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Abstract

Thi s docunent specifies how to represent Montgonery curves and

(tw sted) Edwards curves as curves in short-Wierstrass form and
illustrates how this can be used to carry out elliptic curve

conmput ations using existing inplenentations of, e.g., ECDSA and ECDH
using NI ST prine curves.
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1. Fostering Code Reuse with New Elliptic Curves

It is well-known that elliptic curves can be represented using
different curve nodels. Recently, |ETF standardized elliptic curves
that are clainmed to have better performance and i nproved robustness
agai nst "real world" attacks than curves represented in the
traditional "short" Wierstrass nodel. This docunent specifies an
alternative representation of points of Curve25519, a so-called

Mont gonmery curve, and of points of Edwards25519, a so-called tw sted
Edwar ds curve, which are both specified in [RFC7/748], as points of a
specific so-called "short" Wierstrass curve, called Wi 25519. W
al so define howto efficiently switch between these different
representations.

Use of Wei 25519 all ows easy definition of new signature schenmes and
key agreenent schenes already specified for traditional N ST prine
curves, thereby allow ng easy integration with existing

speci fications, such as N ST SP 800-56a [ SP-800-56a], FIPS Pub 186-4
[ FI PS-186-4], and ANSI X9.62-2005 [ ANSI - X9. 62], and fostering code
reuse on platforns that already inplenent sone of these schenes using
elliptic curve arithnetic for curves in "short" Wierstrass form (see
Appendi x C. 1).

2. Specification of Wi 25519

For the specification of Wi 25519 and its relationship to Curve25519
and Edwar ds25519, see Appendix E. For further details and background
information on elliptic curves, we refer to the other appendices.

The use of Wei 25519 all ows reuse of existing generic code that

i npl ements short-Wierstrass curves, such as the NI ST curve P-256, to
al so i npl enent the CFRG curves Curve25519 and Edwards25519. W al so
cater to reusing of existing code where sone donain paraneters may
have been hardcoded, thereby w dening the scope of applicability. To
this end, we specify the short-Wierstrass curves Wi 25519.2 and

Wei 25519. -3, with hardcoded donmi n paraneter a=2 and a=-3 (nod p),
respectively; see Appendix G (Here, p is the characteristic of the
field over which these curves are defined.)
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3.

4.

Use of Representation Swtches

The curves Curve25519, Edwards25519, and Wei 25519, as specified in
Appendi x E. 3, are all isonorphic, with the transformtions of
Appendi x E. 2. These transformations map the specified base point of
each of these curves to the specified base point of each of the other
curves. Consequently, a public-private key pair (k,R =k*GQ for any
one of these curves corresponds, via these isonorphic mappings, to
the public-private key pair (k, R:=k*G ) for each of these other
curves (where G and G are the correspondi ng base points of these
curves). This observation extends to the case where one al so

consi ders curve Wi 25519.2 (which has hardcoded domai n par anet er
a=2), as specified in Appendix G 3, since it is isonorphic to

Wei 25519, with the transformati on of Appendix G 2, and, thereby, also
i sonorphic to Curve25519 and Edwar ds25519.

The curve Wi 25519. -3 (which has hardcoded domai n paraneter a=-3 (nod
p)) is not isonorphic to the curve Wi 25519, but is related in a
slightly weaker sense: the curve Wi 25519 is isogenous to the curve
Wei 25519. -3, where the mapping of Appendix G 2 is an isogeny of
degree | =47 that maps the specified base point G of Wi 25519 to the
speci fied base point G of Wi 25519.-3 and where the so-called dua

i sogeny (which maps Wei 25519. -3 to Wei 25519) has the sane degree

| =47, but does not map G to G but to a fixed nultiple hereof, where
this multiple is | =47. Consequently, a public-private key pair
(k, R =k*Q for Wi 25519 corresponds to the public-private key pair

(k, R:=k*G) for Wi25519.-3 (via the |-isogeny), whereas the
public-private key pair (k, R:=k*G ) corresponds to the public-
private key pair (I*k, I*R=l*k*G of Wi 25519 (via the dual isogeny).
(Note the extra scalar | =47 here.)

Al ternative curve representations can, therefore, be used in any
cryptographi ¢ schene that involves conputations on public-private key
pairs, where inplenentations may carry out conputations on the
correspondi ng object for the isonorphic or isogenous curve and
convert the results back to the original curve (where, in case this

i nvolves an | -isogeny, one has to take into account the factor 1).
This includes use with elliptic-curve based signature schenes and key
agreenent and key transport schenes.

For sone exanpl es of curve conputations on each of the curves
specified in Appendi x E.3 and Appendi x G 3, see Appendi x K

Exanpl es
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4.1. Inplementation of X25519

RFC 7748 [ RFC7748] specifies the use of X25519, a co-factor Diffie-
Hel | man key agreenment schene, with instantiation by the Montgonery
curve Curve25519. This key agreenent schene was already specified in
Section 6.1.2.2 of NIST SP 800-56a [ SP-800-56a] for elliptic curves
in short Weierstrass form Hence, one can inplenment X25519 using
exi sting NI ST routines by (1) representing a point of the Mntgonery
curve Curve25519 as a point of the Wierstrass curve Wi 25519; (2)
instantiating the co-factor Diffie-Hell man key agreenment schene of
the NI ST specification with the resulting point and Wi 25519 donmai n
paraneters; (3) representing the key resulting fromthis schene
(which is a point of the curve Wi 25519 in Wierstrass forn) as a
poi nt of the Montgonmery curve Curve25519. The representati on change
can be inplenented via a sinple wapper and involves a single nodul ar
addition (see Appendix D.2). Using this nethod has the additional
advant age that one can reuse the public-private key pair routines,
domai n paraneter validation, and other checks that are already part
of the NI ST specifications. A N ST-conpliant version of co-factor
Diffie-Hell mn key agreenent (denoted by ECDH25519) results if one
keeps i nputs (key contributions) and outputs (shared key) in the
short-Wierstrass format (and, hence, does not perform Step (3)
above) .

NOTE: At this point, it is unclear whether this inplies that a FIPS-
accredited nodul e i nplenenting co-factor Diffie-Hellman for, e.g.,
P-256 woul d al so extend this accreditation to X25519.

4.2. | nplenmentation of Ed25519

RFC 8032 [ RFC8032] specifies Ed25519, a "full" Schnorr signature
schenme, with instantiation by the tw sted Edwards curve Edwards25519.
One can inplenment the conputation of the epheneral key pair for
Ed25519 usi ng an exi sting Montgonery curve inplenentation by (1)
generating a public-private key pair (k, R:=k*G ) for Curve25519;
(2) representing this public-private key as the pair (k, R=k*G for
Ed25519. As before, the representati on change can be inplenented via
a sinple wapper. Note that the Montgonery | adder specified in
Section 5 of RFC7748 [ RFC7748] does not provide sufficient
information to reconstruct R :=(u, v) (since it does not conpute the
v-coordinate of R ). However, this deficiency can be renedi ed by
using a slightly nodified version of the Montgonery | adder that

i ncl udes reconstruction of the v-coordinate of R:=k*G at the end of
hereof (which uses the v-coordinate of the base point of Curve25519
as well). For details, see Appendix C. 1.
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4.3. Specification of ECDSA25519

FIPS Pub 186-4 [FIPS-186-4] specifies the signature scheme ECDSA and
can be instantiated not just with the NIST prime curves, but also

Wi th other Weierstrass curves (that satisfy additional cryptographic
criteria). In particular, one can instantiate this schene wth the
Wei erstrass curve Wi 25519 and the hash function SHA-256, where an

i npl ementati on may generate an epheneral public-private key pair for
Wei 25519 by (1) internally carrying out these conputations on the
Mont gonery curve Curve25519, the tw sted Edwards curve Edwards25519,
or even the Weierstrass curve Wi 25519.-3 (with hardcoded a=-3 donmai n
paraneter); (2) representing the result as a key pair for the curve
Wei 25519. Note that, in either case, one can inplenent these schenes
with the same representation conventions as used with existing NI ST
speci fications, including bit/byte-ordering, conpression functions,
and the-like. This allows generic inplenentations of ECDSA with the
hash function SHA-256 and with the NI ST curve P-256 or with the curve
Wei 25519 specified in this specification to reuse the sane

i mpl ementation (instantiated wth, respectively, the N ST P-256
elliptic curve domain paranmeters or with the domai n paraneters of
curve Wei 25519 specified in Appendi x E)

4.4, O her Uses

Any existing specification of cryptographic schenes using elliptic
curves in Wierstrass formand that allows introduction of a new
elliptic curve (here: Wi 25519) is anenable to simlar constructs,
t hus spawni ng "of fspring" protocols, sinply by instantiating these
using the new curve in "short" Wierstrass form thereby allow ng
code and/or specifications reuse and, for inplenentations that so
desire, carrying out curve conputations "under the hood" on

Mont gonery curve and tw sted Edwards curve cousi ns hereof (where
these exist). This would sinply require definition of a new object
identifier for any such envisioned "offspring" protocol. This could
significantly sinplify standardi zati on of schenes and hel p keeping
t he resource and mai nt enance cost of inplenmentations supporting
algorithmagility [ RFC7696] at bay.

