
Network File System Version 4 C. Lever, Ed.
Internet-Draft Oracle
Obsoletes: 5666 (if approved) T. Talpey
Intended status: Standards Track Microsoft
Expires: June 3, 2016 December 1, 2015

 Remote Direct Memory Access Transport for Remote Procedure Call
 draft-ietf-nfsv4-rfc5666bis-00

Abstract

 This document describes a protocol providing Remote Direct Memory
 Access (RDMA) as a new transport for Remote Procedure Call (RPC).
 The RDMA transport binding conveys the benefits of efficient, bulk-
 data transport over high-speed networks, while providing for minimal
 change to RPC applications and with no required revision of the
 application RPC protocol, or the RPC protocol itself. This document
 obsoletes RFC 5666.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 3, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Lever & Talpey Expires June 3, 2016 [Page 1]

Internet-Draft RDMA Transport for RPC December 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 3
 1.2. RPC Over RDMA Transports 3
 2. Changes Since RFC 5666 4
 2.1. Changes To The Specification 4
 2.2. Changes To The Protocol 4
 3. Terminology . 5
 3.1. Remote Procedure Calls 5
 3.2. Remote Direct Memory Access 8
 4. Protocol Framework . 10
 4.1. Transfer Models . 10
 4.2. RPC-over-RDMA Framing 10
 4.3. Flow Control . 11
 4.4. XDR Encoding With Chunks 13
 4.5. Data Exchange . 18
 4.6. Message Size . 21
 5. RPC-over-RDMA In Operation 22
 5.1. Fixed Header Fields 22
 5.2. Chunk Lists . 24
 5.3. Forming Messages . 25
 5.4. Memory Registration 28
 5.5. Handling Errors . 29
 5.6. XDR Language Description 30
 5.7. Deprecated Protocol Elements 33
 6. Upper Layer Binding Specifications 33
 6.1. Determining DDP-Eligibility 34
 6.2. Write List Ordering 35
 6.3. DDP-Eligibility Violation 35
 6.4. Other Binding Information 36
 7. RPC Bind Parameters . 36
 8. Bi-directional RPC-over-RDMA 37
 8.1. RPC Direction . 37
 8.2. Backward Direction Flow Control 38
 8.3. Conventions For Backward Operation 40
 8.4. Backward Direction Upper Layer Binding 42
 9. Transport Protocol Extensibility 42
 9.1. Bumping The RPC-over-RDMA Version 43
 10. Security Considerations 43
 11. IANA Considerations . 45
 12. Acknowledgments . 46
 13. Appendices . 46
 13.1. Appendix 1: XDR Examples 46

Lever & Talpey Expires June 3, 2016 [Page 2]

Internet-Draft RDMA Transport for RPC December 2015

 14. References . 47
 14.1. Normative References 47
 14.2. Informative References 49
 Authors’ Addresses . 50

1. Introduction

 This document obsoletes RFC 5666, but makes no operational changes to
 RPC-over-RDMA Version One protocol on the wire. It is published to
 clarify ambiguous text that is subject to multiple interpretations,
 deprecate unimplemented RPC-over-RDMA Version One protocol elements,
 and introduce conventions to allow bi-directional RPC-over-RDMA
 operation.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. RPC Over RDMA Transports

 Remote Direct Memory Access (RDMA) [RFC5040] [RFC5041] [IB] is a
 technique for efficient movement of data between end nodes, which
 becomes increasingly compelling over high-speed transports. By
 directing data into destination buffers as it is sent on a network,
 and placing it via direct memory access by hardware, the double
 benefit of faster transfers and reduced host overhead is obtained.

 Open Network Computing Remote Procedure Call (ONC RPC, or simply,
 RPC) [RFC5531] is a remote procedure call protocol that has been run
 over a variety of transports. Most RPC implementations today use UDP
 or TCP. RPC messages are defined in terms of an eXternal Data
 Representation (XDR) [RFC4506], which provides a canonical data
 representation across a variety of host architectures. An XDR data
 stream is conveyed differently on each type of transport. On UDP,
 RPC messages are encapsulated inside datagrams, while on a TCP byte
 stream, RPC messages are delineated by a record marking protocol. An
 RDMA transport also conveys RPC messages in a unique fashion that
 must be fully described if RPC implementations are to interoperate.

 RDMA transports present new semantics unlike the behaviors of either
 UDP or TCP alone. They retain message delineations like UDP while
 also providing a reliable, sequenced data transfer like TCP. Also,
 they provide the new efficient, bulk-transfer service enabled by
 Remote Direct Memory Access. RDMA transports are therefore naturally
 viewed as a new transport type by RPC.

Lever & Talpey Expires June 3, 2016 [Page 3]

Internet-Draft RDMA Transport for RPC December 2015

 RDMA as a transport will benefit the performance of RPC protocols
 that move large "chunks" of data, since RDMA hardware excels at
 moving data efficiently between host memory and a high-speed network
 with little or no host CPU involvement. In this context, the Network
 File System (NFS) protocol, in all its versions [RFC1094] [RFC1813]
 [RFC7530] [RFC5661], is an obvious beneficiary of RDMA. A complete
 problem statement is discussed in [RFC5532], and related NFSv4 issues
 are discussed in [RFC5661]. Many other RPC-based protocols can also
 benefit.

 Although the RDMA transport described here provides relatively
 transparent support for any RPC application, this document goes
 further in describing mechanisms that can optimize the use of RDMA
 with more active participation by the RPC application.

2. Changes Since RFC 5666

2.1. Changes To The Specification

 The following alterations have been made to the RPC-over-RDMA Version
 One specification:

 o Often implementers familiar with RDMA are not familiar with the
 mechanics of RPC, and vice versa. Section 2 has been expanded to
 introduce and explain key RPC, XDR, and RDMA terminology. These
 terms are now used consistently throughout the specification.

 o Section 3 has been re-organized and split into sub-sections to
 facilitate locating specific requirements and definitions.

 o Section 4 and 5 have been combined for clarity and to improve the
 organization of this information.

 o The specification of the optional Connection Configuration
 Protocol has been removed from the specification, as there are no
 known implementations of the protocol.

 o Sections discussing requirements for Upper Layer Bindings have
 been added.

 o A section discussing RPC-over-RDMA protocol extensibility has been
 added.

2.2. Changes To The Protocol

 The specific changes to the protocol are:

Lever & Talpey Expires June 3, 2016 [Page 4]

Internet-Draft RDMA Transport for RPC December 2015

 o Support for the Read-Read transfer model has been deprecated.
 Read-Read is a slower transfer model than Read-Write, thus
 implementers have chosen not to support it.

 o Support for the RDMA_MSGP message type has been deprecated. It
 has no benefit for RPC programs that place bulk payload items in
 the middle of their argument or result lists, as is typical with
 NFSv4 COMPOUND RPCs [RFC7530]. It is also not beneficial when the
 inline threshold is significantly smaller than the system page
 size.

 o The XDR definition of RPC-over-RDMA Version One has been updated
 (without on-the-wire changes) to align with the terms and concepts
 introduced in this specification.

 o Specific requirements related to handling XDR round-up and
 abstract data types have been added.

 o Clear guidance about Send and Receive buffer size has been added.
 This enables better decisions about when to provide and use the
 Reply chunk.

 o A section specifying bi-directional RPC operation on RPC-over-RDMA
 has been added. This enables the NFSv4.1 backchannel [RFC5661] on
 RPC-over-RDMA Version One transports.

 The protocol version number is not changed because the protocol
 specified in this document fully interoperates with implementations
 of the RPC-over-RDMA Version One protocol specified in [RFC5666].

3. Terminology

3.1. Remote Procedure Calls

 This section introduces key elements of the Remote Procedure Call
 [RFC5531] and External Data Representation [RFC4506] protocols upon
 which RPC-over-RDMA Version One is constructed.

3.1.1. Upper Layer Protocols

 Remote Procedure Calls are an abstraction used to implement the
 operations of an "upper layer protocol," sometimes referred to as a
 ULP. One example of such a protocol is the Network File System
 Version 4.0 [RFC7530].

Lever & Talpey Expires June 3, 2016 [Page 5]

Internet-Draft RDMA Transport for RPC December 2015

3.1.2. Requesters And Responders

 Like a local procedure call, every Remote Procedure Call has a set of
 "arguments" and a set of "results". A calling context is not allowed
 to proceed until the procedure’s results are available to it. Unlike
 a local procedure call, the called procedure is executed remotely
 rather than in the local application’s context.

 The RPC protocol as described in [RFC5531] is fundamentally a
 message-passing protocol between one server and one or more clients.
 ONC RPC transactions are made up of two types of messages:

 CALL Message
 A CALL message, or "Call", requests work. A Call is designated by
 the value CALL in the message’s msg_type field. An arbitrary
 unique value is placed in the message’s xid field.

 REPLY Message
 A REPLY message, or "Reply", reports the results of work requested
 by a Call. A Reply is designated by the value REPLY in the
 message’s msg_type field. The value contained in the message’s
 xid field is copied from the Call whose results are being
 reported.

 An RPC client endpoint, or "requester", serializes an RPC call’s
 arguments and conveys them to a server endpoint via an RPC call
 message. This message contains an RPC protocol header, a header
 describing the requested upper layer operation, and all arguments.

 The server endpoint, or "responder", deserializes the arguments and
 processes the requested operation. It then serializes the
 operation’s results into another byte stream. This byte stream is
 conveyed back to the requester via an RPC reply message. This
 message contains an RPC protocol header, a header describing the
 upper layer reply, and all results. The requester deserializes the
 results and allows the original caller to proceed.

 RPC-over-RDMA is a connection-oriented RPC transport. When a
 connection-oriented transport is used, ONC RPC client endpoints are
 responsible for initiating transport connections, while ONC RPC
 service endpoints wait passively for incoming connection requests.

3.1.3. External Data Representation

 In a heterogenous environment, one cannot assume that all requesters
 and responders represent data the same way. RPC uses eXternal Data
 Representation, or XDR, to translate data types and serialize
 arguments and results. The XDR protocol encodes data independent of

Lever & Talpey Expires June 3, 2016 [Page 6]

Internet-Draft RDMA Transport for RPC December 2015

 the endianness or size of host-native data types, allowing
 unambiguous decoding of data on the receiving end. RPC programs are
 specified by writing an XDR definition of their procedures, argument
 data types, and result data types.

 XDR assumes that the number of bits in a byte (octet) and their order
 are the same on both endpoints and on the physical network. The
 smallest indivisible unit of XDR encoding is a group of four octets
 in little-endian order. XDR also flattens lists, arrays, and other
 abstract data types so they can be conveyed as a simple stream of
 bytes.

 A serialized stream of bytes that is the result of XDR encoding is
 referred to as an "XDR stream." A sending endpoint encodes native
 data into an XDR stream and then transmits that stream to a receiver.
 A receiving endpoint decodes incoming XDR byte streams into its
 native data representation format.

 The function of an RPC transport is to convey RPC messages, each
 encoded as a separate XDR stream, from one endpoint to another.

3.1.3.1. XDR Opaque Data

 Sometimes a data item must be transferred as-is, without encoding or
 decoding. Such a data item is referred to as "opaque data." XDR
 encoding places opaque data items directly into an XDR stream without
 altering its content in any way.

