in
 connection with the interrogations above. For example, in testing
 for knowledge of a given operation, the specific error code returned
 will indicate support or non-support as well as indicating support or
 non-support, as well as knowledge of the corresponding operation.

 Note that in doing so care needs to be taken regarding protocol
 elements associated with features whose scope is more limited than

Noveck Expires July 18, 2016 [Page 29]

Internet-Draft NFSv4 Versioning January 2016

 that of an entire client, since support may be different for
 different sessions or different file systems.

6.6. Feature Discovery

 In many cases, a client will need to determine whether particular
 features are supported before using protocol elements that are part
 of those features. While some clients may choose to defer this
 determination until the features in question are actually needed,
 others may make the determination as part of first connecting with a
 server, using a session or accessing a file system, depending on the
 scope of the feature in question.

 Once such a determination of feature support or non-support are made,
 the client may assume that it remains valid and will not change so
 long as the object defining the feature scope remains valid.

 o For features of client scope as long as the clientid remains
 valid.

 o For features of session scope as long as the sessionid remains
 valid.

 o For features of file system scope as long as the clientid and fsid
 both remain valid.

 In making this determination, the client is entitled to rely on, and
 the server is REQUIRED to obey any inter-feature constraints that are
 specified as applying to the minor version being used.

 The presence or absence of particular features may be determined in a
 number of ways:

 o For features which are REQUIRED within a given minor version, the
 client can treat the fact that the server accepted a request with
 that minor version (and did not return
 NFS4ERR_MINOR_VERSION_MISMATCH) as indicating that support is
 present.

 o For features which consist only of the addition of a pNFS layout
 type, the fs_layout_type attribute for the fs in question can be
 interrogated and scanned for the layout type.

 o For features which consist only of the addition of an instance of
 a feature template as defined in Section 5.2.2, the template
 feature definition will describe the means by which the presence
 of support for particular feature instances is to be determined.

Noveck Expires July 18, 2016 [Page 30]

Internet-Draft NFSv4 Versioning January 2016

 For the remaining features, which are all OPTIONAL and contain an
 XDR-extending protocol element, the E-to-F statuses of the
 constituent protocol elements (see Section 6.4) can be used to
 determine if support is present within the scope defined by the
 feature in question. In most cases, support for the protocol element
 is tested as described in Section 6.5.

 o If there are one or more protocol elements whose status is "IFF",
 support for any of these may be tested, with the result
 determining support for the feature

 o If there are one or more protocol elements whose status is "SVAL",
 support for it can be tested, and if present the value returned
 can be tested as described by the feature specification, resulting
 in a determination of support for the feature.

 o If there are protocol elements with statuses of "SINF" and
 "NSINF", testing of these protocol elements can be used, although,
 it is not always certain that testing all such will always resolve
 the question.

 o If none of these approaches are determinative, the feature
 specification should define a method of resolving the question.

 Once the set of supported features is determined:

 o For protocol elements which have an F-to-E status of REQUIRED for
 at least one supported feature, it can be assumed that support is
 present.

 o For other protocol elements which have an F-to-E status of
 OPTIONAL for at least one supported feature, support needs to be
 tested for as described in Section 6.5.

 o For the remaining protocol elements, it can be assumed that
 support is not present.

6.7. Feature Incorporation

 All protocol changes will be organized, documented and effected as
 part of a given feature. This includes XDR extension and the various
 sorts of non-XDR-based changes allowed.

 Such features may be made part of the protocol in a number of ways:

 o In new minor versions, as discussed in Section 8.

Noveck Expires July 18, 2016 [Page 31]

Internet-Draft NFSv4 Versioning January 2016

 o In separately documented new features. When new features are
 OPTIONAL and do not include any non-XDR-based changes, they may be
 incorporated in an extensible minor version under construction.
 See Section 7.1 for details.

 o When appropriate compatibility arrangement are in effect, they may
 be used to correct protocol problems in already approved minor
 versions and features. See Section 9 for details.

7. Extensions within Minor Versions

 The NFSv4 version management framework allows, with certain
 restrictions, features to be added to existing minor versions

 o In the case of features which consist only of a pNFS mapping type,
 the protocol may be extended by publishing the new mapping type
 definition as a Proposed Standard. This effects an extension to
 all minor versions in which pNFS is a valid feature.

 Similar extension facilities could be made available if additional
 pNFS-like extension frameworks were created (See Section 5.2.2).

 o Minor versions designated as extensible (see Section 7.1) may be
 extended by the publication of a standards-track document defining
 the additional feature. Details are set out below. The features
 to be added are considered OPTIONAL in the extensible minor
 version and must consist only of valid XDR-based extensions

7.1. Adding Features to Extensible Minor Versions

 Addition of features to an extensible minor version will take
 advantage of the existing NFSv4 infrastructure that allows optional
 features to be added to new minor versions, but without in this case
 requiring any change in the minor version number. Adding features in
 this way will enable compatibility with existing clients and servers,
 who may be unaware of the new feature.

7.2. Use of Feature Specification Documents

 Each such extension will be in the form of a working-group standards-
 track document which defines one or more new OPTIONAL features. The
 definition of each of the new feature may include one or more
 "protocol elements" which extend the existing XDR as already
 discussed (in Section 4.1). Other sorts of XDR modification are not
 allowed. Protocol elements include new operations, callbacks,
 attributes, and enumeration values. The functionality of some
 existing operations may be extended by the addition of new flags bits
 in existing flag words and new cases in existing switched unions.

Noveck Expires July 18, 2016 [Page 32]

Internet-Draft NFSv4 Versioning January 2016

 New error codes may be added but the set of valid error codes to be
 returned by an operation is fixed, except that existing operations
 may return new errors to respond to situations that only arise when
 previously unused flag bits are set or when extensions to a switched
 union are used.

 Also, certain additional documents may be produced at this time to
 simplify the process of using new versions that contain the
 extension, and to help co-ordinate the process of making further
 extensions. See Section 10.5 for details.