5. Caveat s

The exanpl es above illustrate how specifying the Wi erstrass curve
Wei 25519 (or any curve in short-Wierstrass format, for that matter)
may facilitate reuse of existing code and may sinplify standards
devel opment. However, the follow ng caveats apply:

1. Wre format. The transfornati ons between alternative curve

representations can be inplenented at negligible relative
incremental cost if the curve points are represented as affine
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Strui k

points. |If a point is represented in conpressed fornmat,
conversion usually requires a costly point deconpression step.
This is the case in [RFC7748], where the inputs to the co-factor
Diffie-Hell man scheme X25519, as well as its output, are
represented in u-coordinate-only format. This is also the case
in [ RFC8032], where the EdDSA signature includes the epheneral
signing key represented in conpressed format (see Appendix | for
detail s);

Representati on conventions. While elliptic curve conputations
are carried-out in a field G-(qg) and, thereby, involve |arge
integer arithmetic, these integers are represented as bit- and
byte-strings. Here, [RFC8032] uses |east-significant-byte
(LSB) /1 east-significant-bit (lsb) conventions, whereas [ RFC7748]
uses LSB/ nost-significant-bit (nsb) conventions, and where nost
ot her cryptographic specifications, including N ST SP800-56a

[ SP-800-56a], FIPS Pub 186-4 [FIPS-186-4], and ANSI X9.62-2005
[ ANSI - X9. 62] use MSB/ nmsb conventions. Since each pair of
conventions is different (see Appendix J for details and
Appendi x K for exanples), this does necessitate bit/byte
representati on conversi ons;

Domai n paraneters. All traditional N ST curves are Wi erstrass
curves with domain paraneter a=-3, while all Brainpool curves

[ RFC5639] are isonorphic to a Weierstrass curve of this form
Thus, one can expect there to be existing Wierstrass

i npl enentations with a hardcoded a=-3 donmai n paraneter
("Jacobian-friendly"). For those inplenmentations, including the
curve Wei 25519 as a potential vehicle for offering support for
the CFRG curves Curve25519 and Edwar ds25519 i s not possi bl e,
since not of the required form |Instead, one has to inplenment
Wei 25519. -3 and i nclude code that inplenents the isogeny and dual
i sogeny fromand to Wi 25519. This isogeny has degree | =47 and
requires roughly 9kB of storage for isogeny and dual -i sogeny
conputations (see the tables in Appendix H). Note that storage
woul d have reduced to a single 64-byte table if only the curve
woul d have been generated so as to be isonorphic to a Wi erstrass
curve with hardcoded a=-3 paraneter (this corresponds to |=1).

NOTE 1: An exanple of a Montgomery curve defined over the sane
field as Curve25519 that is isonorphic to a Wierstrass curve

wi th hardcoded a=-3 paraneter is the Montgonery curve M {A, B}
with B=1 and A=-1410290 (or, if one wants the base point to stil
have u-coordinate u=9, with B=1 and A=-3960846). |In either case,
the resulting curve has the sane cryptographic properties as
Curve25519 and the sane performance (which relies on A being a
3-byte integer, as is the case with the domain paraneter A=486662
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6.

of Curve25519, and using the sanme special prinme p=27255-19),
while at the sane tinme being "Jacobian-friendly" by design.

NOTE 2: Wiile an inplenentation of Curve25519 via an isogenous
Wi erstrass curve with domain paraneter a=-3 requires a
relatively large table (of size roughly 9kB), for the quadratic
tw st of Curve25519 (i.e., the Montgonmery curve M{A B} wth
A=486662 and B =2) this inplenentation approach only requires a
tabl e of size less than 0.5kB (over 20x snaller), solely due to
the fact that it is |-isogenous to a Wierstrass curve with a=-3
paraneter with relatively small paraneter | =2 (conpared to | =47,
as is the case with Curve25519 itself).

| mpl enent ati on Consi der ati ons

The efficiency of elliptic curve arithnmetic is primarily determ ned
by the efficiency of its group operations (see Appendix C). Nunerous
optim zed fornul ae exist, such as the use of so-called Mntgonery

| adders with Montgonmery curves [Mnt-Ladder] or with Wierstrass
curves [Wei-Ladder], the use of hardcoded a=-3 donain paraneter for
Wei erstrass curves [ ECC-Isogeny], and the use of hardcoded a=-1
domai n paraneters for tw sted Edwards curves [tEd-Fornulas]. These
all target reduction of the nunber of finite field operations
(primarily, finite field nmultiplications and squarings). O her
optim zations target nore efficient nodul ar reductions underlying
these finite field operations, by specifying curves defined over a
field G-(g), where the field size q has a special formor a specific
bit-size (typically, close to a multiple of a machi ne word).
Dependi ng on the inplenentation strategy, the bit-size of g nmay al so
facilitate reduced so-called "carry-effects” of integer arithnetic.

Most curves use a conbi nation of these design philosophies. Al N ST
curves [FIPS-186-4] and Brai npool curves [RFC5639] are Wi erstrass
curves with a=-3 domain paranmeter, thus facilitating nore efficient
el liptic curve group operations (via so-called Jacobi an coordi nates).
The NI ST curves and the Montgonery curve Curve25519 are defined over
prime fields, where the prinme nunber has a special form whereas the
Brai npool curves - by design - use a generic prinme nunber. None of
the NI ST curves, nor the Brainpool curves, can be expressed as

Mont gonery or tw sted Edwards curves, whereas - conversely -

Mont gonery curves and tw sted curves can be expressed as Wi erstrass
curves.

Wil e use of Wei 25519 all ows reuse of existing generic code that

i npl enents short Wi erstrass curves, such as the NI ST curve P-256, to
al so i npl enent the CFRG curves Curve25519 or Edwards25519, this

obvi ously does not result in an inplenentation of these CFRG curves
that exploits the specific structure of the underlying field or other
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speci fic domain paranmeters (since generic). Reuse of generic code,
therefore, may result in a less conputationally efficient curve

i npl enentation than woul d have been possible if the inplenentation
had specifically targeted Curve25519 or Edwards25519 alone (with the
overall cost differential estimated to be somewhere in the interval
[1.00-1.25]). |If existing generic code offers hardware support,
however, the overall speed may still be larger, since |less efficient
formul ae for curve arithnetic using Wi 25519 curves conpared to a

di rect inplenentation of Curve25519 or Edwards25519 arithnetic may be
nore than conpensated for by faster inplenmentations of the finite
field arithnmetic itself.

Overall, one should consider not just code reuse and conputati onal
efficiency, but also devel opnment and mai nt enance cost, and, e.g, the
cost of providing effective inplenentation attack counterneasures
(see al so Section 8).

7. Inplenmentation Status

[Note to the RFC Editor] Please renove this entire section before
publication, as well as the reference to [ RFC7942].

This section records the status of known inplenentations of the
protocol defined by this specification at the time of posting of this
Internet-Draft, and is based on a proposal described in [ RFC7942].
The description of inplenentations in this section is intended to
assist the IETF in its decision processes in progressing drafts to
RFCs. Please note that the listing of any individual inplenentation
here does not inply endorsenent by the IETF. Furthernore, no effort
has been spent to verify the information presented here that was
supplied by I ETF contributors. This is not intended as, and nust not
be construed to be, a catalog of available inplenentations or their
features. Readers are advised to note that other inplenentations may
exi st.

According to [ RFC7942], "this will allow reviewers and working groups
to assign due consideration to docunents that have the benefit of
runni ng code, which may serve as evidence of val uabl e experinentation
and feedback that have nade the inplenmented protocols nore mature.

It is up to the individual working groups to use this infornmation as
they see fit.

Ni kol as Rosener eval uated the performance of sw tching between
different curve nodels in his Master’s thesis [Rosener]. For an

i mpl enent ati on of Wei 25519, see <https://github.com ncrme/ c25519>.
For support of this curve in tinydtls, see <https://github.conf ncre/
tinydtls>.
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According to <https://community.nxp.conm docs/ DOC-330199>, an

i mpl ementati on of Wei 25519 on the Kinets LTC ECC HW pl atform i nproves
t he perfornmance by over a factor ten conpared to a stand-al one

i mpl enentati on of Curve25519 wi t hout hardware support.

The signature schenme ECDSA25519 (see Section 4.3) is supported in
<https://datatracker.ietf.org/doc/draft-ietf-6lo-ap-nd/>.

8. Security Considerations

The different representations of elliptic curve points discussed in
this docunent are all obtained using a publicly known transfornmation,
which is either an isonorphismor a | ow degree isogeny. It is well-
known that an isonorphismmaps elliptic curve points to equival ent

mat hemat i cal objects and that the conplexity of cryptographic

probl ems (such as the discrete |ogarithm problenm) of curves rel ated
via a | owdegree isogeny are tightly related. Thus, the use of these
t echni ques does not negatively inpact cryptographic security of
elliptic curve operations.

As to inplenentation security, reusing existing high-quality code or
generic inplenmentations that have been carefully designed to

w t hstand i npl enentation attacks for one curve nodel nmay allow a nore
econom cal way of devel opnent and mai nt enance than providing this
same functionality for each curve nodel separately (if nultiple curve
nodel s need to be supported) and, otherw se, may allow a nore gradual
m gration path, where one may initially use existing and accredited
chi psets that cater to the pre-dom nant curve nodel used in practice
for over 15 years.

Elliptic curves are generally used as objects in a broader
cryptographi ¢ schene that may include processing steps that depend on
the representation conventions used (such as with, e.g., key
derivation follow ng key establishnent). These schemes shoul d

(obvi ousl y) unanbi guously specify fixed representations of each input
and output (e.g., representing each elliptic curve point always in
short-Wierstrass formand in unconpressed tight MSB/ nsb format).

To prevent cross-protocol attacks, private keys SHOULD only be used
wi th one cryptographic schenme. Private keys MJST NOT be reused

bet ween Ed25519 (as specified in [ RFC8032]) and ECDSA25519 (as
specified in Section 4.3).

To prevent intra-protocol cross-instantiation attacks, epheneral
private keys MJST NOT be reused between instantiations of ECDSA25519.
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9. Privacy Considerations

The transformati ons between different curve nodels described in this
docunent are publicly known and, therefore, do not affect privacy
provi si ons.

10. | ANA Consi der ati ons

An object identifier is requested for curve Wi 25519 and its use with
ECDSA and co-factor ECDH, using the representation conventions of
t his docunent.

There is *currently* no further I ANA action required for this
docunent. New object identifiers would be required in case one
wi shes to specify one or nore of the "offspring” protocols
exenplified in Section 4. 4.

10.1. COSE Elliptic Curves Registration

This section registers the following value in the I ANA "COSE Elliptic
Curves" registry [IANA. COSE. Curves].