 Typically Upper Layer Protocols or applications manage any needed
 data translation in this case. Examples of opaque data items include
 the contents of files, and generic byte strings.

3.1.3.2. XDR Round-up

 The number of octets in a variable-size data item precedes that item
 in the encoding stream. If the size of an encoded data item is not a
 multiple of four octets, octets containing zero are added to the end
 of the item so that the next encoded data item starts on a four-octet
 boundary. The encoded size of the item is not changed by the
 addition of the extra octets.

 This technique is referred to as "XDR round-up," and the extra octets
 are referred to as "XDR padding". The content of XDR pad octets is
 ignored by receivers.

Lever & Talpey Expires June 3, 2016 [Page 7]

Internet-Draft RDMA Transport for RPC December 2015

3.2. Remote Direct Memory Access

 An RPC requester can be made more efficient if large RPC messages are
 transferred by a third party such as intelligent network interface
 hardware (data movement offload), and placed in the receiver’s memory
 so that no additional adjustment of data alignment has to be made
 (direct data placement). Remote Direct Memory Access, or "RDMA" is a
 network transport technology that enables both optimizations.

3.2.1. Direct Data Placement

 Very often, RPC implementations copy the contents of RPC messages
 into a buffer before being sent. An efficient RPC implementation can
 send bulk data without copying it into a separate send buffer first.

 However, socket-based RPC implementations are often unable to receive
 data directly into its final place in memory. Receivers often need
 to copy incoming data to finish an RPC operation; sometimes, only to
 adjust data alignment.

 In this document, "RDMA" refers to the physical mechanism an RDMA
 transport utilizes when moving data. Though it may not be optimal,
 before an RDMA transfer, the sender may still copy data into place.
 After an RDMA transfer, the receiver may copy that data again to its
 final destination.

 This document uses the term "direct data placement" (or DDP) to refer
 specifically to an optimized data transfer where it is unnecessary
 for a receiving host’s CPU to copy transferred data again after it
 has been received. Not all RDMA-based data transfer qualifies as
 Direct Data Placement, and DDP can be achieved using non-RDMA
 mechanisms.

3.2.2. RDMA Transport Requirements

 The RPC-over-RDMA Version One protocol assumes the physical transport
 provides the following abstract operations. A more complete
 discussion of these operations is found in [RFC5040].

 RDMA Send
 The RDMA provider supports an RDMA Send operation with completion
 signaled at the receiver when data is placed in a pre-posted
 buffer. The amount of transferred data is limited only by the
 size of the receiver’s buffer. Sends complete at the receiver in
 the order they were issued at the sender.

 RDMA Receive

Lever & Talpey Expires June 3, 2016 [Page 8]

Internet-Draft RDMA Transport for RPC December 2015

 Receive endpoints pre-post enough RDMA Receive operations to catch
 incoming RDMA Send operations. To reduce the amount of memory
 that must remain pinned awaiting incoming Sends, receive buffers
 are limited in size and number. Flow-control to prevent
 overrunning receiver resources is provided by the upper layer
 protocol.

 Registered Memory
 All data moved via tagged RDMA operations is resident in
 registered memory at its destination. This protocol assumes that
 each segment of registered memory MUST be identified with a
 steering tag of no more than 32 bits and memory addresses of up to
 64 bits in length.

 RDMA Write
 The RDMA provider supports an RDMA Write operation to directly
 place data in the receiver’s buffer. An RDMA Write is initiated
 by the sender and completion is signaled at the sender. No
 completion is signaled at the receiver. The sender uses a
 steering tag, memory address, and length of the remote destination
 buffer.

 RDMA Writes are not necessarily ordered with respect to one
 another, but are ordered with respect to RDMA Sends. A subsequent
 RDMA Send completion obtained at the receiver guarantees that
 prior RDMA Write data has been successfully placed in the
 receiver’s memory.

 RDMA Read
 The RDMA provider supports an RDMA Read operation to directly
 place peer source data in the requester’s buffer. An RDMA Read is
 initiated by the receiver and completion is signaled at the
 receiver. The receiver provides steering tags, memory addresses,
 and a length for the remote source and local destination buffers.
 Since the peer at the data source receives no notification of RDMA
 Read completion, there is an assumption that on receiving the
 data, the receiver will signal completion with an RDMA Send
 message, so that the peer can free the source buffers and the
 associated steering tags.

 The RPC-over-RDMA Version One protocol is designed to be carried over
 RDMA transports that support the above abstract operations. This
 protocol conveys to the RPC peer information sufficient for that RPC
 peer to direct an RDMA layer to perform transfers containing RPC data
 and to communicate their result(s). For example, it is readily
 carried over RDMA transports such as Internet Wide Area RDMA Protocol
 (iWARP) [RFC5040] [RFC5041], or InfiniBand [IB].

Lever & Talpey Expires June 3, 2016 [Page 9]

Internet-Draft RDMA Transport for RPC December 2015

4. Protocol Framework

4.1. Transfer Models

 A "transfer model" designates which endpoint is responsible for
 performing RDMA Read and Write operations. To enable these
 operations, the peer endpoint first exposes segments of its memory to
 the endpoint performing the RDMA Read and Write operations.

 Read-Read
 Requesters expose their memory to the responder, and the responder
 exposes its memory to requesters. The responder employs RDMA Read
 operations to convey RPC arguments or whole RPC calls. Requesters
 employ RDMA Read operations to convey RPC results or whole RPC
 relies.

 Write-Write
 Requesters expose their memory to the responder, and the responder
 exposes its memory to requesters. Requesters employ RDMA Write
 operations to convey RPC arguments or whole RPC calls. The
 responder employs RDMA Write operations to convey RPC results or
 whole RPC relies.

 Read-Write
 Requesters expose their memory to the responder, but the responder
 does not expose its memory. The responder employs RDMA Read
 operations to convey RPC arguments or whole RPC calls. The
 responder employs RDMA Write operations to convey RPC results or
 whole RPC relies.

 Write-Read
 The responder exposes its memory to requesters, but requesters do
 not expose their memory. Requesters employ RDMA Write operations
 to convey RPC arguments or whole RPC calls. Requesters employ
 RDMA Read operations to convey RPC results or whole RPC relies.

 [RFC5666] specifies the use of both the Read-Read and the Read-Write
 Transfer Model. All current RPC-over-RDMA Version One
 implementations use the Read-Write Transfer Model. Use of the Read-
 Read Transfer Model by RPC-over-RDMA Version One implementations is
 therefore deprecated. Other Transfer Models may be used by a future
 version of RPC-over-RDMA.

4.2. RPC-over-RDMA Framing

 During transmission, the XDR stream containing an RPC message is
 preceded by an RPC-over-RDMA header. This header is analogous to the

Lever & Talpey Expires June 3, 2016 [Page 10]

Internet-Draft RDMA Transport for RPC December 2015

 record marking used for RPC over TCP but is more extensive, since
 RDMA transports support several modes of data transfer.

 All transfers of an RPC message begin with an RDMA Send that
 transfers an RPC-over-RDMA header and part or all of the accompanying
 RPC message. Because the size of what may be transmitted via RDMA
 Send is limited by the size of the receiver’s pre-posted buffers, the
 RPC-over-RDMA transport provides a number of methods to reduce the
 amount transferred via RDMA Send. Parts of RPC messages not
 transferred via RDMA Send are transferred using RDMA Read or RDMA
 Write operations.

 RPC-over-RDMA framing replaces all other RPC framing (such as TCP
 record marking) when used atop an RPC-over-RDMA association, even
 when the underlying RDMA protocol may itself be layered atop a
 transport with a defined RPC framing (such as TCP).

 It is however possible for RPC-over-RDMA to be dynamically enabled in
 the course of negotiating the use of RDMA via an Upper Layer Protocol
 exchange. Because RPC framing delimits an entire RPC request or
 reply, the resulting shift in framing must occur between distinct RPC
 messages, and in concert with the transport.

4.3. Flow Control

 It is critical to provide RDMA Send flow control for an RDMA
 connection. RDMA receive operations can fail if a pre-posted receive
 buffer is not available to accept an incoming RDMA Send, and repeated
 occurrences of such errors can be fatal to the connection. This is a
 departure from conventional TCP/IP networking where buffers are
 allocated dynamically as part of receiving messages.

 It is not practical to provide for fixed credit limits at the
 responder. Fixed limits scale poorly, since posted buffers are
 dedicated to the associated connection until consumed by receive
 operations. In addition, for protocol correctness, a responder must
 always be able to reply to requesters, whether or not the responder
 has posted buffers to accept more requests.

 Therefore, flow control for RDMA Send operations is implemented as a
 simple request/grant protocol in the RPC-over-RDMA header associated
 with each RPC message. The RPC-over-RDMA header for RPC call
 messages contains a requested credit value for the responder, which
 MAY be dynamically adjusted by the caller to match its expected
 needs.

 The RPC-over-RDMA header for RPC reply messages provides the granted
 result, which MAY have any value except it MUST NOT be zero when no

Lever & Talpey Expires June 3, 2016 [Page 11]

Internet-Draft RDMA Transport for RPC December 2015

 in-progress operations are present at the responder, since such a
 value would result in deadlock. The value MAY be adjusted up or down
 at each opportunity to match the responder’s needs or policies.

 The requester MUST NOT send unacknowledged requests in excess of this
 granted responder credit limit. If the limit is exceeded, the RDMA
 layer may signal an error, possibly terminating the connection. Even
 if an error does not occur, it is OPTIONAL that the responder handle
 the excess request(s). it MAY return an RPC error to the requester

 Note that the never-zero requirement implies that an responder MUST
 always provide at least one credit to each connected requester from
 which no requests are outstanding. The requester would deadlock
 otherwise, unable to send another request.

 While RPC calls complete in any order, the current flow control limit
 at the responder is known to the requester from the Send ordering
 properties. It is always the most recent responder-granted credit
 value minus the number of requests in flight.

 Certain RDMA implementations may impose additional flow control
 restrictions, such as limits on RDMA Read operations in progress at
 the responder. Because these operations are outside the scope of
 this protocol, they are not addressed and SHOULD be provided for by
 other layers.

4.3.1. Initial Connection State

 There are two operational parameters for each connection:

 Credit Limit
 The number of available receive buffers is a connection’s credit
 limit. The credit limit is advertised in the RPC-over-RDMA header
 in each RPC message, and can change during the lifetime of a
 connection.

 Inline Threshold
 The maximum RDMA message size that can be received is a
 connection’s "inline threshold." This is the size of the smallest
 posted receive buffer, though usually all of a connection’s
 receive buffers are the same size. Unlike the connection’s credit
 limit, the inline threshold value is not advertised to peers via
 the RPC-over-RDMA Version One protocol, and there is no provision
 for the inline threshold value to change during the lifetime of an
 RPC-over-RDMA Version One connection.

 The longevity of a transport connection requires that sending
 endpoints respect the resource limits of peer receivers. However,

Lever & Talpey Expires June 3, 2016 [Page 12]

Internet-Draft RDMA Transport for RPC December 2015

 when a connection is first established, peers cannot know how many
 receive buffers the other has, nor how large the buffers are.

 To provide a basis for an initial exchange of RPC requests, each RPC-
 over-RDMA connection is assumed to provide a basic level of
 interoperability: the ability to exchange at least one RPC message at
 a time that is 1024 bytes in size. A responder MAY exceed this basic
 level of configuration, but a requester MUST NOT assume more than one
 credit is available, and MUST receive a valid reply from the
 responder carrying the actual number of available credits, prior to
 sending its next request.