 Each such additional feature will become, for all intents and
 purposes, part of the current NFSv4 minor version upon publication of
 the description as a Proposed Standard, enabling such extensions to
 be used by new client and server implementations without, as
 previously required, a change in the value of the minor version field
 within the COMPOUND operation.

 The working group has two occasions to make sure that such features
 are appropriate ones:

 o At the time the feature definition document becomes a working
 group document, the working group needs to determine, in addition
 to the feature’s general compatibility with NFSv4, that the XDR
 assignments (i.e. additional values for operation callback and
 attribute numbers, and for new flags and switch values to be added
 to existing operations) associated with the new feature are
 complete and do not conflict with those in the existing protocol
 or those currently under development.

 o At the time the working group document is complete, the working
 group, in addition to normal document review, can and should look
 at what prototype implementations of the feature have been done
 and use that information to determine the work-ability and
 maturity of the feature.

7.3. Compatibility Issues

 Because the receiver of a message may be unaware of the existence of
 a specific extension, certain compatibility rules need to be
 observed. In some cases (e.g., addition of new operations or
 callbacks or addition of new arms to an existing switched union)
 older clients or servers may be unable to do XDR parsing on an
 extension of whose existence they are unaware. In other cases (e.g.,
 error returns) there are no XDR parsing issues but existing clients
 and servers may have expectations as to what may validly be returned.
 Detailed discussion of these compatibility issues appears below:

Noveck Expires July 18, 2016 [Page 33]

Internet-Draft NFSv4 Versioning January 2016

 o Issues related to messages sent to the server are discussed in
 Section 7.3.1.

 o Issues related to messages sent to the client are discussed in
 Section 7.3.2.

7.3.1. Compatibility Issues for Messages Sent to Servers

 This section deals with compatibility issues that relate to messages
 sent to the server, i.e., requests and replies to callbacks. In the
 case of requests, it is the responsibility of the client to determine
 whether the server supports the extension in question before sending
 a request containing it for any purpose other than determining
 whether the server is aware of the extension. In the case of
 callback replies, the server demonstrates its awareness of proper
 parsing for callback replies by sending the associated callback.

 Regarding the handling of requests:

 o Existing server implementations will return NFS4ERR_NOTSUPP or
 NFS4ERR_OP_ILLEGAL in response to any use of a new operation,
 allowing the client to determine that the requested operation (and
 potentially the feature in question) is not known or known but not
 supported by the server.

 o Clients can determine whether particular new attributes are
 supported by a given server by examining the value returned when
 the supported_attr attribute is interrogated. Clients need to do
 this before attempting to use attributes defined in an extension
 since they cannot depend on the server returning
 NFS4ERR_ATTRNOTSUPP for requests which include a mask bit
 corresponding to a previously unspecified attribute number (as
 opposed to one which is defined but unsupported).

 o Existing server implementations that do not recognize new flag
 bits will return NFS4ERR_INVAL, enabling the client to determine
 that the new flag value is not supported by the server.

 o Existing server implementations that do not recognize the new arm
 of a switched union in a request will return NFS4ERR_INVAL or
 NFS4ERR_UNION_NOTSUPP, enabling the client to determine that the
 new union arm is not supported by the server.

 Regarding the handling of responses to callbacks:

 o Error values returned to the server for all callbacks that do not
 use new features will only be those previously allowed. Only when

Noveck Expires July 18, 2016 [Page 34]

Internet-Draft NFSv4 Versioning January 2016

 the server uses a new extension feature can a previously invalid
 error value be returned.

 o Callback replies may only include a new arm of an existing
 switched union when the server, typically in the callback being
 responded to, has used a feature element associated with the
 feature that defined the new switched union arm.

7.3.2. Compatibility Issues for Messages Sent to Clients

 This sections deals with compatibility issues that relate to messages
 sent to clients, i.e., request replies and callbacks. In both cases,
 extensions are only sent to clients that have demonstrated awareness
 of the extensions in question by using an extension associated with
 the same feature.

 Regarding the handling of request replies:

 o Error values returned to the client for all requests that do not
 use new features will only be those previously allowed. Only when
 the server uses a new extension feature can a previously invalid
 error value be returned.

 o Replies may only include a new arm of an existing switched union
 when the server, typically in the request being responded to, has
 used a feature element associated with the feature that defined
 the new switched union arm.

 Regarding the handling of callback requests, the server needs to be
 sure that it only sends callbacks to those clients prepared to
 receive and parse them.

 o In most cases, the new callback will be part of a feature that
 contains new (forward) operations as well. When this is the case,
 the feature specification will specify the operations whose
 receipt by a server is sufficient to indicate that the client
 issuing them is prepared to accept and parse the associated
 callbacks.

 o For callbacks associated with features that have no new operations
 defined, the feature specification should define some way for a
 client to indicate that it is prepared to accept and parse
 callbacks that are part of the extension. For example, a flag bit
 in the EXCHANGE_ID request may serve this purpose.

 o In both of the above cases, the ability to accept and parse the
 specified callback is considered separate from support for the
 callback. The feature specification will indicate whether support

Noveck Expires July 18, 2016 [Page 35]

Internet-Draft NFSv4 Versioning January 2016

 for the callback is required whenever the feature is used by the
 client. In cases in which support is not required, the client is
 free to return NFS4ERR_NOTSUPP upon receiving the callback.

7.4. Relationship Between Minor Versioning and Extensions within a
 Minor Version

 Extensibility of minor versions are governed by the following rules:

 o Minor versions zero and one are not extensible. Each has a fixed
 set of OPTIONAL features as described in [RFC7530] and [RFC5661].

 o Minor versions beyond one are presumed extensible as discussed
 herein. However, any statement within the minor version
 specification disallowing extension will cause that minor version
 to be considered non-extensible.

 o No new feature may be added to a minor version once the
 specification document for a subsequent minor version becomes a
 working group standards-track document.

 Even when a minor version is non-extensible, or when a previous minor
 version is closed to further extension, the features that it contains
 are still subject to updates to effect protocol corrections. In many
 cases, making an XDR change, in the form of an extension will be the
 best way of correcting an issue. See Section 9 for details.