Nane: Wei 25519;
Val ue: TBD (Requested val ue: -1);
Key Type: EC2 or OKP (where OKP uses the squeezed MSB/ nsb

representation of this specification);
Description: short-Wierstrass curve Wi 25519;
Ref er ence: Appendi x E.3 of this specification;
Reconmended: Yes.
(Note that The "kty" value for Wi 25519 may be "OKP" or "EC2".)
10.2. COSE Al gorithnms Registration (1/2)

This section registers the follow ng value in the | ANA "COSE
Al gorithns" registry [| ANA COSE. Al gorithns].

Nane: ECDSA255109;
Val ue: TBD (Requested val ue: -1);

Description: ECDSA w SHA-256 and curve Wi 25519;
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10.

10.

10.

Ref er ence: Section 4.3 of this specification;
Recommended: Yes.
3. COSE Algorithns Registration (2/2)

This section registers the followng value in the | ANA "COSE
Al gorithnms" registry [IANA. COSE. Al gorithns].

Nane: ECDH25519;
Val ue: TBD (Requested val ue: -2);

Description: N ST-conpliant co-factor Diffie-Hellman w curve
Wei 25519 and key derivation functi on HKDF SHA256;

Ref er ence: Section 4.1 of this specification (for key derivation,
see Section 11.1 of [RFC8152]);

Reconmended: Yes.
4. JOSE Elliptic Curves Registration

This section registers the followng value in the [ ANA "JSON Wb Key
Elliptic Curve" registry [IANA JOSE. Curves].

Curve Name: Wi 255109;

Curve Description: short-Wierstrass curve Wi 25519;
JOSE | npl enentati on Requirenments: optional;

Change Controller: |ANA

Ref erence: Appendix E. 3 of this specification.

5. JOSE Algorithnms Registration (1/2)

This section registers the followng value in the | ANA "JSON Wb
Si gnature and Encryption Algorithnms"” registry [I ANA JOSE. Al gorithns].

Al gorithm Name: ECDSA255109;
Al gorithm Description: ECDSA w SHA-256 and curve Wi 25519;
Al gorithm Usage Locations: alg;

JOSE | npl enentati on Requirenents: optional;
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Change Controller: | ANA

Ref erence: Section 4.3 of this specification;

Al gorithm Anal ysis Docunents: Section 4.3 of this specification.
10.6. JOSE Al gorithnms Registration (2/2)

This section registers the followng value in the | ANA "JSON Wb
Si gnature and Encryption Algorithnms" registry [I ANA JOSE. Al gorithns].

Al gorithm Name: ECDH255109;

Al gorithm Description: N ST-conpliant co-factor Diffie-Hellman w
curve Wi 25519 and key derivation function HKDF SHA256;

Al gorithm Usage Locations: alg;
Change Controller: | ANA

Ref erence: Section 4.1 of this specification (for key derivation,
see Section 5 of [SP-800-56c]);

Al gorithm Anal ysis Docunents: Section 4.1 of this specification (for
key derivation, see Section 5 of [SP-800-56¢c]).
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Appendi x A.  Sone (non-Binary) Elliptic Curves
A.1. Curves in short-Wierstrass Form

Let G-(q) denote the finite field with q elenents, where g is an odd
prime power and where q is not divisible by three. Let W{a, b} be
the Weierstrass curve wth defining equation Y*2 = X*"3 + a*X + b,
where a and b are elenents of G-(q) and where 4*a”3 + 27*b"2 is
nonzero. The points of W{a,b} are the ordered pairs (X, Y) whose
coordi nates are elenents of G-(q) and that satisfy the defining
equation (the so-called affine points), together with the speci al
point O (the so-called "point at infinity"). This set forns a group
under addition, via the so-called "secant-and-tangent"” rule, where
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the point at infinity serves as the identity elenent. See
Appendi x C.1 for details of the group operation.

A 2. Mntgonery Curves

Let G-(q) denote the finite field wth q elenents, where q is an odd
prime power. Let M{A B} be the Montgonery curve with defining
equation B*v"2 = u*"3 + A*u”2 + u, where A and B are elenents of G-(Q)
and where A is unequal to (+/-)2 and where B is nonzero. The points
of M{A B} are the ordered pairs (u, v) whose coordi nates are

el emrents of GF(qg) and that satisfy the defining equation (the so-
called affine points), together with the special point O (the so-
called "point at infinity"). This set forns a group under addition,
via the so-called "secant-and-tangent” rule, where the point at
infinity serves as the identity element. See Appendix C. 2 for
details of the group operation.

A. 3. Twi sted Edwards Curves

Let GF(q) denote the finite field wwth g elenents, where q is an odd
prinme power. Let E {a,d} be the twi sted Edwards curve with defining
equation a*x"2 + y"2 = 1+ d*x"2*y"2, where a and d are distinct
nonzero elenments of GF(gq). The points of E {a,d} are the ordered
pairs (x, y) whose coordinates are elenents of G-(q) and that satisfy
t he defining equation (the so-called affine points). It can be shown
that this set forns a group under addition if a is a square in GF(qQ),
whereas d is not, where the point O=(0, 1) serves as the identity
elenment. (Note that the identity elenment satisfies the defining
equation.) See Appendix C 3 for details of the group operation.

An Edwards curve is a tw sted Edwards curve with a=1.
Appendi x B. Elliptic Curve Nonmenclature and Finite Fields
B.1. Elliptic Curve Nonencl ature

Each curve defined in Appendix A forms a commutative group under
addition (denoted by "+ ). In Appendix C we specify the group |aws,
whi ch depend on the curve nodel in question. For conpleteness, we
here include sonme conmon elliptic curve nonencl ature and basic
properties (primarily so as to keep this docunent self-contained).
These notions are mainly used in Appendi x E and Appendi x G and not
essential for our exposition. This section can be skipped at first
readi ng.

Any point P of a curve E is a generator of the cyclic subgroup

(P):={k*P | k=0, 1, 2,...} of the curve. (Here, k*P denotes the
sum of k copies of P, where O*P is the identity elenment O of the
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curve.) If (P) has cardinality |, then | is called the order of P.
The order of curve Eis the cardinality of the set of its points,
commonly denoted by |E|. A curve is cyclic if it is generated by sone
point of this curve. Al curves of prinme order are cyclic, while al
curves of order h*n, where n is a large prine nunber and where h is a
smal | nunber (the so-called co-factor), have a |arge cyclic subgroup
of prime order n. In this case, a generator of order nis called a
base point, comonly denoted by G A point of order dividing his
said to be in the small subgroup. For curves of prine order, this
smal | subgroup is the singleton set, consisting of only the identity
elemrent O If a point is not in the small subgroup, it has order at

| east n.

If Ris a point of the curve that is also contained in (P), there is

a unique integer k in the interval [0, |-1] so that R=k*P, where | is
the order of P. This nunber is called the discrete logarithmof Rto
the base P. The discrete |ogarithmproblemis the problem of finding
the discrete logarithmof R to the base P for any two points P and R

of the curve, if such a nunber exists.

If Pis a fixed base point G of the curve, the pair (k, R=k*Q is
commonly called a public-private key pair, the integer k the private
key, and the point R the corresponding public key. The private key k
can be represented as an integer in the interval [0,n-1], where G has
order n.

In this docunent, a quadratic twi st of a curve E defined over a field
GF(q) is acurve E related to E, with cardinality |E |

where | E| +|E | =2*(qgq+1). |If Eis a curve in one of the curve nodels
specified in this docunent, a quadratic twist of this curve can be
expressed using the same curve nodel, although (naturally) wthits
own curve paraneters. Two curves E and E defined over a field G-(Q)
are said to be isogenous if these have the sane order and are said to
be isonorphic if these have the same group structure. Note that

i sonor phi ¢ curves have necessarily the sane order and are, thus, a
speci al type of isogenous curves. Further details are out of scope.

Wei erstrass curves can have prine order, whereas Mntgonmery curves
and tw sted Edwards curves always have an order that is a nultiple of
four (and, thereby, a small subgroup of cardinality four).

An ordered pair (X, y) whose coordinates are elenents of G-(q) can be
associated with any ordered triple of the form[x*z: y*z: z], where z
is a nonzero el enent of GF(q), and can be uniquely recovered from
such a representation. The latter representation is comonly called
a representation in projective coordi nates. Sonetines, yet other
representations are useful (e.g., representation in Jacobian
coordinates). Further details are out of scope.
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The group laws in Appendix C are nostly expressed in terns of affine
poi nts, but can also be expressed in terns of the representation of
these points in projective coordi nates, thereby allow ng cl earing of
denom nators. The group |aws may al so i nvol ve non-affine points
(such as the point at infinity O of a Wierstrass curve or of a

Mont gonery curve). Those can also be represented in projective
coordi nates. Further details are out of scope.

B. 2. Finite Fields

The field GF(q), where g is an odd prine power, is defined as
foll ows.

If pis a prinme nunber, the field GF(p) consists of the integers in
the interval [0,p-1] and two binary operations on this set: addition
and rmultiplication nodul o p.

If g=p"mand nr0, the field G-(q) is defined in terns of an

i rreduci ble polynomal f(z) in z of degree mwth coefficients in
G-(p) (i.e., f(z) cannot be witten as the product of two pol ynom al s
in z of lower degree with coefficients in Ge(p)): in this case, G-(q)
consists of the polynomals in z of degree snmaller than mwth
coefficients in GF(p) and two binary operations on this set:

pol ynom al addition and polynom al nultiplication nodulo the

i rreduci ble polynomal f(z). By definition, each elenment x of G-(Q)
is a polynomal in z of degree smaller than mand can, therefore, be
uni quely represented as a vector (x_ {m1}, x {m2}, ..., x_ 1, x_0) of
length mwith coefficients in GF(p), where x_i is the coefficient of
z™"i of polynomal x. Note that this representati on depends on the
irreduci ble polynomal f(z) of the field GF(p”m) in question (which
is often fixed in practice). Note that G-(g) contains the prine
field G-(p) as a subset. |If mel, we always pick f(z):=z, so that the
definions of GF(p) and G-(p”"1l) above coincide. |If npl, then G-(q) is
called a (nontrivial) extension field over G-(p). The nunber p is
called the characteristic of G-(qQ).