 In the absense of an exchange of buffer size information (such as the
 Connection Configuration Protocol described in [RFC5666]), senders
 MUST assume the receiver’s inline threshold is 1024 bytes.
 Implementations MUST support an inline threshold of 1024 bytes, but
 MAY support larger inline thresholds.

4.4. XDR Encoding With Chunks

 On traditional RPC transports, XDR data items in an RPC message are
 encoded as a contiguous sequence of bytes for network transmission.
 However, in the case of an RDMA transport, during XDR encoding it can
 be determined that (for instance) an opaque byte array is large
 enough to be moved via an RDMA Read or RDMA Write operation.

 RPC-over-RDMA Version One provides a mechanism for moving part an RPC
 message via a separate RDMA data transfer. A contiguous piece of an
 XDR stream that is split out and moved via a separate RDMA operation
 is known as a "chunk." The sender removes the chunk data out from
 the XDR stream conveyed via RDMA Send, and the receiver inserts it
 before handing the reconstructed stream to the Upper Layer.

4.4.1. DDP-Eligibility

 Only an XDR data item that might benefit from Direct Data Placement
 should be moved to a chunk. The eligibility of specific XDR data
 items to be moved as a chunk, as opposed to being left in the XDR
 stream, is not specified by this document. The Upper Layer Protocol
 MUST determine which items in its XDR definition are allowed to use
 Direct Data Placement. Therefore an additional specification is
 needed that describes how an Upper Layer Protocol enables Direct Data
 Placement. The set of requirements for a ULP to use an RDMA
 transport is known as an "Upper Layer Binding" specification, or ULB.

 An Upper Layer Binding states which specific individual XDR data
 items in an Upper Layer Protocol MAY be transferred via Direct Data
 Placement. This document will refer to such XDR data items as "DDP-

Lever & Talpey Expires June 3, 2016 [Page 13]

Internet-Draft RDMA Transport for RPC December 2015

 eligible". All other XDR data items MUST NOT be placed in a chunk.
 RPC-over-RDMA Version One uses RDMA Read and Write operations to
 transfer DDP-eligible data that has been placed in chunks.

 The details and requirements for Upper Layer Bindings are discussed
 in full in Section 6.

4.4.2. RDMA Segments

 When encoding an RPC message that contains a DDP-eligible data item,
 the RPC-over-RDMA transport does not place the item into the RPC
 message’s XDR stream. Instead, it records in the RPC-over-RDMA
 header the address and size of the memory region containing the data
 item. The requester sends this information for DDP-eligible data
 items in both RPC calls and replies. The responder uses this
 information to initiate RDMA Read and Write operations on the memory
 regions.

 An "RDMA segment", or just "segment", is an RPC-over-RDMA header data
 object that contain the precise co-ordinates of a contiguous memory
 region that is to be conveyed via one or more RDMA Read or RDMA Write
 operations. The following fields are contained in a segment:

 Handle
 Steering tag or handle obtained when the segment’s memory is
 registered for RDMA. Sometimes known as an R_key.

 Length
 The length of the segment in bytes.

 Offset
 The offset or beginning memory address of the segment.

 See [RFC5040] for further discussion of the meaning of these fields.

4.4.3. Chunks

 A "chunk" refers to a portion of XDR stream data that is moved via
 RDMA Read or Write operations. Chunk data is removed from the
 sender’s XDR stream, transferred by separate RDMA operations, and
 then re-inserted into the receiver’s XDR stream.

 Each chunk consists of one or more RDMA segments. Each segment
 represents a single contiguous piece of that chunk.

 Except in special cases, a chunk contains exactly one XDR data item.
 This makes it straightforward to remove chunks from an XDR stream
 without affecting XDR alignment.

Lever & Talpey Expires June 3, 2016 [Page 14]

Internet-Draft RDMA Transport for RPC December 2015

 +----------------+ +----------------+------------------
 | RPC-over-RDMA | | |
 | header w/ | | RPC Header | Non-chunk args/results
 | segments | | |
 +----------------+ +----------------+------------------
 |
 +-> Chunk A
 +-> Chunk B
 +-> Chunk C
 . . .

 Block diagram of an RPC-over-RDMA message

 Not every message has chunks associated with it. The structure of
 the RPC-over-RDMA header is covered in Section 5.

4.4.3.1. Counted Arrays

 If a chunk is to move a counted array data type, the count of array
 elements MUST remain in the XDR stream, while the array elements MUST
 be moved to the chunk. For example, when encoding an opaque byte
 array as a chunk, the count of bytes stays in the XDR stream, while
 the bytes in the array are removed from the XDR stream and
 transferred via the chunk. Any byte count left in the XDR stream
 MUST match the sum of the lengths of the segments making up the
 chunk. If they do not agree, an RPC protocol encoding error results.

 Individual array elements appear in the chunk in their entirety. For
 example, when encoding an array of arrays as a chunk, the count of
 items in the enclosing array stays in the XDR stream, but each
 enclosed array, including its item count, is transferred as part of
 the chunk.

4.4.3.2. Optional-data And Unions

 If a chunk is to move an optional-data data type, the "is present"
 field MUST remain in the XDR stream, while the data, if present, MUST
 be moved to the chunk.

 A union data type should never be made DDP-eligible, but one or more
 of its arms may be DDP-eligible.

4.4.4. Read Chunks

 A "Read chunk" represents an XDR data item that is to be pulled from
 the requester to the responder using RDMA Read operations.

Lever & Talpey Expires June 3, 2016 [Page 15]

Internet-Draft RDMA Transport for RPC December 2015

 A Read chunk is a list of one or more RDMA segments. Each segment in
 a Read chunk has an additional Position field.

 Position
 For data that is to be encoded, the byte offset in the RPC message
 XDR stream where the receiver re-inserts the chunk data. The byte
 offset MUST be computed from the beginning of the RPC message, not
 the beginning of the RPC-over-RDMA header. All segments belonging
 to the same Read chunk have the same value in their Position
 field.

 While constructing the RPC call, the requester registers memory
 regions containing data in Read chunks. It advertises these chunks
 in the RPC-over-RDMA header of the RPC call.

 After receiving the RPC call via an RDMA Send operation, the
 responder transfers the chunk data from the requester using RDMA Read
 operations. The responder reconstructs the transferred chunk data by
 concatenating the contents of each segment, in list order, into the
 RPC call XDR stream. The first segment begins at the XDR position in
 the Position field, and subsequent segments are concatenated
 afterwards until there are no more segments left at that XDR
 Position.

4.4.4.1. Read Chunk Round-up

 XDR requires each encoded data item to start on four-byte alignment.
 When an odd-length data item is marshaled, its length is encoded
 literally, while the data is padded so the next data item can start
 on a four-byte boundary in the XDR stream. Receivers ignore the
 content of the pad bytes.

 Data items remaining in the XDR stream must all adhere to the above
 padding requirements. When a Read chunk is removed from an XDR
 stream, the requester MUST remove any needed XDR padding for that
 chunk as well. Alignment of the items remaining in the stream is
 unaffected.

 The length of a Read chunk is the sum of the lengths of the segments
 that comprise it. If this sum is not a multiple of four, the
 requester MAY choose to send a Read chunk without any XDR padding.
 The responder MUST be prepared to provide appropriate round-up in its
 reconstructed XDR stream if the requester provides no actual round-up
 in a Read chunk.

 The Position field in read segments indicates where the containing
 Read chunk starts in the RPC message XDR stream. The value in this
 field MUST be a multiple of four. Moreover, all segments in the same

Lever & Talpey Expires June 3, 2016 [Page 16]

Internet-Draft RDMA Transport for RPC December 2015

 Read chunk share the same Position value, even if one or more of the
 segments have a non-four-byte aligned length.

4.4.4.2. Decoding Read Chunks

 XDR decoding moves data from an XDR stream into a data structure
 provided by an RPC application. Where elements of the destination
 data structure are buffers or strings, the RPC application can either
 pre-allocate storage to receive the data, or leave the string or
 buffer fields null and allow the XDR decode stage of RPC processing
 to automatically allocate storage of sufficient size.

 When decoding a message from an RDMA transport, the receiver first
 decodes the chunk lists from the RPC-over-RDMA header, then proceeds
 to decode the body of the RPC message. Whenever the XDR offset in
 the decode stream matches that of a Read chunk, the transport
 initiates an RDMA Read to bring over the chunk data into locally
 registered memory for the destination buffer.

 When processing an RPC request, the responder acknowledges its
 completion of use of the source buffers by simply replying to the
 requester. The requester may then free all source buffers advertised
 by the request.

4.4.5. Write Chunks

 A "Write chunk" represents an XDR data item that is to be pushed from
 the responder to the requester using RDMA Write operations.

 A Write chunk is an array of one or more RDMA segments. Segments in
 a Write chunk do not have a Position field because Write chunks are
 provided by a requester long before the responder prepares the reply
 XDR stream.

 While constructing the RPC call, the requester also sets up memory
 regions to catch DDP-eligible reply data. The requester provides as
 many segments as needed to accommodate the largest possible size of
 the data item in each Write chunk.

 The responder transfers the chunk data to the requester using RDMA
 Write operations. The responder copies the responder’s Write chunk
 segments into the RPC-over-RDMA header to be sent with the reply.
 The responder updates the segment length fields to reflect the actual
 amount of data that is being returned in the chunk. The updated
 length of a Write chunk segment MAY be zero if the segment was not
 filled by the responder. However the responder MUST NOT change the
 number of segments in the Write chunk.

Lever & Talpey Expires June 3, 2016 [Page 17]

Internet-Draft RDMA Transport for RPC December 2015

 The responder then sends the RPC reply via an RDMA Send operation.
 After receiving the RPC reply, the requester reconstructs the
 transferred data by concatenating the contents of each segment, in
 array order, into RPC reply XDR stream.

4.4.5.1. Unused Write Chunks

 There are occasions when a requester provides a Write chunk but the
 responder does not use it. For example, an Upper Layer Protocol may
 have a union result where some arms of the union contain a DDP-
 eligible data item, and other arms do not. To return an unused Write
 chunk, the responder MUST set the length of all segments in the chunk
 to zero.

 Unused write chunks, or unused bytes in write chunk segments, are not
 returned as results and their memory is returned to the Upper Layer
 as part of RPC completion. However, the RPC layer MUST NOT assume
 that the buffers have not been modified.

4.4.5.2. Write Chunk Round-up

 XDR requires each encoded data item to start on four-byte alignment.
 When an odd-length data item is marshaled, its length is encoded
 literally, while the data is padded so the next data item can start
 on a four-byte boundary in the XDR stream. Receivers ignore the
 content of the pad bytes.

 Data items remaining in the XDR stream must all adhere to the above
 padding requirements. When a Write chunk is removed from an XDR
 stream, the requester MUST remove any needed XDR padding for that
 chunk as well. Alignment of the items remaining in the stream is
 unaffected.

 The length of a Write chunk is the sum of the lengths of the segments
 that comprise it. If this sum is not a multiple of four, the
 responder MAY choose not to write XDR padding. The requester does
 not know the actual length of a Write chunk when it is prepared, but
 it SHOULD provide enough segments to accommodate any needed XDR
 padding. The requester MUST be prepared to provide appropriate
 round-up in its reconstructed XDR stream if the responder provides no
 actual round-up in a Write chunk.