 While making minor versions extensible will decrease the frequency of
 new minor versions, it will not eliminate the need for them.
 Protocol features that cannot be used as extensions (see
 Section 8.1.1 require a new minor version.

 In addition, change which involve modifications to the set of
 protocol elements which are REQUIRED or mandatory to not implement
 require a new minor version which starts a new minor version group.
 Changes to the organization of protocol features are treated
 similarly, since they have a similar potential to cause interversion
 incompatibility. See Section 8.1.2 for details.

8. Minor Versions

8.1. Creation of New Minor Versions

 It is important to note that this section, in describing situations
 that would require new minor versions or minor version groups to be
 created, does not thereby imply that situations will exist in the
 future. Judgments regarding desirability of future changes will be

Noveck Expires July 18, 2016 [Page 36]

Internet-Draft NFSv4 Versioning January 2016

 made by the working group or its successors and any guidance that can
 be offered at this point is necessarily quite limited.

 Creation of a new minor version or minor version group is an option
 that the working group retains. The listing of situations below that
 would prompt such actions is not meant to be exhaustive.

 New minor versions are to be documented as described in Section 10.6.

8.1.1. New Minor Versions within an Existing Group

 The following sorts of features are not allowed as extensions and
 would require creation of a new minor version:

 o Features that incorporate any of the non-XDR-based changes
 discussed in Sections 5.1.1 and 5.1.2.

 o Any feature which includes a new mapping type (as described in
 Section 5.2.1) and includes any other change.

 To prevent new mapping types from evading this restriction by
 splitting the mapping type and other changes into two separate
 changes, if new mapping type makes a reference to protocol changes
 in an extension, it may not be incorporated in minor versions in
 which that extension is defined but only in later minor versions.

 o Any feature that creates a new expansion mechanism as described in
 in Section 5.2.2.

8.1.2. New Minor Version Groups

 The following sorts of changes can only occur in the context of a new
 minor version group:

 o Addition of REQUIRED new features.

 o Changes to the status of existing features including converting
 features to be mandatory to not implement.

 o Changes to the status of existing feature elements within
 features, causing those feature elements to be required or
 optional when they previously had not been.

 o Changes to the scope of existing features.

 o Changes to feature organization or to inter-feature constraints.
 Such changes may have the effect of making support for some change

Noveck Expires July 18, 2016 [Page 37]

Internet-Draft NFSv4 Versioning January 2016

 element required or optional in circumstances in which it
 previously had not been

 Changes to the status or organization of features will, in most case,
 result in changes to the status of individual protocol elements,
 changing them between REQUIRED and OPTIONAL, or making them mandatory
 to not implement.

 Conversion of protocol elements to be mandatory to not implement,
 will not, as had previously been the practice, result in their
 deletion from the protocol XDR. However, the server will be REQUIRED
 to treat such protocol elements as not known when responding to
 requests within minor versions in which they are not to be
 implemented. See Sections 4.4.3 and 8.3.2 for details.

 Such changes give rise to potential compatibility issues. In most
 cases in which such changes will actually be made, careful
 consideration of compatibility issues can limit the scope of such
 issues or ensure that compatibility issues actually experienced are
 quite limited.

 This is opposed to the first new minor version group, that associated
 with minor version one, which resulted in a situation in which
 clients for minor version zero could not interoperate with servers
 for minor version one and vice versa. Issues related to the question
 of what to do about such situations are discussed in Section 8.1.3

 The addition of REQUIRED features may serve to illustrate the issues.
 Such additions pose no compatibility issue for existing clients. On
 the other hand, all servers will need to be updated to support the
 new features. The effort required and any potential for disruption
 depend on the scope of the feature being added.

 A number of features introduced as REQUIRED in NFSv4.1 can serve to
 illustrate the issues.

 o suppattr_exclattr was added as a REQUIRED attribute. This was
 very simple for servers to implement.

 o RECLAIM_COMPLETE was added as a REQUIRED operation.

 o TEST_STATEID and FREE_STATEID were added as REQUIRED operations.

 Some examples of potential feature status changes may be helpful in
 illustrating compatibility issues

 o Converting a REQUIRED feature to be mandatory to not implement
 poses the greatest level of difficulty from an interoperability

Noveck Expires July 18, 2016 [Page 38]

Internet-Draft NFSv4 Versioning January 2016

 point of view. Clients need to change to use an alternative means
 of providing the functionality provided by the feature. Existing
 servers need to be updated, even if there is a replacement feature
 available.

 Such a transition is only possible without disruption if the
 feature in question has already fallen into disuse.

 o Converting an OPTIONAL feature to be mandatory to not implement
 poses similar difficulties. If clients have ceased to use the
 feature, after they have become aware, formally or informally,
 that it is moribund, the difficulties can be quite limited.

 o Converting a REQUIRED feature to be OPTIONAL poses no difficulty
 for existing server implementations. It may pose difficulties for
 clients who have not made preparations for server non-support of
 the feature.

 The degree of such difficulties and the readiness of clients to
 make such changes should be key considerations in making such a
 state transition.

 o Converting an OPTIONAL feature to be REQUIRED poses no difficulty
 for existing client implementations. The difficulties for
 existing server implementations depend on the scope of the feature
 involved and the set of implementations without support for the
 feature in question.

 The degree of such difficulties and the readiness of servers to
 make such changes should be key considerations in making such a
 state transition. Nevertheless, it should not be the only
 consideration. If all existing servers support the feature, it
 does not thereby follow that the transition should be made. The
 possible effect of making server development more complicated
 should also be considered.

 A number of other changes allowed only in a new minor version group,
 raise analogous issues.

 o In the case of inter-feature constraints or similar
 reorganizations, the basic issue is whether the client has to deal
 with the absence of a protocol element when it previously had not
 had to deal with that or the server has to provide support for a
 protocol element in situations in which it previously had not had
 to. When a set of changes cause both sorts of issues, the
 greatest interoperability difficulties arise, making such a set of
 changes hard to implement.