Afield elenent y is called a square in G=(q) if it can be expressed
as y:=x"2 for sone x in GF(q); it is called a non-square in G-(q)

otherwise. |If y is a square in GF(qg), we denote by sqrt(y) one of
its square roots (the other one being -sqrt(y)). For nmethods for
conputing square roots and inverses in G-(q) - if these exist - see

Appendi x L.1 and Appendi x L.2, respectively. For nethods for mapping
a nonzero field elenent that is not a square in G-(q) to a point of a
curve, see Appendix L. 3.

NOTE: The curves in Appendi x E and Appendi x G are all defined over a

prime field GF(p), thereby reducing all operations to sinple nodular
integer arithmetic. Strictly speaking we could, therefore, have
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refrained fromintroducing extension fields. Nevertheless, we

i ncluded the nore general exposition, so as to acconmodate potenti al
i ntroduction of new curves that are defined over a (nontrivial)
extension field at sone point in the future. This includes curves
proposed for post-quantum i sogeny-based schenes, which are defi ned
over a quadratic extension field (i.e., where g:=p"2), and elliptic
curves used with pairing-based cryptography. The exposition in
either case is alnost the same and now automatically yields, e.g.,
data conversion routines for any finite field object (see

Appendi x J). Readers not interested in this, could sinply view all
fields as prine fields.

Appendix C. Elliptic Curve G oup Operations
C.1. Goup Law for Wierstrass Curves

For each point P of the Wierstrass curve W{a, b}, the point at
infinity O serves as identity elenent, i.e., P+ O=0+P =P

For each affine point P:.=(X, Y) of the Weierstrass curve W{a, b}, the
point -Pis the point (X, -Y) and one has P + (-P) = O

Let P1:=(X1, Y1) and P2:=(X2, Y2) be distinct affine points of the
Wi erstrass curve W{a,b} and let @Q=P1 + P2, where Qis not the
identity element. Then Q=(x, y), where

X+ X1 + X2 = lanbda”2 and Y + Y1 = |anbda*( X1 - X), where

lanbda: = (Y2 - Y1)/ (X2 - X1).
Let P:=(X1, Y1) be an affine point of the Wierstrass curve W{a, b}
and let Q=2*P, where Qis not the identity element. Then Q=(X, Y),
wher e

X + 2*X1 = lanbda”2 and Y + Y1 = lanbda*(X1 - X), where

| anbda: =(3*X1"2 + a)/ (2*Y1l).

Fromthe group | aws above it follows that if P=(X, Y), Pl=k*P=(X1,
Y1), and P2=(k+1)*P=(X2, Y2) are distinct affine points of the
Wi erstrass curve W{a,b} and if Y is nonzero, then the Y-coordi nate

of Pl can be expressed in terns of the X-coordinates of P, Pl, and
P2, and the Y-coordinate of P, as

Y1=( (X* X1+a) * ( X+X1) +2* b- X2* ( X- X1) A2) / (2*+Y).

This property allows recovery of the Y-coordi nate of a point Pl=k*P
that is conputed via the so-called Montgonery | adder, where P is an
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affine point with nonzero Y-coordinate (i.e., it does not have order
two). Further details are out of scope.

C.2. Goup Law for Mntgomery Curves

For each point P of the Montgomery curve M {A B}, the point at
infinity O serves as identity elenent, i.e., P+ O=0+P =P

For each affine point P:=(u, v) of the Montgonmery curve M{A B}, the
point -Pis the point (u, -v) and one has P + (-P) = O

Let P1:=(ul, v1) and P2:=(u2, v2) be distinct affine points of the
Mont gonmery curve M {A B} and let Q=P1 + P2, where Qis not the
identity element. Then Q =(u, v), where

u+ ul + u2 = B*lanbda”2 - A and v + vl = |anbda*(ul - u), where
| anmbda: =(v2 - v1)/(u2 - ul).

Let P:=(ul, v1) be an affine point of the Montgomery curve M{A B}
and let Q=2*P, where Qis not the identity elenent. Then Q =(u, v),
wher e

u + 2*ul = B*lanbda®2 - A and v + vl = lanbda*(ul - u), where
| ambda: =(3*ul”r2 + 2*Arul+l)/(2*B*v1).

Fromthe group | aws above it follows that if P=(u, v), Pl=k*P=(ul
vl), and P2=(k+1)*P=(u2, v2) are distinct affine points of the

Mont gonery curve M{A B} and if v is nonzero, then the v-coordinate
of P1 can be expressed in terns of the u-coordinates of P, Pl, and
P2, and the v-coordinate of P, as

vi=((u*ul+l)*(u+ul+2*A)-2*A-u2*(u-ul)"2)/(2*B*v).

This property allows recovery of the v-coordinate of a point Pl1=k*P
that is conputed via the so-called Montgonery | adder, where P is an
affine point with nonzero v-coordinate (i.e., it does not have order
one or two). Further details are out of scope.

C.3. Goup Law for Tw sted Edwards Curves

Not e: The group |laws bel ow hold for tw sted Edwards curves E {a, d}
where a is a square in GF(q), whereas d is not. |In this case, the
addi tion fornul ae bel ow are defined for each pair of points, wthout
exceptions. Ceneralizations of this group law to other tw sted
Edwar ds curves are out of scope.
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For each point P of the tw sted Edwards curve E_{a,d}, the point
O =(0,1) serves as identity element, i.e., P+ O=0+ P =P

For each point P:=(x, y) of the twi sted Edwards curve E {a,d}, the
point -Pis the point (-x, y) and one has P + (-P) = O

Let Pl:=(x1, yl) and P2:=(x2, y2) be points of the tw sted Edwards
curve E {a,d} and let @Q=P1 + P2. Then Q=(x, y), where

= (x1*y2 + x2*y1l)/ (1 + d*x1*x2*yl*y2) and

x

(yl*y2 - a*x1*x2)/(1 - d*x1*x2*yl*y2).

y
Let P:=(x1, yl) be a point of the twi sted Edwards curve E {a, d} and
let Q=2*P. Then Q=(x, y), where

X
I

(2*x1*y1)/ (1 + d*x1”r2*y1”72) and
y = (y1r2 - a*x172)/ (1 - d*x172*yl1~r2).

Not e that one can use the fornulae for point addition for point
doubl i ng, taking inverses, and adding the identity el enent as well
(i.e., the point addition fornulae are uni form and conpl ete (subject
to our Note above)).

From the group | aws above (subject to our Note above) it follows that
if P=(x, y), Pl=k*P=(x1, yl), and P2=(k+l)*P=(x2, y2) are affine
points of the twi sted Edwards curve E {a,d} and if x is nonzero, then
the x-coordi nate of P1 can be expressed in terns of the y-coordi nates
of P, P1, and P2, and the x-coordinate of P, as

x1=(y*yl-y2)/ (x*(a-d*y*yl*y2)).

This property allows recovery of the x-coordinate of a point P1l=k*P
that is conputed via the so-called Mntgonery | adder, where P is an
affine point wth nonzero x-coordinate (i.e., it does not have order
one or two). Further details are out of scope.

Appendi x D. Rel ationship Between Curve Mbdel s
The non-binary curves specified in Appendix A are expressed in
different curve nodels, viz. as curves in short-Wierstrass form as

Mont gonmery curves, or as twi sted Edwards curves. These curve nodels
are related, as foll ows.
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D.1. Mapping between Twi sted Edwards Curves and Montgonery Curves

One can map points of the Montgonery curve M{A B} to points of the
tw sted Edwards curve E {a,d}, where a:=(A+2)/B and d: =(A-2)/B and,
conversely, map points of the tw sted Edwards curve E {a,d} to points
of the Montgonmery curve M{A B}, where A =2(a+d)/(a-d) and where
B:=4/(a-d). For tw sted Edwards curves we consider (i.e., those
where a is a square in G-(q), whereas d is not), this defines a one-
t 0-one correspondence, which - in fact - is an isonorphi sm between
M{A B} and E {a,d}, thereby showing that, e.g., the discrete

| ogarithm problemin either curve nodel is equally hard.

For the Montgonery curves and tw sted Edwards curves we consider, the
mappi ng fromM {A B} to E {a,d} is defined by mappi ng the point at
infinity Oand the point (0, 0) of order two of M{A B} to,
respectively, the point (0, 1) and the point (0, -1) of order two of
E {a,d}, while mapping each other point (u, v) of M{A B} to the
point (x,y):=(u/v,(u-1)/(u+l)) of E {a,d}. The inverse mapping from
E {a,d} to M{A B} is defined by mapping the point (0, 1) and the
point (0, -1) of order two of E {a,d} to, respectively, the point at
infinity Oand the point (0, 0) of order two of M{A B}, while each
other point (x, y) of E {a,d} is mapped to the point
(u,v):=((1+y)/ (1-y), (1+y)/ ((1-y)*x)) of M{A B}.

| npl ement ati ons may take advantage of this mapping to carry out
elliptic curve group operations originally defined for a tw sted
Edwar ds curve on the correspondi ng Montgonery curve, oOr Vice-versa,
and translating the result back to the original curve, thereby
potentially all ow ng code reuse.

D. 2. Mapping between Montgonery Curves and Weierstrass Curves

One can map points of the Montgonery curve M{A B} to points of the
Wei erstrass curve W{a, b}, where a:=(3-A"2)/(3*B"2) and

b: =(2*A*3-9*A)/ (27*B*"3). This defines a one-to-one correspondence,

which - in fact - is an isonorphismbetween M{A B} and W{a, b},

t hereby showing that, e.g., the discrete |logarithmproblemin either
curve nodel is equally hard.