4.5. Data Exchange

 In summary, there are three mechanisms for moving data between
 requester and responder.

 Inline

Lever & Talpey Expires June 3, 2016 [Page 18]

Internet-Draft RDMA Transport for RPC December 2015

 Data is moved between requester and responder via an RDMA Send
 operation.

 RDMA Read
 Data is moved between requester and responder via an RDMA Read
 operation. Address and offset are obtained from a Read chunk in
 the requester’s RPC call message.

 RDMA Write
 Data is moved from responder to requester via an RDMA Write
 operation. Address and offset are obtained from a Write chunk in
 the requester’s RPC call message.

 Many combinations are possible. For instance, an RPC call may
 contain some inline data along with Read or Write chunks. The reply
 to that call may have chunks that the responder RDMA Writes back to
 the requester. The following diagrams illustrate RPC calls that use
 these methods to move RPC message data.

 Requester Responder
 | RPC Call |
 Send | ------------------------------> |
 | |
 | RPC Reply |
 | <------------------------------ | Send

 An RPC with no chunks in the call or reply messages

 Requester Responder
 | RPC Call + Write chunks |
 Send | ------------------------------> |
 | |
 | Chunk 1 |
 | <------------------------------ | Write
 | : |
 | Chunk n |
 | <------------------------------ | Write
 | |
 | RPC Reply |
 | <------------------------------ | Send

 An RPC with write chunks in the call message

Lever & Talpey Expires June 3, 2016 [Page 19]

Internet-Draft RDMA Transport for RPC December 2015

 In the presence of write chunks, RDMA ordering guarantees that all
 data in the RDMA Write operations has been placed in memory prior to
 the requester’s RPC reply processing.

 Requester Responder
 | RPC Call + Read chunks |
 Send | ------------------------------> |
 | |
 | Chunk 1 |
 | +------------------------------ | Read
 | v-----------------------------> |
 | : |
 | Chunk n |
 | +------------------------------ | Read
 | v-----------------------------> |
 | |
 | RPC Reply |
 | <------------------------------ | Send

 An RPC with read chunks in the call message

 Requester Responder
 | RPC Call + Read and Write chunks |
 Send | ------------------------------> |
 | |
 | Read chunk 1 |
 | +------------------------------ | Read
 | v-----------------------------> |
 | : |
 | Read chunk n |
 | +------------------------------ | Read
 | v-----------------------------> |
 | |
 | Write chunk 1 |
 | <------------------------------ | Write
 | : |
 | Write chunk n |
 | <------------------------------ | Write
 | |
 | RPC Reply |
 | <------------------------------ | Send

 An RPC with read and write chunks in the call message

Lever & Talpey Expires June 3, 2016 [Page 20]

Internet-Draft RDMA Transport for RPC December 2015

4.6. Message Size

 The receiver of RDMA Send operations is required by RDMA to have
 previously posted one or more adequately sized buffers (see
 Section 4.3.1). Memory savings can be achieved on both requesters
 and responders by leaving the inline threshold small.

4.6.1. Short Messages

 RPC messages are frequently smaller than the connection’s inline
 threshold.

 For example, the NFS version 3 GETATTR request is only 56 bytes: 20
 bytes of RPC header, plus a 32-byte file handle argument and 4 bytes
 for its length. The reply to this common request is about 100 bytes.

 Since all RPC messages conveyed via RPC-over-RDMA require an RDMA
 Send operation, the most efficient way to send an RPC message that is
 smaller than the connection’s inline threshold is to append its XDR
 stream directly to the buffer carrying the RPC-over-RDMA header. An
 RPC-over-RDMA header with a small RPC call or reply message
 immediately following is transferred using a single RDMA Send
 operation. No RDMA Read or Write operations are needed.

4.6.2. Chunked Messages

 If DDP-eligible data items are present in an RPC message, a sender
 MAY remove them from the RPC message, and use RDMA Read or Write
 operations to move that data. The RPC-over-RDMA header with the
 shortened RPC call or reply message immediately following is
 transferred using a single RDMA Send operation. Removed DDP-eligible
 data items are conveyed using RDMA Read or Write operations using
 additional information provided in the RPC-over-RDMA header.

4.6.3. Long Messages

 When an RPC message is larger than the connection’s inline threshold
 and the Upper Layer Binding does not identify any DDP-eligible data
 items in the requested operation that may be moved separately, the
 RDMA transport MUST use RDMA Read and Write operations to convey the
 whole RPC message. This mechanism is referred to as a "Long
 Message."

 To send an RPC message as a Long Message, the sender conveys only the
 RPC-over-RDMA header with an RDMA Send operation. The RPC message
 itself is not included in the Send buffer. Instead, the requester
 provides chunks that the responder uses to move the whole RPC
 message.

Lever & Talpey Expires June 3, 2016 [Page 21]

Internet-Draft RDMA Transport for RPC December 2015

 Long RPC call
 To handle an RPC request using a Long Message, the requester
 provides a special Read chunk that contains the RPC call’s XDR
 stream. Every segment in this Read chunk MUST contain zero in its
 Position field. This chunk is known as a "Position Zero Read
 chunk."

 Long RPC reply
 To handle an RPC reply using a Long Message, the requester
 provides a single special Write chunk, known as the "Reply chunk",
 that contains the RPC reply’s XDR stream. The requester sizes the
 Reply chunk to accommodate the largest possible expected reply for
 that Upper Layer operation.

 Though the purpose of a Long Message is to handle large RPC messages,
 requesters MAY use a Long Message at any time to convey an RPC call.
 Responders SHOULD use a Long Message whenever a Reply chunk has been
 provided by a requester. Both types of special chunk MAY be present
 in the same RPC message.

 Because these special chunks contain a whole RPC message, any XDR
 data item MAY appear in one of these special chunks without regard to
 its DDP-eligibility. DDP-eligible data items MAY be removed from
 these special chunks and conveyed via normal chunks, but non-eligible
 data items MUST NOT appear in normal chunks.

5. RPC-over-RDMA In Operation

 An RPC-over-RDMA Version One header precedes all RPC messages
 conveyed across an RDMA transport. This header includes a copy of
 the message’s transaction ID, data for RDMA flow control credits, and
 lists of memory addresses used for RDMA Read and Write operations.
 All RPC-over-RDMA header content MUST be XDR encoded.

 RPC message layout is unchanged from that described in [RFC5531]
 except for the possible removal of data items that are moved by RDMA
 Read or Write operations. If an RPC message (along with its RPC-
 over-RDMA header) is larger than the connection’s inline threshold
 even after any large chunks are removed, then the RPC message MAY be
 moved separately as a chunk, leaving just the RPC-over-RDMA header in
 the RDMA Send.

5.1. Fixed Header Fields

 The RPC-over-RDMA header begins with four fixed 32-bit fields that
 MUST be present and that control the RDMA interaction including RDMA-
 specific flow control. These four fields are:

Lever & Talpey Expires June 3, 2016 [Page 22]

Internet-Draft RDMA Transport for RPC December 2015

5.1.1. Transaction ID (XID)

 The XID generated for the RPC call and reply. Having the XID at a
 fixed location in the header makes it easy for the receiver to
 establish context as soon as the message arrives. This XID MUST be
 the same as the XID in the RPC header. The receiver MAY perform its
 processing based solely on the XID in the RPC-over-RDMA header, and
 thereby ignore the XID in the RPC header, if it so chooses.

5.1.2. Version number

 For RPC-over-RDMA Version One, this field MUST contain the value 1
 (one). Further discussion of protocol extensibility can be found in
 Section 9.

5.1.3. Flow control credit value

 When sent in an RPC call message, the requested credit value is
 provided. When sent in an RPC reply message, the granted credit
 value is returned. RPC calls SHOULD NOT be sent in excess of the
 currently granted limit. Further discussion of flow control can be
 found in Section 4.3.

5.1.4. Message type

 o RDMA_MSG = 0 indicates that chunk lists and an RPC message follow.
 The format of the chunk lists is discussed below.

 o RDMA_NOMSG = 1 indicates that after the chunk lists there is no
 RPC message. In this case, the chunk lists provide information to
 allow the responder to transfer the RPC message using RDMA Read or
 Write operations.

 o RDMA_MSGP = 2 is reserved, and no longer used.

 o RDMA_DONE = 3 is reserved, and no longer used.

 o RDMA_ERROR = 4 is used to signal a responder-detected error in
 RDMA chunk encoding.

 For a message of type RDMA_MSG, the four fixed fields are followed by
 the Read and Write lists and the Reply chunk (though any or all three
 MAY be marked as not present), then an RPC message, beginning with
 its XID field. The Send buffer holds two separate XDR streams: the
 first XDR stream contains the RPC-over-RDMA header, and the second
 XDR stream contains the RPC message.

Lever & Talpey Expires June 3, 2016 [Page 23]

Internet-Draft RDMA Transport for RPC December 2015

 For a message of type RDMA_NOMSG, the four fixed fields are followed
 by the Read and Write chunk lists and the Reply chunk (though any or
 all three MAY be marked as not present). The Send buffer holds one
 XDR stream which contains the RPC-over-RDMA header.

 For a message of type RDMA_ERROR, the four fixed fields are followed
 by formatted error information.

 The above content (the fixed fields, the chunk lists, and the RPC
 message, when present) MUST be conveyed via a single RDMA Send
 operation. A gather operation on the Send can be used to marshal the
 separate RPC-over-RDMA header, the chunk lists, and the RPC message
 itself. However, the total length of the gathered send buffers
 cannot exceed the peer’s inline threshold.

5.2. Chunk Lists

 The chunk lists in an RPC-over-RDMA Version One header are three XDR
 optional-data fields that MUST follow the fixed header fields in
 RDMA_MSG and RDMA_NOMSG type messages. Read Section 4.19 of
 [RFC4506] carefully to understand how optional-data fields work.
 Examples of XDR encoded chunk lists are provided in Section 13.1 to
 aid understanding.

5.2.1. Read List

 Each RPC-over-RDMA Version One header has one "Read list." The Read
 list is a list of zero or more Read segments, provided by the
 requester, that are grouped by their Position fields into Read
 chunks. Each Read chunk advertises the locations of data the
 responder is to pull via RDMA Read operations. The requester SHOULD
 sort the chunks in the Read list in Position order.

 Via a Position Zero Read Chunk, a requester may provide part or all
 of an entire RPC call message as the first chunk in this list.

 The Read list MAY be empty if the RPC call has no argument data that
 is DDP-eligible and the Position Zero Read Chunk is not being used.

5.2.2. Write List

 Each RPC-over-RDMA Version One header has one "Write list." The
 Write list is a list of zero or more Write chunks, provided by the
 requester. Each Write chunk is an array of RDMA segments, thus the
 Write list is a list of counted arrays. Each Write chunk advertises
 receptacles for DDP-eligible data to be pushed by the responder.

Lever & Talpey Expires June 3, 2016 [Page 24]

Internet-Draft RDMA Transport for RPC December 2015

 When a Write list is provided for the results of the RPC call, the
 responder MUST provide any corresponding data via RDMA Write to the
 memory referenced in the chunk’s segments. The Write list MAY be
 empty if the RPC operation has no DDP-eligible result data.