Noveck Expires July 18, 2016 [Page 39]

Internet-Draft NFSv4 Versioning January 2016

 o If a feature scope is changed to be more fine-grained, the client
 has to deal with combinations of support and non-support it
 previously had not had to deal with, while the reverse forces the
 server to maintain a unity of support it had previously not had
 to. The unlikely case of conversion between session and file
 system scope causes difficulties for both parties.

 The tradeoff between interoperability issues and desirable changes to
 the protocol is one for the working group to make. If the decision
 is made to create a new minor version group, the working group has
 decided that absolute compatibility is not required. Nevertheless,
 it should strive to make necessary changes as non-disruptive as
 possible.

8.1.3. Limits on Minor Version Groups

 The guidance that needs to be offered with regard to appropriate
 limits on changes that form new version groups does not appear
 reducible to specific rules.

 Instead it is appropriate to return to the basic goal of allowing the
 NFSv4 protocol to adapt to future circumstances as they develop.
 Although this was not explicitly stated, it seems to be intended that
 this would not involve generation of an essentially a new protocol,
 even if that were, in some sense, a better one.

 So the best way we can address the question of limits on new version
 groups is to state that the purpose of the rules in this document,
 including the creation of new minor version groups is not the
 creation of a successor protocol to NFSv4.

 If this or a future working group does find itself defining a new
 file access protocol, it would be helpful if proper care were taken
 to retain what is valuable in the intellectual heritage of NFSv4.
 Nevertheless, in doing so, it is important not to assume that
 adherence to the rules in this document, is, in and of itself, a
 guarantee that the new protocol is thereby a version of NFSv4.

 In dealing with such a future changed situation, the better option
 would be to face the issue of necessary change forthrightly and
 acknowledge that such a large change creates a fundamentally new
 situation. Appropriate responses might include replacing the XDR in
 whole or in part, using a successor to XDR, or other means.

Noveck Expires July 18, 2016 [Page 40]

Internet-Draft NFSv4 Versioning January 2016

8.2. Role of Minor Versions

 Clearly, the ability to provide protocol extensions without creation
 of a new minor version, has lessened the role of minor versions in
 extending the NFSv4 protocol to meet future needs.

 We have gone from a situation in which there was a single mechanism,
 creation of a new minor version, to extend the protocol, to a three-
 level approach:

 o OPTIONAL features which extend but do not change protocol
 semantics may be added without creating a new minor version.

 o Other OPTIONAL features may be added by creating a new minor
 version within an existing version group, as long as the sets of
 protocol elements which are REQUIRED and mandatory to not
 implement.

 o Changes which do as the sets of protocol elements which are
 REQUIRED and mandatory to not implement are only allowed in a new
 minor version group.

 This document does explore the situations that, if they arise, would
 require the creation of new minor versions or version groups. This
 does not imply that such situations will exist or that the working
 will choose to address things in that way. Such choices are left for
 future decision by the working group and the IESG.

 The discussion in Section 8.1.3 raises similar issues. It is
 possible that situations might arise that would cause NFSv4
 development to be done outside the framework established here.
 Nevertheless, this does not imply that such situations will arise.

8.3. Minor Version Interaction Rules

 This section addresses issues related to rules #11 and #13 in the
 minor versioning rules in [RFC5661]. With regard to the supersession
 of minor versioning rules, the treatment here overrides that in
 [RFC5661] when either of the potentially interacting minor versions
 has not yet been published as a Proposed Standard.

 Note that these rules are the only ones directed to minor version
 implementers, rather than to those specifying new minor versions.

Noveck Expires July 18, 2016 [Page 41]

Internet-Draft NFSv4 Versioning January 2016

8.3.1. Minor Version Identifier Transfer Issues

 Each relationship between a client instance and a server instance, as
 represented by a clientid, is to be devoted to a single minor
 version. If a server detects that a COMPOUND with an inappropriate
 minor version is being used, it MUST reject the request. In doing
 so, it may return either NFS4ERR_BAD_CLIENTID or
 NFS4RR_MINOR_VERS_MISMATCH.

 As a result of the above, the client has the assurance that the set
 of REQUIRED and OPTONAL features will not change within the context
 of a single clientid. Server implementations MUST ensure that the
 set of supported features and protocol elements does not change
 within such a context.

8.3.2. Minor Version Intra-Group Compatibility

 Within a set of minor versions that belong to the same minor version
 group, it is relatively easy for clients and servers to provides the
 needed compatibility by following the following rules.

 o Servers supporting a given minor version MUST support any earlier
 minor version in the same minor version group and return
 appropriate errors for use of protocol elements that were not a
 valid part of that earlier minor version. For details see below.

 o Servers supporting a given minor version MUST, in returning errors
 for operation which were a valid part of the minor version, return
 the errors allowed for the current operation in the minor version
 actually being used.

 o Clients MUST deal with an NFS4ERR_MINOR_VERS_MISMATCH error by a
 searching for a lower minor version number in the same minor
 version group that the server will accept.

 With regard to protocol elements not known in a given minor version,
 the appropriate error codes are given below. Essentially, the
 server, although it has a more extensive XDR reflective of a newer
 minor version, must act as a server with a more limited XDR would.

 o When an operation is used which is not known in the specified
 minor version, NFS4ERR_OP_ILLEGAL (as opposed to NFS4ERR_NOTSUPP)
 should be returned.

 o When an attribute is used which is not known in the specified
 minor version, NFS4ERR_INVAL (as opposed to NFS4ERR_ATTRNOTSUPP)
 should be returned.

Noveck Expires July 18, 2016 [Page 42]

Internet-Draft NFSv4 Versioning January 2016

 o When a switch case is used which is not known in the specified
 minor version, NFS4ERR_BADXDR (as opposed to
 NFS4ERR_UNION_NOTSUPP) should be returned. Even though the
 message may be XDR-decodable by the server’s current XDR, it is
 not so according to the minor version being used.

 o When a flag bit is used which is not known in the specified minor
 version, NFS4ERR_INVAL (as opposed to NFS4ERR_NOTSUPP Or any other
 error defined as indicated non-support a flag bit) should be
 returned.