The mapping fromM{A B} to W{a, b} is defined by mappi ng the point
at infinity Oof M{A B} to the point at infinity Oof W{a,b}, while
mappi ng each other point (u,v) of M{A B} to the point

(X Y):=((u+A/3)/B,v/IB) of W{a,b}. Note that not all Weierstrass
curves can be injectively mapped to Montgonery curves, since the

| atter have a point of order two and the former may not. In
particular, if a Weierstrass curve has prine order, such as is the
case wWith the so-called "N ST curves”, this inverse mapping is not
defi ned.
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If the Weierstrass curve W{a, b} has a point (alpha,0) of order two
and c:=a+3*(al pha)”2 is a square in G-(q), one can map points of this
curve to points of the Montgonery curve M{A B}, where A =3*al pha/
gamma and B: =1/ gamma and where gamma is any square root of c. In
this case, the mapping fromW{a,b} to M{A B} is defined by mappi ng
the point at infinity Oof W{a,b} to the point at infinity O of

M{A B}, while mapping each other point (X Y) of W{a,b} to the point
(u,v):=((X-al pha)/ganma, Y/ ganma) of M{A B}. As before, this defines
a one-to-one correspondence, which - in fact - is an isonorphi sm
between W{a,b} and M{A B}. It is easy to see that the mapping from
W{a,b} to M{A B} and that fromM{A B} to W{a,b} (if defined) are
each other’s inverse.

Thi s mappi ng can be used to inplenment elliptic curve group operations
originally defined for a twi sted Edwards curve or for a Mntgonery
curve using group operations on the corresponding elliptic curve in
short-Wierstrass formand translating the result back to the
original curve, thereby potentially allow ng code reuse.

Note that inplenentations for elliptic curves with short-Wierstrass
formthat hard-code the domain paraneter a to a= -3 (which value is
known to allow nore efficient inplenmentations) cannot always be used
this way, since the curve W{a,b} resulting froman i sonorphic
mappi ng cannot al ways be expressed as a Wierstrass curve with a=-3
via a coordinate transformation. For nore details, see Appendi x F.

D.3. Mappi ng between Twi sted Edwards Curves and Wi erstrass Curves

One can map points of the tw sted Edwards curve E {a,d} to points of
the Weierstrass curve W{a, b}, via function conposition, where one
uses the isonorphic mappi ng between tw sted Edwards curves and

Mont gonery curves of Appendix D.1 and the one between Montgonery and
Wei erstrass curves of Appendix D.2. Obviously, one can use function
conmposition (now using the respective inverses - if these exist) to
realize the inverse of this mapping.

Appendi x E. Curve25519 and Cousi ns
E.1. Curve Definition and Alternative Representations

The el liptic curve Curve25519 is the Montgonery curve M {A B} defined
over the prine field GF(p), with p:=2~{255}-19, where A =486662 and
B:=1. This curve has order h*n, where h=8 and where n is a prine
nunber. For this curve, A*2-4 is not a square in GF(p), whereas A+2
is. The quadratic twist of this curve has order hl*nl, where hl=4
and where nl is a prine nunber. For this curve, the base point is
the point (GQu, Gv), where GQu=9 and where Gv is an odd integer in the
interval [0, p-1].
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This curve has the sane group structure as (is "isonorphic" to) the
tw sted Edwards curve E {a,d} defined over G-(p), with as base point
the point (&, Gy), where paraneters are as specified in

Appendi x E.3. This curve is denoted as Edwards25519. For this
curve, the paraneter a is a square in G-(p), whereas d is not, so the
group |l aws of Appendix C 3 apply.

The curve is also isonmorphic to the elliptic curve W{a,b} in short-
Wei erstrass form defined over G-(p), with as base point the point
(GX, GY), where paraneters are as specified in Appendix E. 3. This
curve is denoted as Wi 255109.

E.2. Switching between Alternative Representations

Each affine point (u, v) of Curve25519 corresponds to the point (X
Y):=(u + A/3, v) of Wei25519, while the point at infinity of
Curve25519 corresponds to the point at infinity of Wi 25519. (Here,
we used the mappings of Appendix D.2 and that B=1.) Under this

mappi ng, the base point (Gu, Gv) of Curve25519 corresponds to the
base point (GX, GY) of Wi 25519. The inverse mapping maps the affine
point (X, Y) of Wi25519 to (u, v):=(X - A3, Y) of Curve25519, while
mappi ng the point at infinity of Wi 25519 to the point at infinity of
Curve25519. Note that this mapping involves a sinple shift of the
first coordinate and can be inplenmented via integer-only arithnetic
as a shift of (p+A)/3 for the isonorphic mapping and a shift of
-(ptA)/3 for its inverse, where delta=(p+tA)/3 is the el enent of G(p)
defi ned by

delta 19298681539552699237261830834781317975544997444273427339909597
334652188435537

(=Ox2aaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
aaaaaaaa aaad2451).

(Note that, depending on the inplenentation details of the field
arithnmetic, one may have to shift the result by +p or -p if this
integer is not in the interval [O,p-1].)

The curve Edwar ds25519 is isonorphic to the curve Curve25519, where

t he base point (Gu, Gv) of Curve25519 corresponds to the base point
(G&x, Gy) of Edwards25519 and where the point at infinity and the point
(0,0) of order two of Curve25519 correspond to, respectively, the
point (0, 1) and the point (0, -1) of order two of Edwards25519 and
where each other point (u, v) of Curve25519 corresponds to the point
(c*u/v, (u-1)/(u+l)) of Edwards25519, where c is the elenment of G-(p)
defi ned by

C sgrt (- (A+2)/B)
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51042569399160536130206135233146329284152202253034631822681833788
666877215207

(=0x70d9120b 9f 5ff 944 2d84f 723 fc03b081 3a5e2c2e b482e57d
3391f b55 00ba81e7).

(Here, we used the mapping of Appendix D.1 and normalized this using
t he mappi ng of Appendix F.1 (where the elenent s of that appendix is
set to c¢c above).) The inverse mapping from Edwards25519 to
Curve25519 is defined by mapping the point (0, 1) and the point (O,
-1) of order two of Edwards25519 to, respectively, the point at
infinity and the point (0,0) of order two of Curve25519 and havi ng
each other point (x, y) of Edwards25519 correspond to the point ((1 +
y)/ (1 -vy), c*(1 +vy)/((1l-y)*x)) of Curve25519.

The curve Edwards25519 is isonorphic to the Wierstrass curve

Wei 25519, where the base point (&, Gy) of Edwards25519 corresponds
to the base point (GX GY) of Wi 25519 and where the identity el enent
(0,1) and the point (0,-1) of order two of Edwards25519 correspond
to, respectively, the point at infinity O and the point (A/3, 0) of
order two of Wi 25519 and where each other point (x, y) of

Edwar ds25519 corresponds to the point (X, Y):=((1+y)/(1-y)+A 3,
c*(1+y)/((1l-y)*x)) of Wi 25519, where ¢ was defined before. (Here,
we used the mapping of Appendix D.3.) The inverse nmapping from

Wei 25519 to Edwards25519 is defined by mapping the point at infinity
O and the point (A/3, 0) of order two of Wi 25519 to, respectively,
the identity element (0,1) and the point (0,-1) of order two of
Edwar ds25519 and havi ng each other point (X, Y) of Wi 25519
correspond to the point (c*(3*X-A)/(3*Y), (3*X-A-3)/(3*X-A+3)) of
Edwar ds25519.

Not e that these mappings can be easily realized if points are
represented in projective coordinates, using a fewfield

mul tiplications only, thus allow ng switching between alternative
curve representations with negligible relative increnental cost.

E.3. Dommin Paraneters
The paraneters of the Montgonery curve and the correspondi ng
i sonorphic curves in tw sted Edwards curve and short-Wierstrass form
are as indicated below. Here, the domain paraneters of the
Mont gonmery curve Curve25519 and of the tw sted Edwards curve
Edwar ds25519 are as specified in [ RFC7748]; the domain paraneters of
Wei 25519 are "new'
General paraneters (for all curve nodel s):

p  27{255}-19
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h1

nl

(=Ox7fffffff fEEfefff FEEFEEFF FECEEAEF FEFEFAFF FEFAFFAS
ffffffff ffffffed)

8

72370055773322622139731865630429942408571163593799076060019509382
85454250989

(=27{252} + Oxl4def9de a2f79cd6 5812631a 5cf5d3ed)
4

14474011154664524427946373126085988481603263447650325797860494125
407373907997

(=27{253} - 0x29bdf3bd 45ef 39ac b024c634 b9eba7e3)

Mont gonery curve-specific paraneters (for Curve25519):

A

B
Qu
G

486662
1
9 (=0x9)

14781619447589544791020593568409986887264606134616475288964881837
755586237401

(=0x20ael9al b8a086b4 eOledd2c 7748dl4c 923d4d7e 6d7c61b2
29e9c5a2 7eced3d9)

Twi st ed Edwards curve-specific paraneters (for Edwards25519):

a

d

Strui k

-1 (-0x01)
- 121665/ 121666 = - (A-2)/ (A+2)

(=370957059346694393431380835087545651895421138798432190163887855
33085940283555)

(=0x52036¢cee 2b6ffe73 8cc74079 7779e898 00700a4d 4141d8ab
75eb4dca 135978a3)

15112221349535400772501151409588531511454012693041857206046113283
949847762202

(=0x216936d3 cd6e53fe cOad4e231 fdd6dc5c 692cc760 9525a7b2
c9562d60 8f 25d51a)
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o 4/5

(=463168356949264781694283940034751631413079938662562256157830336
03165251855960)

(=0x66666666 66666666 66666666 66666666 66666666 66666666
66666666 66666658)

Wei erstrass curve-specific paranmeters (for Wi 25519):

a 19298681539552699237261830834781317975544997444273427339909597334
573241639236

(=Ox2aaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
aaaaaa98 4914al44)

b 55751746669818908907645289078257140818241103727901012315294400837
956729358436

(=0x7b425ed0 97b425ed 097b425e d097b425 ed097b42 5ed097b4
260b5e9c 7710c864)

GX 19298681539552699237261830834781317975544997444273427339909597334
652188435546

(=Ox2aaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
aaaaaaaa aaad245a)

GY 14781619447589544791020593568409986887264606134616475288964881837
755586237401

(=0x20ael9al b8a086b4 eOledd2c 7748d1l4c 923d4d7e 6d7c61b2
29e9cbha2 7eced3d9)

Appendi x F.  Further Mappi ngs

The non-binary curves specified in Appendix A are expressed in
different curve nodels, viz. as curves in short-Wierstrass form as
Mont gonery curves, or as tw sted Edwards curves. |In Appendix D we

al ready described rel ati onshi ps between these various curve nodel s.
Furt her mappi ngs exi st between elliptic curves within the sane curve
nodel . These can be exploited to force sone of the domain paraneters
to specific values that allow for a nore efficient inplenmentation of
t he addition formnul ae.