 When multiple Write chunks are present, the responder fills in each
 Write chunk with a DDP-eligible result until either there are no more
 results or no more Write chunks. An Upper Layer Binding MUST
 determine how Write list entries are mapped to procedure arguments
 for each Upper Layer procedure. For details, see Section 6.

 The RPC reply conveys the size of result data by returning the Write
 list to the requester with the lengths rewritten to match the actual
 transfer. Decoding the reply therefore performs no local data
 transfer but merely returns the length obtained from the reply.

 Each decoded result consumes one entry in the Write list, which in
 turn consists of an array of RDMA segments. The length of a Write
 chunk is therefore the sum of all returned lengths in all segments
 comprising the corresponding list entry. As each Write chunk is
 decoded, the entire entry is consumed.

5.2.3. Reply Chunk

 Each RPC-over-RDMA Version One header has one "Reply Chunk." The
 Reply Chunk is a Write chunk, provided by the requester. The Reply
 Chunk is a single counted array of RDMA segments. A responder MAY
 convey part or all of an entire RPC reply message in this chunk.

 A requester provides the Reply chunk whenever it predicts the
 responder’s reply might not fit in an RDMA Send operation. A
 requester MAY choose to provide the Reply chunk even when the
 responder can return only a small reply.

5.3. Forming Messages

5.3.1. Short Messages

 A Short Message without chunks is contained entirely within a single
 RDMA Send Operation. Since the RPC call message immediately follows
 the RPC-over-RDMA header in the send buffer, the requester MUST set
 the message type to RDMA_MSG.

Lever & Talpey Expires June 3, 2016 [Page 25]

Internet-Draft RDMA Transport for RPC December 2015

 <------------------ RPC-over-RDMA header --------------->
 +--------+---------+---------+------------+-------------+ +----------
 | | | | | NULL | | Whole
 | XID | Version | Credits | RDMA_MSG | Chunk Lists | | RPC
 | | | | | | | Message
 +--------+---------+---------+------------+-------------+ +----------

5.3.2. Chunked Messages

 A Chunked Message is similar to a Short Message, but the RPC message
 does not contain the chunk data. Since the RPC call message
 immediately follows the RPC-over-RDMA header in the send buffer, the
 requester MUST set the message type to RDMA_MSG.

 <------------------ RPC-over-RDMA header --------------->
 +--------+---------+---------+------------+-------------+ +----------
 | | | | | | | Modified
 | XID | Version | Credits | RDMA_MSG | Chunk Lists | | RPC
 | | | | | | | Message
 +--------+---------+---------+------------+-------------+ +----------
 |
 | +----------
 | |
 +->| Chunks
 |
 +----------

5.3.3. Long Call Messages

 To send a Long Call Message, the requester registers the memory
 containing the RPC call message and adds a chunk to the Read List at
 Position Zero. Since the RPC call message does not follow the RPC-
 over-RDMA header in the send buffer, the requester MUST set the
 message type to RDMA_NOMSG.

Lever & Talpey Expires June 3, 2016 [Page 26]

Internet-Draft RDMA Transport for RPC December 2015

 <------------------ RPC-over-RDMA header --------------->
 +--------+---------+---------+------------+-------------+
 | | | | | |
 | XID | Version | Credits | RDMA_NOMSG | Chunk Lists |
 | | | | | |
 +--------+---------+---------+------------+-------------+
 |
 | +----------
 | | RPC Call
 +->|
 | Message
 +----------

 If a responder gets an RPC-over-RDMA header with a message type of
 RDMA_NOMSG and finds an initial Read list entry with a zero XDR
 position, it allocates a registered buffer and issues an RDMA Read of
 the RPC message into it. The responder then proceeds to XDR decode
 the RPC message as if it had received it with the Send data. Further
 decoding may issue additional RDMA Reads to bring over additional
 chunks.

 Requester Responder
 | RDMA-over-RPC Header |
 Send | ------------------------------> |
 | |
 | Long RPC Call Msg |
 | <------------------------------ | Read
 | ------------------------------> |
 | |
 | RDMA-over-RPC Reply |
 | <------------------------------ | Send

 A long call RPC with request supplied via RDMA Read

5.3.4. Long Reply Messages

 To send a Long Reply Message, the requester MAY register a large
 buffer into which the responder can write an RPC reply. This buffer
 is passed to the responder in the RPC call message as the Reply
 chunk.

 If the responder’s reply message is too long to return with an RDMA
 Send operation, even after Write chunks are removed, then the
 responder performs an RDMA Write of the RPC reply message into the
 buffer indicated by the Reply chunk. Since the RPC reply message

Lever & Talpey Expires June 3, 2016 [Page 27]

Internet-Draft RDMA Transport for RPC December 2015

 does not follow the RPC-over-RDMA header in the send buffer, the
 responder MUST set the message type to RDMA_NOMSG.

 <------------------ RPC-over-RDMA header --------------->
 +--------+---------+---------+------------+-------------+
 | | | | | |
 | XID | Version | Credits | RDMA_NOMSG | Chunk Lists |
 | | | | | |
 +--------+---------+---------+------------+-------------+
 |
 | +----------
 | | RPC Reply
 +->|
 | Message
 +----------

 Requester Responder
 | RPC Call with Reply chunk |
 Send | ------------------------------> |
 | |
 | Long RPC Reply Msg |
 | <------------------------------ | Write
 | RDMA-over-RPC Header |
 | <------------------------------ | Send

 An RPC with long reply returned via RDMA Write

 The use of RDMA Write to return long replies requires that the
 requester anticipates a long reply and has some knowledge of its size
 so that an adequately sized buffer can be allocated. Typically the
 Upper Layer Protocol can limit the size of RPC replies appropriately.

 It is possible for a single RPC procedure to employ both a long call
 for its arguments and a long reply for its results. However, such an
 operation is atypical, as few upper layers define such exchanges.

5.4. Memory Registration

 RDMA requires that all data be transferred between registered memory
 regions at the source and destination. All protocol headers as well
 as separately transferred data chunks use registered memory. Since
 the cost of registering and de-registering memory can be a large
 proportion of the RDMA transaction cost, it is important to minimize
 registration activity. This is easily achieved within RPC-controlled

Lever & Talpey Expires June 3, 2016 [Page 28]

Internet-Draft RDMA Transport for RPC December 2015

 memory by allocating chunk list data and RPC headers in a reusable
 way from pre-registered pools.

 Data chunks transferred via RDMA Read and Write MAY occupy memory
 that persists outside the bounds of the RPC transaction. Hence, the
 default behavior of an RPC-over-RDMA transport is to register and
 invalidate these chunks on every RPC transaction. The requester
 transport implementation must ensure that these memory regions are
 properly fenced from the responder before allowing Upper Layer access
 to the data contained in them.

 The interface by which an upper-layer implementation communicates the
 eligibility of a data item locally to RPC for chunking is out of
 scope for this specification. Depending on the implementation and
 constraints imposed by Upper Layer Bindings, it is possible to
 implement an RPC chunking facility that is transparent to upper
 layers. However, such implementations may lead to inefficiencies,
 either because they require the RPC layer to perform expensive
 registration and de-registration of memory "on the fly", or they may
 require using RDMA chunks in reply messages, along with the resulting
 additional handshaking with the RPC-over-RDMA peer. However, these
 issues are internal and generally confined to the local interface
 between RPC and its upper layers, one in which implementations are
 free to innovate. The only requirement is that the resulting RPC-
 over-RDMA protocol sent to the peer is valid for the upper layer.

 The choice of which memory registration strategies to employ is left
 to requester and responder implementers. To support the widest array
 of RDMA implementations, as well as the most general steering tag
 scheme, an Offset field is included in each segment.

 While zero-based offset schemes are available in many RDMA
 implementations, their use by RPC requires individual registration of
 each segment. For such implementations, this can be a significant
 overhead. By providing an offset in each chunk, many pre-
 registration or region-based registrations can be readily supported.
 By using a single, universal chunk representation, the RPC-over-RDMA
 protocol implementation is simplified to its most general form.

5.5. Handling Errors

 When a peer receives an RPC-over-RDMA message, it MUST perform basic
 validity checks on the header and chunk contents. If such errors are
 detected in the request, an RDMA_ERROR reply MUST be generated.

 Two types of errors are defined, version mismatch and invalid chunk
 format.

Lever & Talpey Expires June 3, 2016 [Page 29]

Internet-Draft RDMA Transport for RPC December 2015

 o When a responder detects an RPC-over-RDMA header version that it
 does not support (currently this document defines only Version
 One), it replies with an error code of ERR_VERS, and provides the
 low and high inclusive version numbers it does, in fact, support.
 The version number in this reply MUST be any value otherwise valid
 at the receiver.

 o When a responder detects other decoding errors in the header or
 chunks, one of the following errors MUST be returned: either an
 RPC decode error such as RPC_GARBAGEARGS, or the RPC-over-RDMA
 error code ERR_CHUNK.

 When a requester cannot parse a responder’s reply, the requester
 SHOULD drop the RPC request and return an error to the application to
 prevent retransmission of an operation that can never complete.

 A requester might not provide a responder with enough resources to
 reply. For example, if a requester’s receive buffer is too small,
 the responder’s Send operation completes with a Local Length Error,
 and the connection is dropped. Or, if the requester’s Reply chunk is
 too small to accommodate the whole RPC reply, the responder can tell
 as it is constructing the reply. The responder SHOULD send a reply
 with RDMA_ERROR to signal to the requester that no RPC-level reply is
 possible, and the XID should not be retried.

 It is assumed that the link itself will provide some degree of error
 detection and retransmission. iWARP’s Marker PDU Aligned (MPA) layer
 (when used over TCP), Stream Control Transmission Protocol (SCTP), as
 well as the InfiniBand link layer all provide Cyclic Redundancy Check
 (CRC) protection of the RDMA payload, and CRC-class protection is a
 general attribute of such transports.

 Additionally, the RPC layer itself can accept errors from the link
 level and recover via retransmission. RPC recovery can handle
 complete loss and re-establishment of the link. The details of
 reporting and recovery from RDMA link layer errors are outside the
 scope of this protocol specification.

 See Section 10 for further discussion of the use of RPC-level
 integrity schemes to detect errors and related efficiency issues.

5.6. XDR Language Description

 Code components extracted from this document must include the
 following license boilerplate.