8.3.3. Minor Version Inter-Group Compatibility

 It is desirable for client and server implementations to support a
 wide range of minor versions. The difficulty of doing so can be
 affected by choices made by the working group in defining those minor
 versions, and the particulars of the changes made which establish new
 version groups.

 Options for compatibility are affected by the scale and frequency of
 the changes which require a new minor version group and the working
 group needs to take needs for inter-group compatibility into account
 when making such changes. In all cases, the following rules apply:

 o Servers supporting a given minor version SHOULD support minor
 versions in earlier minor version groups. When doing so, it MUST
 behave appropriately given the definition of the minor version
 used. For details see below.

 o Clients SHOULD deal with an NFS4ERR_MINOR_VERS_MISMATCH error by a
 searching for a lower minor version number within the appropriate
 minor version range until it finds one that the server will
 accept.

 In some cases, the server needs to behave as a more restricted one
 for an earlier minor version might, despite it having extensions for
 protocol elements added in later minor versions. In these cases, the
 errors described in Section 8.3.2 should be returned in this case as
 well.

 In the case in which the earlier version contains protocol elements
 subsequently made mandatory to not implement, the server needs to
 know of those protocol elements and not return the errors that would
 appropriate if the most up-to-date minor version were used. In cases
 in which support for these protocol elements is REQUIRED, support
 will have to be provided by the server and if it cannot do that, it
 MUST return NFS4ERR_MINOR_VERS_MISMATCH for any requests using that
 minor version.

Noveck Expires July 18, 2016 [Page 43]

Internet-Draft NFSv4 Versioning January 2016

 In addition to using an appropriate subset of the protocol XDR
 definition, the server needs to respect the non-XDR elements of the
 earlier minor version group as well. In particular, the serve needs
 to:

 o Support REQUIRED features as specified by the earlier minor
 version group.

 o Support (or not) features according to E-to-F statuses specified
 by the earlier minor version group.

 o Respect the inter-feature constraints specified by the earlier
 minor version group.

 o Respect the feature scopes specified by the earlier minor version
 group.

 o Support (or not) protocol elements according to the F-to-E
 statuses specified in the earlier minor version group.

9. Correction of Existing Minor Versions and Features

 The possibility always exists that there will be a need to correct an
 existing feature in some way, after the acceptance of that feature or
 a minor version containing it, as a Proposed Standard. While the
 working group can reduce the probability of such situations arising
 by waiting for running code before considering a feature as done, it
 cannot reduce the probability to zero. As features are used more
 extensively and interact with other features, previously unseen flaws
 may be discovered and will need to be corrected.

 Such corrections are best done in a document obsoleting or updating
 the RFC defining the relevant feature definition document or minor
 version specification. In making such corrections, the working will
 have to carefully consider how to assure interoperability with older
 clients and servers.

 Often, corrections can be done without changing the protocol XDR. In
 many cases, a change in client and server behavior can be implemented
 without taking special provision with regard to interoperability with
 earlier implementations. In those case, and in cases in which a
 revision merely clarifies an earlier protocol definition document, a
 new document can be published which simply updates the earlier
 protocol definition document. Subsequently, the indexing material
 would be updated to reflect the existence of the newer document.

 In other cases, it is best if client or server behavior needs to
 change in a way which raises interoperability concerns. In such

Noveck Expires July 18, 2016 [Page 44]

Internet-Draft NFSv4 Versioning January 2016

 cases, incompatible changes in server or client behavior should not
 be mandated in order to avoid XDR changes.

9.1. XDR Changes to Implement Protocol Corrections

 When XDR changes are necessary as part of correcting a flaw, these
 should be done in a manner similar to that used when implementing new
 minor versions or features within them. In particular,

 o Existing XDR structures may not be modified or deleted.

 o XDR extensions may be used to correct existing protocol facilities
 in a manner similar to those used to add additional optional
 features. Such corrections may be done in an otherwise non-
 extensible minor version, if the working group judges it
 appropriate.

 o When a correction is made to an OPTIONAL feature, the result is
 similar to a situation in which there are two independent OPTIONAL
 features. A server may choose to implement either or both.

 o When a correction is made to a required feature, the situation
 becomes one in which neither the old nor the new version of the
 feature is required. Instead, it is required that a server
 support at least one of the two, while each is individually
 OPTIONAL. Although use of the corrected version is ultimately
 better, and may be recommended, it should not be described as
 "RECOMMENDED", since the choice of which version to support if
 only one is supported will depend on the needs of clients, which
 may be slow to adopt the updated version.

 o In all of the cases above, it is appropriate that the old version
 of the feature, be considered obsolescent, with the expectation
 that the working group might, in a later minor version, decide
 that the older version is to become mandatory to not implement.

 Issues related to the effect of XDR corrections on existing
 documents, including co-ordination with other minor versions, are
 discussed in Section 10.7.

 By doing things this way, the protocol with the XDR modification can
 accommodate clients and servers that support either the corrected or
 the uncorrected version of the protocol and also clients and servers
 aware of and capable of supporting both alternatives.

 o A client that supports only the earlier version of the feature
 (i.e., an older unfixed client) can determine whether the server
 it is connecting to supports the older version of feature. It is

Noveck Expires July 18, 2016 [Page 45]

Internet-Draft NFSv4 Versioning January 2016

 capable of interoperating with older servers that support only the
 unfixed protocol as well as ones that support both versions.

 o A client that supports only the corrected version of the feature
 (i.e., a new or updated client) can determine whether the server
 it is connecting to supports the newer version of the feature. It
 is capable of interoperating with newer servers that support only
 the updated feature as well as ones that support both versions.

 o A client that supports both the older and newer version of the
 feature can determine which version of the particular feature is
 supported by the server it is working with.

 o A server that supports only the earlier version of the feature
 (i.e., an older unfixed server) can only successfully interoperate
 with older clients. However newer clients can easily determine
 that the feature cannot be used on that server.

 o A server that supports only the newer version of the feature
 (i.e., a new or updated server) can only successfully interoperate
 with newer clients. However, older clients can easily determine
 that the feature cannot be used on that server. In the case of
 OPTIONAL features, clients can be expected to deal with non-
 support of that particular feature.

 o A server that supports both the older and newer versions of the
 feature can interoperate with all client variants.