Struik Expi res January 9, 2020 [ Page 29]



I nternet-Draft | wi g-curve-representations July 2019

F.1. |sonorphic Mapping between Tw sted Edwards Curves

One can map points of the twi sted Edwards curve E {a,d} to points of
the twi sted Edwards curve E {a’,d }, where a:=a’*s"2 and d: =d’ *s"2
for some nonzero elenent s of G-(q). This defines a one-to-one
correspondence, which - in fact - is an isonorphi smbetween E {a, d}
and E {a ,d }.

The mapping fromE {a,d} to E{a’,d } is defined by mapping the point
(x,y) of E{a,d} to the point (x, y' ):=(s*x, y) of E{a ,d }. The
inverse mapping fromE {a ,d’} to E {a,d} is defined by mapping the
point (x, y') of E{a ,d } to the point (x, y):=(x"/s, y') of

E {a,d}.

| npl emrent ati ons may take advantage of this mapping to carry out
elliptic curve group operations originally defined for a tw sted
Edwards curve with generic domain paraneters a and d on a

correspondi ng i sonorphic tw sted Edwards curve with domai n paraneters
a’ and d° that have a nore special form which are known to allow for
nore efficient inplenmentations of addition laws. |In particular, it
is known that such efficiency inprovenments exist if a :=-1 (see

[t Ed- Formul as]) .

F. 2. 1sonorphic Mappi ng bet ween Montgonery Curves

One can map points of the Montgonery curve M{A B} to points of the
Mont gonery curve M{A ,B }, where A=A and B: =B *s"2 for sone
nonzero elenent s of GF(q). This defines a one-to-one
correspondence, which - in fact - is an isonorphi smbetween M{A B}
and M{A ,B}.

The mapping fromM{A B} to M{A ,B} is defined by mappi ng the point
at infinity Oof M{A B} to the point at infinity Oof M{A , 6B},
whi | e mappi ng each other point (u,v) of M{A B} to the point (u’,
v'):=(u, s*v) of M{A ,B}. The inverse mapping fromM{A ,B} to
M{A B} is defined by mapping the point at infinity Oof M{A,B} to
the point at infinity Oof M{A B}, while mapping each other point
(u,v') of M{A,B} to the point (u,v):=(u ,v'/s) of M{A B}.

One can al so map points of the Montgomery curve M{A B} to points of
the Montgonery curve M{A ,B}, where A :=-A and B :=-B. This
defines a one-to-one correspondence, which - in fact - is an

i sonor phi sm between M {A B} and M{A ,B}.

In this case, the mapping fromM{A B} to M{A ,B} is defined by
mappi ng the point at infinity Oof M{A B} to the point at infinity O
of M{A ,B}, while mapping each other point (u,v) of M{A B} to the
point (u ,v'):=(-u,v) of M{A ,B}. The inverse mapping from
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M{A ,B} to M{A B} is defined by mapping the point at infinity O of
M{A ,B} to the point at infinity Oof M{A B}, while mapping each
other point (u,v') of M{A,B} to the point (u,v):=(-u,v' ) of

M {A, B}.

| npl enent ati ons may take advantage of this mapping to carry out
elliptic curve groups operations originally defined for a Mntgonery
curve with generic domain paraneters A and B on a correspondi ng

i sonor phi ¢ Montgonmery curve with domain paraneters A and B that
have a nore special form which is known to allow for nore efficient
i npl ementations of addition laws. |In particular, it is known that
such efficiency inprovenents exist if B assunmes a snall absolute
val ue, such as B :=(+/-)1. (see [Mont-Ladder]).

F.3. 1sonorphic Mappi ng between Wi erstrass Curves

One can map points of the Weierstrass curve W{a, b} to points of the
Wi erstrass curve W{a' ,b }, where a :=a*s"4 and b’ :=b*s”6 for sone
nonzero elenment s of GF(q). This defines a one-to-one
correspondence, which - in fact - is an isonorphi smbetween W{a, b}
and W{a ,b’}.

The mapping fromW{a,b} to W{a’,b’} is defined by mappi ng the point
at infinity Oof W{a,b} to the point at infinity Oof W{a ,b'},
whi | e mappi ng each other point (X Y) of W{a, b} to the point
(X,Y):=(X*s"2, Y*s”"3) of W{a' ,b}. The inverse mapping from

W{a ,b’'} to W{a,b} is defined by mapping the point at infinity O of
W{a' ,b’} to the point at infinity O of W{a, b}, while mapping each
other point (X, Y ) of W{a',b’} to the point (X Y):=(X/s"2,Y [s”"3)
of W{a, b}.

| npl ement ati ons may take advantage of this mapping to carry out
elliptic curve group operations originally defined for a Wierstrass
curve with generic domain paranmeters a and b on a correspondi ng

i sonor phic Weierstrass curve with domain paraneter a’ and b’ that
have a nore special form which is known to allow for nore efficient
i mpl ementations of addition |aws, and translating the result back to
the original curve. |In particular, it is known that such efficiency
i nprovenents exist if a=-3 (nod p), where p is the characteristic of
GF(q), and one uses so-called Jacobian coordinates with a particul ar
projective version of the addition |aws of Appendix C 1. Wile not
all Weierstrass curves can be put into this form all traditiona

NI ST curves have domai n paraneter a=-3, while all Brainpool curves

[ RFC5639] are isonmorphic to a Weierstrass curve of this form

Note that inplenentations for elliptic curves with short-Wierstrass

formthat hard-code the domain paraneter a to a= -3 cannot al ways be
used this way, since the curve W{a, b} cannot al ways be expressed in
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terns of a Weierstrass curve with a’=-3 via a coordinate
transformation: this only holds if a’/a is a fourth power in GF(Q)
(see Section 3.1.5 of [GECC]). However, even in this case, one can
still express the curve W{a,b} as a Wierstrass curve with a small
domai n paraneter value a', thereby still allowng a nore efficient

i npl enentation than with a general donmai n paraneter val ue a.

F. 4. 1sogenous Mappi ng between Wi erstrass Curves

One can still map points of the Wierstrass curve W{a, b} to points
of the Weierstrass curve W{a ,b’}, where a’:=-3 (nod p) and where p
is the characteristic of G-(q), even if a' /a is not a fourth power in
G-(q). In that case, this mappping cannot be an isonorphism (see
Appendi x F.3). Instead, the mapping is a so-called isogeny (or
homonor phisn). Since nost elliptic curve operations process points
of prime order or use so-called "co-factor multiplication”, in
practice the resulting mapping has simlar properties as an

i sonorphism In particular, one can still take advantage of this
mapping to carry out elliptic curve group operations originally
defined for a Wierstrass curve with domain paranmeter a unequal to -3
(mod p) on a correspondi ng i sogenous Wi erstrass curve with domain
paraneter a’'=-3 (nod p) and translating the result back to the

origi nal curve.

In this case, the mapping fromW{a,b} to W{a’,b'} is defined by
mappi ng the point at infinity Oof W{a,b} to the point at infinity O
of W{a',b’}, while mappi ng each other point (X Y) of W{a,b} to the
point (X ,Y):=(u(X)/WMX)"2, Y*v(X)/Wm X)*3) of W{a' ,b’ }. Here, u(X),
v(X), and M(X) are polynomals in X that depend on the isogeny in
guestion. The inverse mapping fromW({a' ,b’'} to W{a,b} is again an
i sogeny and defined by mapping the point at infinity Oof W{a ,b'}
to the point at infinity Oof W{a, b}, while mappi ng each ot her point
(X, Y) of W{a’,b’} to the point

(X, Y):=(uw (X)/w ((X)"2,Y*v (X)W (X )"3) of W{a,b}, where --
again -- u(X), v(X), and w (X ) are polynomals in X that depend
on the isogeny in question. These mappings have the property that
their conposition is not the identity mapping (as was the case with

t he i sonor phi ¢ mappi ngs di scussed in Appendix F.3), but rather a
fixed multiple hereof: if this multiple is | then the isogeny is

call ed an isogeny of degree | (or |-isogeny) and u, v, and w (and,
simlarly, u, v', and w) are polynomals of degrees |, 3*(1-1)/2,
and (1-1)/2, respectively. Note that an isonorphismis sinply an

i sogeny of degree |=1. Details of how to determ ne isogenies are out
of scope of this docunent.

| npl ement ati ons may take advantage of this mapping to carry out

elliptic curve group operations originally defined for a Wi erstrass
curve with a generic domain paraneter a on a correspondi ng i sogenous
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Wei erstrass curve with domain paraneter a’'=-3 (nod p), where one can
use so-call ed Jacobian coordinates with a particular projective
version of the addition | aws of Appendix C. 1. Since all traditional
NI ST curves have domai n paraneter a=-3, while all Brainpool curves

[ RFC5639] are isonmorphic to a Weierstrass curve of this form this
al l ows taking advantage of existing inplenentations for these curves
that may have a hardcoded a=-3 (nod p) domain paraneter, provided one
switches back and forth to this curve formusing the isogenous
mappi ng i n questi on.