 <CODE BEGINS>

Lever & Talpey Expires June 3, 2016 [Page 30]

Internet-Draft RDMA Transport for RPC December 2015

 /*
 * Copyright (c) 2010, 2015 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 *
 * The authors of the code are:
 * B. Callaghan, T. Talpey, and C. Lever.
 *
 * Redistribution and use in source and binary forms, with
 * or without modification, are permitted provided that the
 * following conditions are met:
 *
 * - Redistributions of source code must retain the above
 * copyright notice, this list of conditions and the
 * following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the
 * following disclaimer in the documentation and/or other
 * materials provided with the distribution.
 *
 * - Neither the name of Internet Society, IETF or IETF
 * Trust, nor the names of specific contributors, may be
 * used to endorse or promote products derived from this
 * software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
 * AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 * EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

 struct rpcrdma1_segment {
 uint32 rdma_handle;
 uint32 rdma_length;
 uint64 rdma_offset;
 };

Lever & Talpey Expires June 3, 2016 [Page 31]

Internet-Draft RDMA Transport for RPC December 2015

 struct rpcrdma1_read_segment {
 uint32 rdma_position;
 struct rpcrdma1_segment rdma_target;
 };

 struct rpcrdma1_read_list {
 struct rpcrdma1_read_segment rdma_entry;
 struct rpcrdma1_read_list *rdma_next;
 };

 struct rpcrdma1_write_chunk {
 struct rpcrdma1_segment rdma_target<>;
 };

 struct rpcrdma1_write_list {
 struct rpcrdma1_write_chunk rdma_entry;
 struct rpcrdma1_write_list *rdma_next;
 };

 struct rpcrdma1_msg {
 uint32 rdma_xid;
 uint32 rdma_vers;
 uint32 rdma_credit;
 rpcrdma1_body rdma_body;
 };

 enum rpcrdma1_proc {
 RDMA_MSG = 0,
 RDMA_NOMSG = 1,
 RDMA_MSGP = 2, /* Reserved */
 RDMA_DONE = 3, /* Reserved */
 RDMA_ERROR = 4
 };

 struct rpcrdma1_chunks {
 struct rpcrdma1_read_list *rdma_reads;
 struct rpcrdma1_write_list *rdma_writes;
 struct rpcrdma1_write_chunk *rdma_reply;
 };

 enum rpcrdma1_errcode {
 RDMA_ERR_VERS = 1,
 RDMA_ERR_CHUNK = 2
 };

 union rpcrdma1_error switch (rpcrdma1_errcode err) {
 case RDMA_ERR_VERS:
 uint32 rdma_vers_low;

Lever & Talpey Expires June 3, 2016 [Page 32]

Internet-Draft RDMA Transport for RPC December 2015

 uint32 rdma_vers_high;
 case RDMA_ERR_CHUNK:
 void;
 };

 union rdma_body switch (rpcrdma1_proc proc) {
 case RDMA_MSG:
 case RDMA_NOMSG:
 rpcrdma1_chunks rdma_chunks;
 case RDMA_MSGP:
 uint32 rdma_align;
 uint32 rdma_thresh;
 rpcrdma1_chunks rdma_achunks;
 case RDMA_DONE:
 void;
 case RDMA_ERROR:
 rpcrdma1_error rdma_error;
 };

 <CODE ENDS>

5.7. Deprecated Protocol Elements

5.7.1. RDMA_MSGP

 Implementers of RPC-over-RDMA Version One have neglected to make use
 of the RDMA_MSGP message type. Therefore RDMA_MSGP is deprecated.

 Senders SHOULD NOT send RDMA_MSGP type messages. Receivers MUST
 treat received RDMA_MSGP type messages as they would treat RDMA_MSG
 type messages. The additional alignment information is an
 optimization hint that may be ignored.

5.7.2. RDMA_DONE

 Because implementations of RPC-over-RDMA Version One do not use the
 Read-Read transfer model, there should never be any need to send an
 RDMA_DONE type message. Therefore RDMA_DONE is deprecated.

 Receivers MUST drop RDMA_DONE type messages without additional
 processing.

6. Upper Layer Binding Specifications

 Each RPC program and version tuple that operates on an RDMA transport
 MUST have an Upper Layer Binding specification. A ULB may be part of

Lever & Talpey Expires June 3, 2016 [Page 33]

Internet-Draft RDMA Transport for RPC December 2015

 another protocol specification, or it may be a stand-alone document,
 similar to [RFC5667].

 A ULB specification MUST provide four important pieces of
 information:

 o Which XDR data items in the RPC program are eligible for Direct
 Data Placement

 o How a responder utilizes chunks provided in a Write list

 o How DDP-eligibility violations are reported to peers

 o An rpcbind port assignment for operation of the RPC program on
 RDMA transports

6.1. Determining DDP-Eligibility

 A DDP-eligible XDR data item is one that MAY be moved in a chunk.
 All other XDR data items MUST NOT be moved in a chunk that is part of
 a Short or Chunked Message, nor as a separate chunk in a Long
 Message.

 Only an XDR data item that might benefit from Direct Data Placement
 should be transferred in a chunk. An Upper Layer Binding
 specification should consider an XDR data item for DDP-eligibility if
 the data item can be larger than a Send buffer, and at least one of
 the following:

 o Is sensitive to page alignment (eg. it would require pullup on the
 receiver before it can be used)

 o Is not translated or marshaled when it is XDR encoded (eg. an
 opaque array)

 o Is not immediately used by applications (eg. is part of data
 backup or replication)

 The Upper Layer Protocol implementation or the RDMA transport
 implementation decide when to move a DDP-eligible data item into a
 chunk instead of leaving the item in the RPC message’s XDR stream.
 The interface by which an Upper Layer implementation communicates the
 chunk eligibility of a data item locally to the RPC transport is out
 of scope for this specification. The only requirement is that the
 resulting RPC-over-RDMA protocol sent to the peer is valid for the
 Upper Layer.

Lever & Talpey Expires June 3, 2016 [Page 34]

Internet-Draft RDMA Transport for RPC December 2015

 The XDR language definition of DDP-eligible data items is not
 decorated in any way.

 It is the responsibility of the protocol’s Upper Layer Binding to
 specify DDP-eligibity rules so that if a DDP-eligible XDR data item
 is embedded within another, only one of these two objects is to be
 represented by a chunk. This ensures that the mapping from XDR
 position to the XDR object represented is unambiguous.

 An Upper Layer Binding is considered ready to publish when:

 o Every XDR data type in the protocol has been considered for DDP-
 eligibility

 o Long Messages

6.2. Write List Ordering

 Place holder

 An Upper Layer Binding MUST determine how Write list entries are
 mapped to procedure arguments for each Upper Layer procedure.

6.3. DDP-Eligibility Violation

 If the Upper Layer on a receiver is not aware of the presence and
 operation of an RPC-over-RDMA transport under it, it could be
 challenging to discover when a sender has violated an Upper Layer
 Binding rule.

 If a violation does occur, RFC 5666 does not define an unambiguous
 mechanism for reporting the violation. The violation of Binding
 rules is an Upper Layer Protocol issue, but it is likely that there
 is nothing the Upper Layer can do but reply with the equivalent of
 BAD XDR.

 When an erroneously-constructed reply reaches a requester, there is
 no recourse but to drop the reply, and perhaps the transport
 connection as well.

 Policing DDP-eligibility must be done in co-operation with the Upper
 Layer Protocol by its receive endpoint implementation.

 It is the Upper Layer Binding’s responsibility to specify how a
 responder must reply if a requester violates a DDP-eligibilty rule.
 The Binding specification should provide similar guidance for
 requesters about handling invalid RPC-over-RDMA replies.

Lever & Talpey Expires June 3, 2016 [Page 35]

Internet-Draft RDMA Transport for RPC December 2015

6.4. Other Binding Information

 An Upper Layer Binding may recommend inline threshold values for RPC-
 over-RDMA Version One connections bearing that Upper Layer Protocol.
 However, note that RPC-over-RDMA connections can be shared by more
 than one Upper Layer Protocol, and that mechanisms such as CCP often
 apply to all connections and Protocols that flow between two peers.

 If an Upper Layer Protocol specifies a method for exchanging inline
 threshold information, the sender can find out the receiver’s
 threshold value only subsequent to establishing an RPC-over-RDMA
 connection. The new threshold value can take effect only when a new
 connection is established.

7. RPC Bind Parameters

 In setting up a new RDMA connection, the first action by a requester
 is to obtain a transport address for the responder. The mechanism
 used to obtain this address, and to open an RDMA connection is
 dependent on the type of RDMA transport, and is the responsibility of
 each RPC protocol binding and its local implementation.

 RPC services normally register with a portmap or rpcbind [RFC1833]
 service, which associates an RPC program number with a service
 address. (In the case of UDP or TCP, the service address for NFS is
 normally port 2049.) This policy is no different with RDMA
 transports, although it may require the allocation of port numbers
 appropriate to each Upper Layer Protocol that uses the RPC framing
 defined here.

 When mapped atop the iWARP transport [RFC5040] [RFC5041], which uses
 IP port addressing due to its layering on TCP and/or SCTP, port
 mapping is trivial and consists merely of issuing the port in the
 connection process. The NFS/RDMA protocol service address has been
 assigned port 20049 by IANA, for both iWARP/TCP and iWARP/SCTP.

 When mapped atop InfiniBand [IB], which uses a Group Identifier
 (GID)-based service endpoint naming scheme, a translation MUST be
 employed. One such translation is defined in the InfiniBand Port
 Addressing Annex [IBPORT], which is appropriate for translating IP
 port addressing to the InfiniBand network. Therefore, in this case,
 IP port addressing may be readily employed by the upper layer.

 When a mapping standard or convention exists for IP ports on an RDMA
 interconnect, there are several possibilities for each upper layer to
 consider:

Lever & Talpey Expires June 3, 2016 [Page 36]

Internet-Draft RDMA Transport for RPC December 2015

 o One possibility is to have responder register its mapped IP port
 with the rpcbind service, under the netid (or netid’s) defined
 here. An RPC-over-RDMA-aware requester can then resolve its
 desired service to a mappable port, and proceed to connect. This
 is the most flexible and compatible approach, for those upper
 layers that are defined to use the rpcbind service.

 o A second possibility is to have the responder’s portmapper
 register itself on the RDMA interconnect at a "well known" service
 address. (On UDP or TCP, this corresponds to port 111.) A
 requester could connect to this service address and use the
 portmap protocol to obtain a service address in response to a
 program number, e.g., an iWARP port number, or an InfiniBand GID.

 o Alternatively, the requester could simply connect to the mapped
 well-known port for the service itself, if it is appropriately
 defined. By convention, the NFS/RDMA service, when operating atop
 such an InfiniBand fabric, will use the same 20049 assignment as
 for iWARP.

 Historically, different RPC protocols have taken different approaches
 to their port assignment; therefore, the specific method is left to
 each RPC-over-RDMA-enabled Upper Layer binding, and not addressed
 here.

 In Section 12, "IANA Considerations", this specification defines two
 new "netid" values, to be used for registration of upper layers atop
 iWARP [RFC5040] [RFC5041] and (when a suitable port translation
 service is available) InfiniBand [IB]. Additional RDMA-capable
 networks MAY define their own netids, or if they provide a port
 translation, MAY share the one defined here.

8. Bi-directional RPC-over-RDMA

8.1. RPC Direction

8.1.1. Forward Direction

 A traditional ONC RPC client is always a requester. A traditional
 ONC RPC service is always a responder. This traditional form of ONC
 RPC message passing is referred to as operation in the "forward
 direction."

 During forward direction operation, the ONC RPC client is responsible
 for establishing transport connections.

Lever & Talpey Expires June 3, 2016 [Page 37]

Internet-Draft RDMA Transport for RPC December 2015

8.1.2. Backward Direction

 The ONC RPC standard does not forbid passing messages in the other
 direction. An ONC RPC service endpoint can act as a requester, in
 which case an ONC RPC client endpoint acts as a responder. This form
 of message passing is referred to as operation in the "backward
 direction."

 During backward direction operation, the ONC RPC client is
 responsible for establishing transport connections, even though ONC
 RPC Calls come from the ONC RPC server.

8.1.3. Bi-direction

 A pair of endpoints may choose to use only forward or only backward
 direction operations on a particular transport. Or, the endpoints
 may send operations in both directions concurrently on the same
 transport.