 By using extensions in this manner, the protocol creates a clear path
 which preserves the functioning of existing clients and servers and
 allows client and server implementers to adopt the new version of the
 feature at a reasonable pace.

10. Documentation of Features, Extensions, Minor Versions, and Protocol
 Corrections

 As mentioned previously, NFSv4 is evolving towards a finer-grained
 documentation model. This trend will be continued by:

 o The use of extensions within minor versions.

 o Features that are added by a minor version being documented in
 feature definition documents rather than within the minor version
 specification itself.

Noveck Expires July 18, 2016 [Page 46]

Internet-Draft NFSv4 Versioning January 2016

10.1. Documentation Approach

 Documentation of future changes to the NFSv4 protocol will use
 feature specification documents as described in Section 10.3. There
 are a number of ways in which such documents may be used, which
 reflect the different ways in which features are incorporated in the
 NFSv4 protocol, as discussed in Section 6.7

 This documentation approach is intended to avoid the unnecessary
 production of large documents in which many unrelated features are
 tied together because either:

 o The entire protocol is described in a single document, as happened
 with NFSv4.0 (in [RFC7530]) and NFSv4.1 (in [RFC5661]).

 o Many unrelated features are described in a single document as
 occurred with NFSv4.2 (in [NFSv42]).

 The production of a larger number of smaller documents will
 streamline document production and review. A potential problem is
 that a profusion of smaller documents might cause difficulty for
 those learning about and implementing the protocol.

 The production of indexing material described in Section 10.2 is
 intended to limit such difficulties. The result will be that, for
 operations and attributes, we will have essentially a single table of
 contents, referencing material from multiple minor version definition
 documents and feature specification documents.

10.2. Indexing material

 The items listed below, referred to collectively as "Indexing
 material" will be useful in many contexts. The reason for frequently
 publishing such material is to prevent a situation in which large
 numbers of documents must be scanned to find the most current
 description of a particular protocol element.

 o A table mapping operations and callbacks to the most recent
 protocol definition document containing a description of that
 operation.

 o A table mapping attributes to the most recent protocol definition
 document containing a description of that attribute.

 o A table giving, for each operation in the protocol, the errors
 that may validly be returned for that operation. If possible, it
 would be desirable to give, as does [RFC5661], the operations
 which may validly return each particular error.

Noveck Expires July 18, 2016 [Page 47]

Internet-Draft NFSv4 Versioning January 2016

 o A table giving for each operation, callback, and attribute and for
 each feature element in a published extension giving its status
 (REQUIRED, OPTIONAL, or mandatory-to-not implement), the name of
 the feature of which it is a part, its associated E-to-F and
 F-to-E status values and information about other features for
 which it has a non-empty F-to-E status value. This would be
 similar to the material in Section 14 of [NFSv42], expanded to
 include all feature elements.

10.3. Feature Specification Documents

 Features will be documented in the form of a working-group standards-
 track document which define one or more features. Generally, only
 closely related features should be defined in the same document.

 The definition of each of the new features may include one or more
 "feature elements" which change the protocol in any of the ways
 discussed in Section 5. Feature elements include new operations,
 attributes, and enumeration values. Note that in this context,
 "Operations" include both forward and callback operations. The
 functionality of some existing operations may be extended by the
 addition of new flags bits in existing flag words, by new cases in
 existing switched unions, and by valid semantic changes to existing
 operations.

 Such feature definition documents would contain a number of items,
 following the pattern of the NFSv4.2 specification. The only
 difference would be that while the NFSv4.2 specification defines a
 number of features to be incorporated into NFSv4.2, the feature
 definition documents would each define a single feature, or a small
 set of closely related features.

 In addition to a general explanation of the feature(s) in question,
 the items to be included in such feature definition documents would
 be as listed below. In some cases these items, in addition to
 descriptive text, would contain fragments of XDR code, to aid in
 preparation of XDR files that include the additions defined by the
 feature added to the base protocol that is being extended. For
 information regarding preparation of such XDR files, see
 Section 10.4.

 o Description of new operations (corresponding to Sections 15 and 16
 of [NFSv42]). Such descriptions will contain XDR code defining
 the structure the arguments and results of the new operation along
 with preparatory XDR definitions used only by that operation.

 o Description of any modified operations (corresponding to
 Section 15 of [NFSv42]). Such description may contain XDR code

Noveck Expires July 18, 2016 [Page 48]

Internet-Draft NFSv4 Versioning January 2016

 defining the new flag bits, enum values, and cases to be added to
 existing switched unions. Note that addition of new attributes is
 not considered an extension of GETATTR, SETATTR, VERIFY, or
 NVERIFY.

 o Description of new attributes (corresponding to Section 13 of
 [NFSv42]). XDR code defining the types of the attributes would be
 part of this description.

 o Description of any added error codes (corresponding to
 Section 12.1 of [NFSv42]).

 o All operation descriptions, whether for new or modified
 operations, should indicate when operations or the corresponding
 results may be presented as RDMA chunks.

 o A set of XDR code fragments giving the numeric values of added
 operation codes, attribute numbers, and error codes.

 o Descriptions of all other extensions made to existing flag words,
 enums and switched unions used by existing operations. Such
 descriptions will contain XDR code defining the new flag bits,
 enum values, and cases to be added to existing switched unions.

 o Descriptions of all new structures, enums, flag words, and
 switched unions that are used by more than one new operation, or
 which are available for future use by multiple operations. Such
 descriptions will contain XDR code defining the new structures/
 union and assigning the new numeric values for enum and flag bits.

 o A listing giving the valid errors for each new operation and
 callback (corresponds to Sections 12.2 and 12.3 of [NFSv42]).

 o For each feature, a table giving for each feature element that is
 part of the feature, its overall status within the minor version
 and its E-to-F and F-to-E status values. This would be similar to
 the material in Section 14 of [NFSv42] but restricted to the
 feature(s) defined in the document and expanded to include all
 feature elements.

 o A table presenting support requirement for each protocol element
 which is either a part of a feature defined in the document or has
 an F-to-E status with relation with a feature defined in the
 document. This could present the F-to-E status value for each
 relevant combination of feature element and feature. An
 alternative presentation would give, for each protocol element,
 boolean expressions in term of supported features, that allows or
 that guarantees support for the specified element.