Not e that isogenous mappi ngs can be easily realized using
representations in projective coordinates and involves roughly 3*I
finite field multiplications, thus allow ng sw tching between
alternative representations at relatively | owincremental cost
conpared to that of elliptic curve scalar multiplications (provided
the isogeny has | ow degree I). Note, however, that this does require
storage of the polynom al coefficients of the isogeny and dual

i sogeny involved. This illustrates that |ow degree isogenies are to
be preferred, since an |-isogeny (usually) requires storing roughly
6*l elements of G-(g). While there are many isogenies, we therefore
only consider those with the desired property with | owest possible
degr ee.

Appendi x G Further Cousins of Curve25519
G 1. Further Alternative Representations

The Weierstrass curve Wi 25519 is isonorphic to the Wierstrass curve
Wei 25519. 2 defined over G-(p), wth as base point the pair (&X &KY),
and i sogenous to the Weierstrass curve Wi 25519. -3 defi ned over

GF(p), with as base point the pair (G3X, G3Y), where paraneters are
as specified in Appendix G 3 and where the rel ated nappi ngs are as
specified in Appendi x G 2.

G 2. Further Sw tching
Each affine point (X YY) of Wi 25519 corresponds to the point (X,
Y ):=(X*s"2,Y*s"3) of Wei25519.2, where s is the el enent of GF(p)
defi ned by

S 20343593038935618591794247374137143598394058341193943326473831977
39407761440

(=0x047f 6814 6d568b44 7e4552ea a5ed633d 02d62964 a2b0al20
5e7941e9 375de020),

while the point at infinity of Wi 25519 corresponds to the point at
infinity of Wei25519.2. (Here, we used the mapping of Appendix F.3.)
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Under this mapping, the base point (GX, GY) of Wei 25519 corresponds
to the base point (&X &Y) of Wi 25519.2. The inverse nappi ng nmaps
the affine point (X, Y ) of Wi25519.2 to (X Y):=(X/s"2,Y [s"3) of
Wei 25519, while mapping the point at infinity O of Wi 25519.2 to the
point at infinity O of Wi 25519. Note that this mapping (and its

i nverse) involves a nodular nmultiplication of both coordinates wth
fixed constants s*"2 and s”3 (respectively, 1/s"2 and 1/s”3), which
can be preconput ed.

Each affine point (X, Y) of Wi 25519 corresponds to the point

(X ,Y):=(X1*t"2,Y1*t"~3) of Wei25519.-3, where

(XL, YD) =(u(X) /WM X)"2, Y*V(X)/ WM X)"3), where u, v, and w are the

pol ynom als with coefficients in G-(p) as defined in Appendix H 1 and
where t is the elenment of G-(p) defined by

t 35728133398289175649586938605660542688691615699169662967154525084
644181596229

(=0Ox4ef d6829 88ff 8526 e189f 712 5999550c e9ef 729b edl1la7015
73blbab8 8bf cd845),

while the point at infinity of Wi 25519 corresponds to the point at
infinity of Wei25519.-3. (Here, we used the isogenous nmappi ng of
Appendi x F.4.) Under this isogenous mapping, the base point (GX GY)
of Wei 25519 corresponds to the base point (G3X G3Y) of Wi 25519.-3.
The dual isogeny maps the affine point (X ,Y ) of Wi25519.-3 to the
affine point (X, Y):=(u (X1)/w (X1)"2,Y1*v' (X1)/w (X1)"3) of Wei 25519,
where (X1,Y1l)=(X/t"2,Y /t"3) and where u’, v', and w are the
polynom als with coefficients in GF(p) as defined in Appendi x H. 2,
while mapping the point at infinity O of Wi 25519.-3 to the point at
infinity O of Wi 25519. Under this dual isogenous mapping, the base
poi nt (G3X, G3Y) of Wei25519.-3 corresponds to a nultiple of the base
poi nt (GX, GY) of Wei 25519, where this multiple is | =47 (the degree
of the isogeny; see the description in Appendix F.3). Note that this
i sogenous map (and its dual) primarily involves the eval uati on of
three fixed polynom als involving the x-coordinate, which takes
roughly 140 nodul ar nmultiplications (or less than 5-10%rel ative

i ncrenental cost conpared to the cost of an elliptic curve scal ar

mul ti plication).

G 3. Further Domai n Paraneters

The paraneters of the Weierstrass curve with a=2 that is isonorphic
wi th Wei 25519 and the paraneters of the Wierstrass curve with a=-3
that is isogenous with Wi 25519 are as indicated below. Both domain
paraneter sets can be exploited directly to derive nore efficient
poi nt addition formulae, should an inplenentation facilitate this.
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General paraneters: sane as for Wi 25519 (see Appendi x E. 3)

Wei erstrass curve-specific paraneters (for Wi 25519.2, i.e., with
a=2):

a 2 (=0x02)

b 12102640281269758552371076649779977768474709596484288167752775713
178787220689

(=0xlaclda05 b55bc146 33bd39e4 7f94302e f19843dc f669916f
6a5df dO1 65538cdl)

&X 10770553138368400518417020196796161136792368198326337823149502681
097436401658

(=0x17cfeac3 78aed661 318e8634 582275b6 d9ad4def 072eal93
5ee3c4e8 7a940ff a)

&RY 54430575861508405653098668984457528616807103332502577521161439773
88639873869

(=0x0c08a952 c55dfad6 2c4f 13f 1 a8f 68dca dc5c331d 297a37b6
f0d7f dcc 51el6b4d)

Wei erstrass curve-specific paranmeters (for Wi 25519.-3, i.e., wth
a=-3):

a -3

(=Ox7fffffff fEffefff FEEFEEFF FECEEAFF FRFEFAFF FEFAFAAS
ffffffff ffffffea)

b 29689592517550930188872794512874050362622433571298029721775200646
451501277098

(=0x41a3b6bf c668778e be2954a4 bldf 36dl 485ecefl ea614295
7961022 40891f aa)

G3X 53837179229940872434942723257480777370451127212339198133697207846
219400243292

(=0x7706c37b 5a84128a 3884a5d7 1811f 1b5 5da3230f fbl7a8ab
0b32e48d 31a6685c)

G3Y 69548073091100184414402055529279970392514867422855141773070804184
60388229929
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(=0x0f 60480c 7a5c0ell 40340adc 79d6a2bf 0Ocb57ad0 49d025dc
38d80c77 985f 0329)

Appendi x H. Isogeny Details

The i sogeny and dual isogeny are both isogenies with degree | =47.

Bot
V',
in
in

h are specified by a triple of polynomals u, v, and w (resp. u’,
and w ) of degree 47, 69, and 23, respectively, with coefficients
GF(p). The coeffients of each of these polynom als are specified

Appendi x H 1 (for the isogeny) and in Appendix H 2 (for the dual

i sogeny). For each polynomal in variable x, the coefficients are
tabul ated as sequence of coefficients of x*0, x*1, x*2, ..., in

hex
H 1.
H 1. 1.

0

10
11
12
13

14

Strui k

adeci mal format.
| sogeny Paraneters
Coefficients of u(x)

0x670ed14828b6f 1791ceb3a9ccOedf el27dee8729c5a72ddf 77bblabaebbbale8
0x1135ca8bd5383ch3545402c8bce2ced14b45c29b241e4751b035f 27524a9f 932
0x3223806f f 5f 669c430ef d74df 8389f 058d180e2f cf f aScdef 3eacecdd2c34771
O0x31b8f ecf 3f 17a819c228517f 6cd9814466c8c8bea2ef ccc47a29bf c14c364266
0x2541305c958c5a326f 44ef ad2bec284e7abee840f adb08f 2d994cd382f d8ce4?2
0x6e6f 9c¢5792f 3f f 497f 860f 44a9c469cec42bd711526b733e10915be5b2dbd8c6
Ox3e9ad2e5f 594b9ce6b06d4565891d28al1be8790000b396ef Obf 59215d6cabf de
0x278448895d236403bbc161347d19c913e7df 5f 372732a823ed807eel1d30206be
0x42f 9d171ea8dc2f 4al4ead6cc0ee54967175ecf e83a975137b753ch127¢35060
0x128e40ef a2d3cch51567e73bae91e7c31eac45700f al3ce5781chbe5ddc985648
0x450e5086c065430b496d88952dd2d5f 2¢5102bc27074d4d1e98bf a47413e0645
0x487ef 93da70df d44a4db8ch41542e33d1aa32237bdca3a59b3celc59585f 253d
0x33d209270026b1d2db96ef b36cc2f a0a49bel307f 49689022eab1892b010b785
0x4732b5996a20ebc4d5c5e2375d3b6c4b700c681bd9904343al4a0555ef Oecd48

0x64dc9e8272b9f 5¢6ad3470db543238386f 42b18ch1c592cc6eaf 7893141b2107
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Ox52bbacdlf 85c6lef 7eaf d8da27260f a2821f 7a961867ed449b283036508ac5c5
0x320447ed91210985e2c401cf e1a93db1379424cf 748f 92f d61lab5cc356bc89a2
0x23d23a49bbcdf 8cf 4c4ce8a4f f 7dd87d1ad1970317686254d5b4d2ec050d019f
0x1601f ca063f Obbbf 15f 198b3c20e474c2170294f a981f 73365732d2372b40cd4
Ox7bf 3f 93840035e9688cf ff402cee204a17c0de9779f c33503537dd78021bf 4c4
0x311998ce59f b7elcd6baf 591ece3e84df cb1c330cbhcf 28c0349e37h9581452853
Ox7ae5edlacf d28a9add2216df ed34756575a19b16984c1f 3847b694326dad7f 99
0x704957e279244a5b107a6¢c57bd0ab9af e5227b7c0be2052cd3513772a40ef ee?
0x56b918b5a0c583ch763550f 8f 71481e57c13bdcef 2e5¢cf ¢8091d0821266f 233b
0x677073f ed43ab291e496f 798f bcf 217bac3f 014e35d0c2f a07f 041ae746a04d7
0x22225388e76f 9688c7d4053b50ba41d0d8b71a2f 21da8353d98472243ef 50170
0x66930b3df f dd3995a2502cef 790d78b091¢c875192d8074bb5d5639f 736400555
0x79eb677c5e36971e8d64d56ebc0dedb4e9b7dd2d7b01343ebbd4d358d376e490
0x48a204c2ca6d8636€9994842605bd648b91b637844e38d6¢c7dd707edce8256e2
Oxf b3529b0d4b9ce2d70760f 33e8ce997a58999718e9277caf 48623d27ae6a788