 Bi-directional operation occurs when both transport endpoints act as
 a requester and a responder at the same time. As above, the ONC RPC
 client is responsible for establishing transport connections.

8.1.4. XIDs with Bi-direction

 During bi-directional operation, the forward and backward directions
 use independent xid spaces.

 In other words, a forward direction requester MAY use the same xid
 value at the same time as a backward direction requester on the same
 transport connection, but such concurrent requests use represent
 distinct ONC RPC transactions.

8.2. Backward Direction Flow Control

8.2.1. Backward RPC-over-RDMA Credits

 Credits work the same way in the backward direction as they do in the
 forward direction. However, forward direction credits and backward
 direction credits are accounted separately.

 In other words, the forward direction credit value is the same
 whether or not there are backward direction resources associated with
 an RPC-over-RDMA transport connection. The backward direction credit
 value MAY be different than the forward direction credit value. The
 rdma_credit field in a backward direction RPC-over-RDMA message MUST
 NOT contain the value zero.

Lever & Talpey Expires June 3, 2016 [Page 38]

Internet-Draft RDMA Transport for RPC December 2015

 A backward direction requester (an RPC-over-RDMA service endpoint)
 requests credits from the Responder (an RPC-over-RDMA client
 endpoint). The Responder reports how many credits it can grant.
 This is the number of backward direction Calls the Responder is
 prepared to handle at once.

 When an RPC-over-RDMA server endpoint is operating correctly, it
 sends no more outstanding requests at a time than the client
 endpoint’s advertised backward direction credit value.

8.2.2. Receive Buffer Management

 An RPC-over-RDMA transport endpoint must pre-post receive buffers
 before it can receive and process incoming RPC-over-RDMA messages.
 If a sender transmits a message for a receiver which has no posted
 receive buffer, the RDMA provider is allowed to drop the RDMA
 connection.

8.2.2.1. Client Receive Buffers

 Typically an RPC-over-RDMA caller posts only as many receive buffers
 as there are outstanding RPC Calls. A client endpoint without
 backward direction support might therefore at times have no pre-
 posted receive buffers.

 To receive incoming backward direction Calls, an RPC-over-RDMA client
 endpoint must pre-post enough additional receive buffers to match its
 advertised backward direction credit value. Each outstanding forward
 direction RPC requires an additional receive buffer above this
 minimum.

 When an RDMA transport connection is lost, all active receive buffers
 are flushed and are no longer available to receive incoming messages.
 When a fresh transport connection is established, a client endpoint
 must re-post a receive buffer to handle the Reply for each
 retransmitted forward direction Call, and a full set of receive
 buffers to handle backward direction Calls.

8.2.2.2. Server Receive Buffers

 A forward direction RPC-over-RDMA service endpoint posts as many
 receive buffers as it expects incoming forward direction Calls. That
 is, it posts no fewer buffers than the number of RPC-over-RDMA
 credits it advertises in the rdma_credit field of forward direction
 RPC replies.

Lever & Talpey Expires June 3, 2016 [Page 39]

Internet-Draft RDMA Transport for RPC December 2015

 To receive incoming backward direction replies, an RPC-over-RDMA
 server endpoint must pre-post a receive buffer for each backward
 direction Call it sends.

 When the existing transport connection is lost, all active receive
 buffers are flushed and are no longer available to receive incoming
 messages. When a fresh transport connection is established, a server
 endpoint must re-post a receive buffer to handle the Reply for each
 retransmitted backward direction Call, and a full set of receive
 buffers for receiving forward direction Calls.

8.3. Conventions For Backward Operation

8.3.1. In the Absense of Backward Direction Support

 An RPC-over-RDMA transport endpoint might not support backward
 direction operation. There might be no mechanism in the transport
 implementation to do so, or the Upper Layer Protocol consumer might
 not yet have configured the transport to handle backward direction
 traffic.

 A loss of the RDMA connection may result if the receiver is not
 prepared to receive an incoming message. Thus a denial-of-service
 could result if a sender continues to send backchannel messages after
 every transport reconnect to an endpoint that is not prepared to
 receive them.

 For RPC-over-RDMA Version One transports, the Upper Layer Protocol is
 responsible for informing its peer when it has established a backward
 direction capability. Otherwise even a simple backward direction
 NULL probe from a peer would result in a lost connection.

 An Upper Layer Protocol consumer MUST NOT perform backward direction
 ONC RPC operations unless the peer consumer has indicated it is
 prepared to handle them. A description of Upper Layer Protocol
 mechanisms used for this indication is outside the scope of this
 document.

8.3.2. Backward Direction Retransmission

 In rare cases, an ONC RPC transaction cannot be completed within a
 certain time. This can be because the transport connection was lost,
 the Call or Reply message was dropped, or because the Upper Layer
 consumer delayed or dropped the ONC RPC request. Typically, the
 requester sends the transaction again, reusing the same RPC XID.
 This is known as an "RPC retransmission".

Lever & Talpey Expires June 3, 2016 [Page 40]

Internet-Draft RDMA Transport for RPC December 2015

 In the forward direction, the Caller is the ONC RPC client. The
 client is always responsible for establishing a transport connection
 before sending again.

 In the backward direction, the Caller is the ONC RPC server. Because
 an ONC RPC server does not establish transport connections with
 clients, it cannot send a retransmission if there is no transport
 connection. It must wait for the ONC RPC client to re-establish the
 transport connection before it can retransmit ONC RPC transactions in
 the backward direction.

 If an ONC RPC client has no work to do, it may be some time before it
 re-establishes a transport connection. Backward direction Callers
 must be prepared to wait indefinitely before a connection is
 established before a pending backward direction ONC RPC Call can be
 retransmitted.

8.3.3. Backward Direction Message Size

 RPC-over-RDMA backward direction messages are transmitted and
 received using the same buffers as messages in the forward direction.
 Therefore they are constrained to be no larger than receive buffers
 posted for forward messages. Typical implementations have chosen to
 use 1024-byte buffers.

 It is expected that the Upper Layer Protocol consumer establishes an
 appropriate payload size limit for backward direction operations,
 either by advertising that size limit to its peers, or by convention.
 If that is done, backward direction messages do not exceed the size
 of receive buffers at either endpoint.

 If a sender transmits a backward direction message that is larger
 than the receiver is prepared for, the RDMA provider drops the
 message and the RDMA connection.

 If a sender transmits an RDMA message that is too small to convey a
 complete and valid RPC-over-RDMA and RPC message in either direction,
 the receiver MUST NOT use any value in the fields that were
 transmitted. Namely, the rdma_credit field MUST be ignored, and the
 message dropped.

8.3.4. Sending A Backward Direction Call

 To form a backward direction RPC-over-RDMA Call message on an RPC-
 over-RDMA Version One transport, an ONC RPC service endpoint
 constructs an RPC-over-RDMA header containing a fresh RPC XID in the
 rdma_xid field.

Lever & Talpey Expires June 3, 2016 [Page 41]

Internet-Draft RDMA Transport for RPC December 2015

 The rdma_vers field MUST contain the value one. The number of
 requested credits is placed in the rdma_credit field.

 The rdma_proc field in the RPC-over-RDMA header MUST contain the
 value RDMA_MSG. All three chunk lists MUST be empty.

 The ONC RPC Call header MUST follow immediately, starting with the
 same XID value that is present in the RPC-over-RDMA header. The Call
 header’s msg_type field MUST contain the value CALL.

8.3.5. Sending A Backward Direction Reply

 To form a backward direction RPC-over-RDMA Reply message on an RPC-
 over-RDMA Version One transport, an ONC RPC client endpoint
 constructs an RPC-over-RDMA header containing a copy of the matching
 ONC RPC Call’s RPC XID in the rdma_xid field.

 The rdma_vers field MUST contain the value one. The number of
 granted credits is placed in the rdma_credit field.

 The rdma_proc field in the RPC-over-RDMA header MUST contain the
 value RDMA_MSG. All three chunk lists MUST be empty.

 The ONC RPC Reply header MUST follow immediately, starting with the
 same XID value that is present in the RPC-over-RDMA header. The
 Reply header’s msg_type field MUST contain the value REPLY.

8.4. Backward Direction Upper Layer Binding

 RPC programs that operate on RPC-over-RDMA Version One only in the
 backward direction do not require an Upper Layer Binding
 specification. Because RPC-over-RDMA Version One operation in the
 backward direction does not allow chunking, there can be no DDP-
 eligible data items in such a program. Backward direction operation
 occurs on an already-established connection, thus there is no need to
 specify RPC bind parameters.

9. Transport Protocol Extensibility

 RPC programs are defined solely by their XDR definitions. They are
 independent of the transport mechanism used to convey base RPC
 messages. Protocols defined by XDR often have signifcant
 extensibility restrictions placed on them.

 Not all extensibility restrictions on RPC-based Upper Layer Protocols
 may be appropriate for an RPC transport protocol. TCP [RFC0793], for
 example, is an RPC transport protocol that has been extended many
 times independently of the RPC and XDR standards.

Lever & Talpey Expires June 3, 2016 [Page 42]

Internet-Draft RDMA Transport for RPC December 2015

 RPC-over-RDMA might be considered as an extension of the RPC protocol
 rather than a separate transport, however.

 o The mechanisms that TCP uses to move data are opaque to the RPC
 implementation and RPC programs using it. Upper Layer Protocols
 are often aware that RPC-over-RDMA is present, as they identify
 data items that can be moved via direct data placement.

 o RPC-over-RDMA is used only for moving RPC messages, and not ever
 for generic data transfer.

 o RPC-over-RDMA relies on a more sophisticated set of base transport
 operations than traditional socket-based transports.
 Interoperability depends on RPC-over-RDMA implementations using
 these operations in a predictable way.

 o The RPC-over-RDMA header is specified using XDR, unlike other RPC
 transport protocols.

9.1. Bumping The RPC-over-RDMA Version

 Place holder section.

 Because the version number is encoded as part of the RPC-over-RDMA
 header and the RDMA_ERROR message type is used to indicate errors,
 these first four fields and the start of the chunk lists MUST always
 remain aligned at the same fixed offsets for all versions of the RPC-
 over-RDMA header.

 The value of the RPC-over-RDMA header’s version field MUST be changed

 o Whenever the on-the-wire format of the RPC-over-RDMA header is
 changed in a way that prevents interoperability with current
 implementations

 o Whenever the set of abstract RDMA operations that may be used is
 changed

 o Whenever the set of allowable transfer models is altered

10. Security Considerations

 A primary consideration is the protection of the integrity and
 privacy of local memory by the RDMA transport itself. The use of
 RPC-over-RDMA MUST NOT introduce any vulnerabilities to system memory
 contents, or to memory owned by user processes. These protections
 are provided by the RDMA layer specifications, and specifically their
 security models.