Noveck Expires July 18, 2016 [Page 49]

Internet-Draft NFSv4 Versioning January 2016

 o All of the additional Sections required for RFC publication, such
 as "Security Considerations", "IANA considerations", etc.

 Note that the listing above is not intended to define, in detail, the
 structure of the specification. Rather, the intention is to define
 the things it needs to contain. If there would be no content for a
 particular element, there is no need for an empty section
 corresponding to that list element. If it makes more sense to
 describe a new structure together with an extended one, then the need
 for a readily understandable document is primary.

10.4. XDR File Considerations

 As mentioned previously, feature specification documents will
 contain, in addition to description of XDR extensions, XDR code
 fragments that embody those extensions. There will be various
 occasions on which people will have occasion to produce XDR files
 that combine one or more extensions together with the XDR for an
 existing minor version.

 o When a minor version is specified by a number of feature
 specification documents, there will be a need to produce, in as
 simple fashion as possible, the corresponding XDR specification
 document for the new minor version.

 o Within an extensible minor version, there will be a need for those
 developing and testing the feature to have an XDR file that
 incorporates XDR definitions from early drafts of the feature
 specification document.

 o Also, for an extensible minor version, there will be a need to
 periodically produce Consolidated XDR documents that reflect all
 features approved as Proposed Standards and thus incorporated in
 the current minor version.

 o Developers may need to be able to produce XDR files that reflect
 particular combination of approved features, features under
 development or experimental features not yet ready for working
 group consideration.

 We are assuming here that the primary task is producing XDR files and
 that corresponding XDR documents can be produced relatively easily if
 there is a well understood process to produce the underlying XDR
 files.

 The Feature specification document should contain all of the
 necessary lines of XDR codes to be added to a base XDR file to effect

Noveck Expires July 18, 2016 [Page 50]

Internet-Draft NFSv4 Versioning January 2016

 the extension. The only remaining issue is where to place each
 addition to arrive at the correct consolidated file.

 o One could rely on those preparing updated XDR file to place the
 additional XDR code lines in the appropriate place, based on
 inference from the document text.

 o One could rely on the Feature Specification Document to indicate,
 in the descriptive text, where each XDR extension is to be placed.

 o One could formalize a set of conventions whereby the appropriate
 placements are indicated by specific instructions embedded within
 comments within the XDR code fragments to be placed.

10.5. Additional Documents to Support Protocol Extension

 Additional documents will be required from time to time. These
 documents will eventually become RFC’s (informational or standards
 track as described below), but the work of the working group and of
 implementers developing features will be facilitated by a progression
 of document drafts that incorporate information about new features
 that are being developed or have been approved as Proposed Standards.

10.5.1. Minor Version Indexing Document

 One document will organize existing material for a minor version
 undergoing extension so that implementers will not have to scan a
 large set of feature definition documents or minor version
 specifications to find information being sought. Successive drafts
 of this document will serve as an index to the current state of the
 extensible minor version. Some desirable elements of this indexing
 document would include:

 o A list of all feature definition documents that have been approved
 as working group documents but have not yet been approved as
 Proposed Standards.

 o All of the items of indexing material (see Section 10.2)
 appropriately adjusted to reflect the contents of all extensions
 accepted as Proposed Standards.

 The frequency of updates for this document will be affected by
 implementer needs and the ability to easily generate document drafts,
 preferably by automated means. The most desirable situation is one
 in which a new draft is available soon after each feature reaches the
 status of a Proposed Standard.

Noveck Expires July 18, 2016 [Page 51]

Internet-Draft NFSv4 Versioning January 2016

10.5.2. Consolidated XDR Document

 This document will consist of an updated XDR for the protocol as a
 whole including feature elements from all features and minor versions
 accepted as Proposed Standards.

 A new draft should be prepared whenever a new feature within an
 extensible minor version is accepted as a Proposed Standard. In most
 cases, feature developers will be using a suitable XDR which can then
 be reviewed and published. In cases in which multiple features reach
 Proposed Standard status at approximately the same time, a merge of
 the XDR changes made by each feature may be necessary.

10.5.3. XDR Assignment Document

 This document will contain consolidated lists of XDR value
 assignments that are relevant to the protocol extension process. It
 should contain lists of assignments for:

 o operation codes (separate lists for forward operations and for
 callbacks)

 o attribute numbers

 o error codes

 o bits within flag words that have been extended since they were
 first introduced.

 o enumeration values for enumerations which have been extended since
 they were first introduced.

 For each set of assignments, the individual assignments may be of
 three types:

 1. permanent assignments associated with a minor version or a
 feature extension that has achieved Proposed Standard status.

 These assignments are permanent in that the assigned value will
 never be re-used. However, a subsequent minor version may define
 some or all feature elements associated with a feature to be
 mandatory to not implement.

 2. provisional assignments associated with a feature under
 development (i.e., one which has been approved as a working group
 document but has not been approved as a Proposed Standard).

Noveck Expires July 18, 2016 [Page 52]

Internet-Draft NFSv4 Versioning January 2016

 Provisional assignments are not are not permanent and the values
 assigned can be re-used in certain circumstances. In particular,
 when a feature with provisional assignments is not progressing
 toward the goal of eventual Proposed Standard status, the working
 group can judge the feature effort to have been abandoned,
 allowing the codes formerly provisionally allocated to be
 reclaimed and reassigned.

 3. definition of individual assignments or ranges reserved for
 experimental use.

 A new draft of this document should be produced, whenever:

 o A minor version or feature specification is accepted as a Proposed
 Standard.

 o A new feature is accepted for development and a draft of the
 corresponding working-group standards-track document is produced

 o A feature previously accepted for development is abandoned.

 o The working group decides to make some change in assignments for
 experimental use.