Lever & Talpey Expires June 3, 2016 [Page 43]

Internet-Draft RDMA Transport for RPC December 2015

 It is REQUIRED that any RDMA provider used for RPC transport be
 conformant to the requirements of [RFC5042] in order to satisfy these
 protections. Best practices to ensure memory contents are completely
 protected during an RPC transaction include the following.

 o The use of Protection Domains to limit the exposure of memory
 regions to a single connection is critical. Any attempt by a host
 not participating in that connection to re-use handles will result
 in a connection failure. Because Upper Layer Protocol security
 mechanisms rely on this aspect of Reliable Connection behavior,
 strong authentication of the remote is recommended.

 o Unpredictable memory handles should be used for any operation
 requiring advertised memory regions. Advertising a continuously
 registered memory region allows a remote host to read or write to
 that region even when an RPC involving that memory is not under
 way. Therefore advertising persistently registered memory should
 be avoided.

 o Advertised memory regions should be invalidated as soon as related
 RPC operations are complete. Invalidation and DMA unmapping of
 regions should be complete before an RPC application is allowed to
 continue execution and use the contents of a memory region.

 Once delivered securely by the RDMA provider, any RDMA-exposed
 addresses will contain only RPC payloads in the chunk lists,
 transferred under the protection of RPCSEC_GSS integrity and privacy.
 By these means, the data will be protected end-to-end, as required by
 the RPC layer security model.

 RPC provides its own security via the RPCSEC_GSS framework [RFC2203].
 RPCSEC_GSS can provide message authentication, integrity checking,
 and privacy. This security mechanism is unaffected by the RDMA
 transport. However, there is much data movement associated with
 computation and verification of integrity, or encryption/decryption,
 so certain performance advantages may be lost.

 For efficiency, a more appropriate security mechanism for RDMA links
 may be link-level protection, such as certain configurations of
 IPsec, which may be co-located in the RDMA hardware. The use of
 link-level protection MAY be negotiated through the use of the
 RPCSEC_GSS mechanism defined in [RFC5403] in conjunction with the
 Channel Binding mechanism [RFC5056] and IPsec Channel Connection
 Latching [RFC5660]. Use of such mechanisms is REQUIRED where
 integrity and/or privacy is desired, and where efficiency is
 required.

Lever & Talpey Expires June 3, 2016 [Page 44]

Internet-Draft RDMA Transport for RPC December 2015

11. IANA Considerations

 Three new assignments are specified by this document:

 - A new set of RPC "netids" for resolving RPC-over-RDMA services

 - Optional service port assignments for Upper Layer Bindings

 - An RPC program number assignment for the configuration protocol

 These assignments have been established, as below.

 The new RPC transport has been assigned an RPC "netid", which is an
 rpcbind [RFC1833] string used to describe the underlying protocol in
 order for RPC to select the appropriate transport framing, as well as
 the format of the service addresses and ports.

 The following "Netid" registry strings are defined for this purpose:

 NC_RDMA "rdma"
 NC_RDMA6 "rdma6"

 These netids MAY be used for any RDMA network satisfying the
 requirements of Section 2, and able to identify service endpoints
 using IP port addressing, possibly through use of a translation
 service as described above in Section 10, "RPC Binding". The "rdma"
 netid is to be used when IPv4 addressing is employed by the
 underlying transport, and "rdma6" for IPv6 addressing.

 The netid assignment policy and registry are defined in [RFC5665].

 As a new RPC transport, this protocol has no effect on RPC program
 numbers or existing registered port numbers. However, new port
 numbers MAY be registered for use by RPC-over-RDMA-enabled services,
 as appropriate to the new networks over which the services will
 operate.

 For example, the NFS/RDMA service defined in [RFC5667] has been
 assigned the port 20049, in the IANA registry:

 nfsrdma 20049/tcp Network File System (NFS) over RDMA
 nfsrdma 20049/udp Network File System (NFS) over RDMA
 nfsrdma 20049/sctp Network File System (NFS) over RDMA

Lever & Talpey Expires June 3, 2016 [Page 45]

Internet-Draft RDMA Transport for RPC December 2015

 The RPC program number assignment policy and registry are defined in
 [RFC5531].

12. Acknowledgments

 The editor gratefully acknowledges the work of Brent Callaghan and
 Tom Talpey on the original RPC-over-RDMA Version One specification
 [RFC5666].

 The comments and contributions of Karen Deitke, William Simpson, Dai
 Ngo, Chunli Zhang, Dominique Martinet, and Mahesh Siddheshwar are
 accepted with many and great thanks. The editor also wishes to thank
 Dave Noveck and Bill Baker for their unwavering support of this work.

 Special thanks go to nfsv4 Working Group Chair Spencer Shepler and
 nfsv4 Working Group Secretary Thomas Haynes for their support.

13. Appendices

13.1. Appendix 1: XDR Examples

 RPC-over-RDMA chunk lists are complex data types. In this appendix,
 illustrations are provided to help readers grasp how chunk lists are
 represented inside an RPC-over-RDMA header.

 An RDMA segment is the simplest component, being made up of a 32-bit
 handle (H), a 32-bit length (L), and 64-bits of offset (OO). Once
 flattened into an XDR stream, RDMA segments appear as

 HLOO

 A Read segment has an additional 32-bit position field. Read
 segments appear as

 PHLOO

 A Read chunk is a list of Read segments. Each segment is preceded by
 a 32-bit word containing a one if there is a segment, or a zero if
 there are no more segments (optional-data). In XDR form, this would
 look like

 1 PHLOO 1 PHLOO 1 PHLOO 0

Lever & Talpey Expires June 3, 2016 [Page 46]

Internet-Draft RDMA Transport for RPC December 2015

 where P would hold the same value for each segment belonging to the
 same Read chunk.

 The Read List is also a list of Read segments. In XDR form, this
 would look a lot like a Read chunk, except that the P values could
 vary across the list. An empty Read List is encoded as a single
 32-bit zero.

 One Write chunk is a counted array of segments. In XDR form, the
 count would appear as the first 32-bit word, followed by an HLOO for
 each element of the array. For instance, a Write chunk with three
 elements would look like

 3 HLOO HLOO HLOO

 The Write List is a list of counted arrays. In XDR form, this is a
 combination of optional-data and counted arrays. To represent a
 Write List containing a Write chunk with three segments and a Write
 chunk with two segments, XDR would encode

 1 3 HLOO HLOO HLOO 1 2 HLOO HLOO 0

 An empty Write List is encoded as a single 32-bit zero.

 The Reply chunk is the same as a Write chunk. Since it is an
 optional-data field, however, there is a 32-bit field in front of it
 that contains a one if the Reply chunk is present, or a zero if it is
 not. After encoding, a Reply chunk with 2 segments would look like

 1 2 HLOO HLOO

 Frequently a requester does not provide any chunks. In that case,
 after the four fixed fields in the RPC-over-RDMA header, there are
 simply three 32-bit fields that contain zero.

14. References

14.1. Normative References

 [RFC1833] Srinivasan, R., "Binding Protocols for ONC RPC Version 2",
 RFC 1833, DOI 10.17487/RFC1833, August 1995,
 <http://www.rfc-editor.org/info/rfc1833>.

Lever & Talpey Expires June 3, 2016 [Page 47]

Internet-Draft RDMA Transport for RPC December 2015

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol
 Specification", RFC 2203, DOI 10.17487/RFC2203, September
 1997, <http://www.rfc-editor.org/info/rfc2203>.

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May
 2006, <http://www.rfc-editor.org/info/rfc4506>.

 [RFC5042] Pinkerton, J. and E. Deleganes, "Direct Data Placement
 Protocol (DDP) / Remote Direct Memory Access Protocol
 (RDMAP) Security", RFC 5042, DOI 10.17487/RFC5042, October
 2007, <http://www.rfc-editor.org/info/rfc5042>.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
 <http://www.rfc-editor.org/info/rfc5056>.

 [RFC5403] Eisler, M., "RPCSEC_GSS Version 2", RFC 5403, DOI
 10.17487/RFC5403, February 2009,
 <http://www.rfc-editor.org/info/rfc5403>.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, DOI 10.17487/RFC5531,
 May 2009, <http://www.rfc-editor.org/info/rfc5531>.

 [RFC5660] Williams, N., "IPsec Channels: Connection Latching", RFC
 5660, DOI 10.17487/RFC5660, October 2009,
 <http://www.rfc-editor.org/info/rfc5660>.

 [RFC5665] Eisler, M., "IANA Considerations for Remote Procedure Call
 (RPC) Network Identifiers and Universal Address Formats",
 RFC 5665, DOI 10.17487/RFC5665, January 2010,
 <http://www.rfc-editor.org/info/rfc5665>.

 [RFC5666] Talpey, T. and B. Callaghan, "Remote Direct Memory Access
 Transport for Remote Procedure Call", RFC 5666, DOI
 10.17487/RFC5666, January 2010,
 <http://www.rfc-editor.org/info/rfc5666>.

Lever & Talpey Expires June 3, 2016 [Page 48]

Internet-Draft RDMA Transport for RPC December 2015

14.2. Informative References

 [IB] InfiniBand Trade Association, "InfiniBand Architecture
 Specifications", <http://www.infinibandta.org>.

 [IBPORT] InfiniBand Trade Association, "IP Addressing Annex",
 <http://www.infinibandta.org>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, DOI 10.17487/RFC0793, September 1981,
 <http://www.rfc-editor.org/info/rfc793>.

 [RFC1094] Nowicki, B., "NFS: Network File System Protocol
 specification", RFC 1094, DOI 10.17487/RFC1094, March
 1989, <http://www.rfc-editor.org/info/rfc1094>.

 [RFC1813] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS
 Version 3 Protocol Specification", RFC 1813, DOI 10.17487/
 RFC1813, June 1995,
 <http://www.rfc-editor.org/info/rfc1813>.

 [RFC5040] Recio, R., Metzler, B., Culley, P., Hilland, J., and D.
 Garcia, "A Remote Direct Memory Access Protocol
 Specification", RFC 5040, DOI 10.17487/RFC5040, October
 2007, <http://www.rfc-editor.org/info/rfc5040>.

 [RFC5041] Shah, H., Pinkerton, J., Recio, R., and P. Culley, "Direct
 Data Placement over Reliable Transports", RFC 5041, DOI
 10.17487/RFC5041, October 2007,
 <http://www.rfc-editor.org/info/rfc5041>.

 [RFC5532] Talpey, T. and C. Juszczak, "Network File System (NFS)
 Remote Direct Memory Access (RDMA) Problem Statement", RFC
 5532, DOI 10.17487/RFC5532, May 2009,
 <http://www.rfc-editor.org/info/rfc5532>.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,
 <http://www.rfc-editor.org/info/rfc5661>.

 [RFC5667] Talpey, T. and B. Callaghan, "Network File System (NFS)
 Direct Data Placement", RFC 5667, DOI 10.17487/RFC5667,
 January 2010, <http://www.rfc-editor.org/info/rfc5667>.

 [RFC7530] Haynes, T., Ed. and D. Noveck, Ed., "Network File System
 (NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/RFC7530,
 March 2015, <http://www.rfc-editor.org/info/rfc7530>.

Lever & Talpey Expires June 3, 2016 [Page 49]

Internet-Draft RDMA Transport for RPC December 2015

Authors’ Addresses

 Charles Lever (editor)
 Oracle Corporation
 1015 Granger Avenue
 Ann Arbor, MI 48104
 USA

 Phone: +1 734 274 2396
 Email: chuck.lever@oracle.com

 Tom Talpey
 Microsoft Corp.
 One Microsoft Way
 Redmond, WA 98052
 USA

 Phone: +1 425 704-9945
 Email: ttalpey@microsoft.com

Lever & Talpey Expires June 3, 2016 [Page 50]