10.5.4. Transition of Documents to RFC’s

 Each of these documents should be published as an RFC soon after the
 minor version in question ceases to be considered extensible.
 Typically this will happen when the working group makes the
 specification for the subsequent minor version into a working group
 document. Some specifics about the individual documents are listed
 below:

 o The most current draft of the indexing document for the minor
 version would be published as an informational RFC.

 o The most current draft of the consolidated XDR document should be
 published as a standards-track RFC. It would update the initial
 specification of the minor version

 o The most recent draft of the XDR assignment document should be
 published as an informational RFC.

 Handling of these documents in the event of a post-approval XDR
 correction is discussed in Section 10.7

Noveck Expires July 18, 2016 [Page 53]

Internet-Draft NFSv4 Versioning January 2016

10.6. Documentation of New Minor Versions

 Minor versions should be documented by specifying and explaining the
 changes made relative to the previous minor version.

 Features added to the minor version should be documented in their own
 feature specification documents and normatively referenced.

 Changes to the status or organization of existing features should be
 documented by presenting a summary of the status of all existing
 protocol elements, their relationship to OPTIONAL features, and any
 relevant feature dependencies.

 In addition, to avoid situation where a large number of minor
 versions must be scanned to find the most recent valid treatment of a
 specific protocol element, minor version definition documents will
 contain the indexing material described in Section 10.2.

10.7. Documentation of XDR Changes for Corrections

 In the event of an XDR correction, as discussed above, some document
 updates will be required. For the purposes of this discussion we
 call the minor version for which XDR correction is required minor
 version X and the minor version on which development is occurring
 minor version Y.

 The following discusses the specific updated documents which could be
 required:

 o The specification of the feature in question will have to be
 updated to explain the issue, how it was fixed, and the
 compatibility and upgrade strategy. Normally this will require an
 RFC updating the associated feature specification document.
 However, in the case of a correction to a feature documented in a
 minor version definition document, the RFC will update that
 document instead.

 o An updated XDR for minor version X will be produced and will be
 published as a updated to the minor version specification RFC for
 minor version X.

 When the correction is to feature documented in a minor version
 definition, a single RFC will contain both updates to the minor
 version specification RFC.

 o An updated minor version indexing document for minor version X is
 desirable but not absolutely necessary.

Noveck Expires July 18, 2016 [Page 54]

Internet-Draft NFSv4 Versioning January 2016

 The question of updated minor version indexing documents for minor
 versions between X and Y should be addressed by the working group
 on a case-by-case basis.

 o An updated XDR assignment document will be required. It should be
 based on the most recent such document associated with minor
 version Y and will serve as the basis for later XDR assignment
 drafts for minor version Y.

 The informational RFC’s associated with minor version Y (version
 indexing document and XDR assignment document) will contain the
 effects of the correction when published. Similarly, the minor
 version specification RFC will contain the XDR changes associated
 with the correction.

11. Security Considerations

 Since no substantive protocol changes are proposed here, no security
 considerations apply.

 As features and minor versions are designed and specified in
 standards-track documents, their security issues will be addressed
 and each RFC candidate will receive the appropriate security review
 from the NFSv4 working group and IESG.

12. IANA Considerations

 The current document does not require any actions by IANA.

 Depending on decisions that the working group makes about how to
 address the issues raised in this document, future documents may
 require actions by IANA.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

13.2. Informative References

 [NFSv42] Haynes, T., Ed., "NFS Version 4 Minor Version 2", January
 2016, <http://www.ietf.org/id/
 draft-ietf-nfsv4-minorversion2-40.txt>.

Noveck Expires July 18, 2016 [Page 55]

Internet-Draft NFSv4 Versioning January 2016

 Work in progress.

 [NFSv42-dot-x]
 Haynes, T., Ed., "NFS Version 4 Minor Version 2 Protocol
 External Data Representation Standard (XDR) Description",
 January 2016, <http://www.ietf.org/id/
 draft-ietf-nfsv4-minorversion2-dot-x-40.txt>.

 Work in progress.

 [RFC3530] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "Network File System
 (NFS) version 4 Protocol", RFC 3530, DOI 10.17487/RFC3530,
 April 2003, <http://www.rfc-editor.org/info/rfc3530>.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,
 <http://www.rfc-editor.org/info/rfc5661>.

 [RFC5662] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 External Data Representation Standard (XDR) Description",
 RFC 5662, DOI 10.17487/RFC5662, January 2010,
 <http://www.rfc-editor.org/info/rfc5662>.

 [RFC5663] Black, D., Fridella, S., and J. Glasgow, "Parallel NFS
 (pNFS) Block/Volume Layout", RFC 5663,
 DOI 10.17487/RFC5663, January 2010,
 <http://www.rfc-editor.org/info/rfc5663>.

 [RFC5664] Halevy, B., Welch, B., and J. Zelenka, "Object-Based
 Parallel NFS (pNFS) Operations", RFC 5664,
 DOI 10.17487/RFC5664, January 2010,
 <http://www.rfc-editor.org/info/rfc5664>.

 [RFC7530] Haynes, T., Ed. and D. Noveck, Ed., "Network File System
 (NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/RFC7530,
 March 2015, <http://www.rfc-editor.org/info/rfc7530>.

 [RFC7531] Haynes, T., Ed. and D. Noveck, Ed., "Network File System
 (NFS) Version 4 External Data Representation Standard
 (XDR) Description", RFC 7531, DOI 10.17487/RFC7531, March
 2015, <http://www.rfc-editor.org/info/rfc7531>.

Noveck Expires July 18, 2016 [Page 56]

Internet-Draft NFSv4 Versioning January 2016

Appendix A. Acknowledgements

 The author wishes to thank Tom Haynes of Primary Data for his role in
 getting this effort started and his work in co-authoring the first
 version of this document.

 The author also wishes to thank Chuck Lever and Mike Kepfer of Oracle
 for their thorough document reviews and many helpful suggestions.

Author’s Address

 David Noveck
 Hewlett Packard Enterprise
 165 Dascomb Road
 Andover, MA 01810
 US

 Phone: +1 978 474 2011
 Email: davenoveck@gmail.com

Noveck Expires July 18, 2016 [Page 57]