0x4352604bf f dOc7d7a9ed898a2c6e7cf 2512f f b89407271balf 2c2d0ead8cc5aa
0x6667697b29785f b6f 0bd5e04d828991a5f e525370216f 347ec767a26e7aac936
0x9f c950b083c56dbd989badf 9887255e203c879f 123a7cb28901e50aeabd64dc

Ox41e51b51b5caadd1c15436bbf 37596a1d7288a5f 495d6b5blae66f 8b2942b31d
0x73b59f ec709aalcabd429e981c6284822a8b7b07620c831ab41f d31d5cf 7430

0x67e9b88e9albf bc2554107d67d814986f 1b09¢c3107a060cba21c019a2d5dc848
0x6881494a1066cal76c5e174713786040af f b4268b19d2abf 28ef 4293429f 89c1
Ox5f 4d30502f f 1elccd624e6f 506569454ab771869d7483e26af c09dealc5ccd3d

Ox2a814cf c5859bca51e539¢159955¢che729a58978b52329575d09bc6c3bf 97ad
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0x1313c8aaae20d6f 4397f 0d8b19e52cf cdf 8d8el0f bal44aec1778f d10ddf 4e9c
0x7008d38f 434b98953a996d4cc79f cbef 9502411dcdf 92005f 725cea7ce82ad47
Ox5a74d1296aaaa245f f b848f 434531f a3ba9e5cbh9098a7091d36¢c2777d4cf 5al3
0x4bd3b700606397083f 8038177bdaalac6edbba0447537582723cae0f d29341a9
0x573453f b2b093016f 3368356¢786519d54ed05f 5372c01723b4da520597ec217
Ox77f 5c605bdb3a30d7d9c8840f ce38650910d4418eed707a212c8927f 41c2c812
0x16d6b9f 7f f 57ca32350057de1204cc6d69d4ef 1b255df ef 8080118e2f ef 6ace3
0x34e8595832a4021f 8b5744014c6b4f 7da7df 0d0329e8b6b4d44c8f adad6513b7
Ox1
Coefficients of v(x)

Oxf 9f 5eb7134e6f 8daf a30c45af a58d7bf c6d4e3ccbb5de87b562f d77403972b2
0x36c2dcd9e88f 0d2d517al15f c453a098bbbb5a05eb6e8da906f ae418a4elal3f 7
0xb40078302c24f a394a834880d5bf 46732calb4894172f b7f 775821276f 558b3
0x53dd8e2234573f 7f 3f 7df 11e90a7bdd7b75d807f 9712f 521d4f b18af 59aa5f 26
0x6d4d7bb08de9061988a8cf 6f f 3beb10e933d4d2f bb8872d256a38c74c8c2ceda
Ox71bf e5831b30e28cd0f bele9916ab2291c6beacc5af 08e2c9165¢c632e61dd2f 5
Ox7c524f 4d17ff 2ee88463da012f c12a5b67d7f b5bd0ab59f 4bbf 162d76belc89c
0x758183d5e07878d3364e3f d4c863a5dclf e723f 48c4ab4273f c034f 5454d59a4
Oxleb4lef 2479444ecdccbc200f 64bde53f 434a02b6c3f 485d32f 14dab6aa7700el
0x1490f 3851f 016cc3cf 8ale3c16a53317253d232ed425297531b560d70770315¢c
0x9bc43131964e46d905¢3489c9d465c3abbd26eab9371¢c10e429b36d4b86469c
Ox5f 27¢173d94c7a413a288348d3f c88daalbcf 5af 8f 436a47262050f 240e9be3b
0x1d20010ec741aaa393cd19f 0133b35f 067adab0d105babe75f e45c8ba2732ceb

Ox1b3c669ae49b86be2f 0c946a9f f 6c48e44740d7d9804146915747c3c025996a
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0x24c6090f 79ec13e3ae454d8f 0f 98e0c30a8938180595f 79602f 2ba013b3c10db
0x4650c5b5648c6c43ac75a2042048c699e44437929268661726e7182a31b1532f
0x957a835f b8bac3360b5008790e4c1f 3389589ba74c8e8bf 648b856ba7f 22ba5

0x1cd1300bc534880f 95¢7885d8df 04a82bd54ed3e904b0749e0e3f 8cb3240c7c7
0x760b486e0d3c6ee0833b34b64b7ebc846055d4d1eObeeb6aedd5132399adalea
0x1c666846c63965ef 7edf 519d6ada738f 2b676ae38f f 1f 4621533373931b3220e
0x365055118b38d4bc0df 86648044af f ea2ef 33e9a392ad336444e7d15e45585d1
0x736487bde4b555abf ccd3ea7ddcda98eda0d7c879664117dee906a88bc551194
0x70de05ab9520222a37c7a84c6leedf f 71cb50c5f 6647f c2a5d6e0f f 2305cea3”
0x59053f 6¢cdf 6517ab3f e4bd9c9271d1892f 8cf 353d8041b98409e1e341a01f 8b5
0x375db54ed12f e8df 9a198ea40200e812c2660b7022681d7932d89f af e7c6e88d
0x2a070c31ldlcla064daf 56c79a044bd1cd6d13f 1ddbOf f 039b03a6469aaa9ed77
0x41482351e7f 69a756a5a2c0b3f a0681c03c550341d0calf 76c5b394db9d2de8d
0x747ac1109c9e9368d94a302ch5a1d23f cc7f Of dBa574ef b7ddcaa738297c407a
0x45682f 1f 2aab6358247e364834e2181ad0448bb815¢c587675f b2f ee5a2119064
0x148c5bf 44870df d307317f 0a0e4a8c163940beeld2f 01455a2e658aa92¢13620
Ox6add1361e56f f a2d2f bbddba284b35be5845aec8069f c28af 009d53290a705ce
0x6631614c617400dc00f 2¢55357f 67a94268e7b5369b02e55d5db46c935be3af 5
Ox17cffb496c64bb89d91c8c082f 4c288c3c87f eabd6b08591f €5a92216c094637
0x648f f 88155969f 54c955a1834ad227b93062bb191170dd8c4d759f 79ad5da250
0x73e50900b89e5f 295052b97f 9d0c9edbOf c7d97b7f a5e3cf eef e33dd6a9ch223
Ox6af cb2f 2f f e6c08508477aa4956cbd3dc864257f 5059685adf 2c68d4f 2338f 00
0x372f d49701954c1b8f 00926a8cb4b157d4165b75d53f a0476716554bf 101b74c

0x334ed41325f 3724f f 8becbf 2b3443f ea6d30f a543d1cal3188aceb2bdaf 5f 4e
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0x70e629c95a94e8e1b3974ach25e18ba42f 8d5991786f 0931f 650c283adf e82f d
0x738a625f 4c62d3d645f 1274e09ab344e72d441f 3c0e82989d3e21e19212f 23f 3
0x7093737294b29f 21522f 5664a9941¢c9b476f 75d443b647bd2c777040bcd12a6a
0xa996bad5863d821cch8b89f a329ddbe5317a46bch32552db396bea933765436

0x2da237e3741b75dd0264836e7ef 634f cObc36ab187ebc790591a77¢c257b06f 53
0x1902f 3daa86f a4f 430b57212924f dc9e40f 09e809f 3991a0b3al0ab186c50ee5
Ox12baf f ec1bf 20c921af d3cdf 67a7f 1d87c00d5326a3e5¢c83841593c214dadchl
0x6460f 5a68123cb9e7bc1289¢cd5023c0c9ccd2d98eea24484f b3825b59dcd09aa
0x2c7d63a868f f c9f Of d034f 821d84736¢c5bc33325ce98aba5f 0d95f ef 6f 230ec8
0x756e0063349a702db7406984c285a9h6bf ba48177950d4361d8ef a77408dc860
0x37f 3e30032b21e0279738e0a2b689625447831a2ccf 15c638672da%aa7255ae

0x1107c0dbel5d6ca9e790768317a40bcf 23c80f 1841f 03ca79dd3e3ef 4ealae30
0x61f f 7f 25721d6206041¢c59a788316b09e05135a2aad94d539c65daa68b302cc2
Ox5dbf e346cbd0d61b9a3b5c42ec0518d3ae81lcabcc32245060d7b0cd982b8d071
0x4b6595e8501e9ec3e75f 46107d2f d76511764ef cal79f 69196eb45c0aa6f ade3
Ox72d17a5aa7bd8a2540aa9b02d9605f 2a714f 44abf b4c35d518b7abc39b477870
0x658d8c134bac37729ec40d27d50b637201abbf 1ab4157316358953548c49cf 22
0x36ac53b9118581ace574d5a08f 9647e6a916f 92dda684a4dbc405e2646b0243f
0x1917a98f 387d1e323e84a0f 02d53307b1dd949e1a27b0de14514f 89d9cOef 4b6
0x21573434f de7ce56e8777c79539479441942dba535ade8ech77763f 7eb05d797
OxeObf 482dc40884719bea5503422b603f 3a8edb582f 52838caabeaabbeeac7ef

0x3b0471eb53bd83e14f bc13928f €1691820349a963be8f 7€9815848a53d03f 5eb
0x1e92cb067b24a729c42d3abb7a1179¢c577970f 0ab3e6b0ce8d66c5b8f 7001262

Ox74ea885clebed6f 74964262402432ef 184c42884f ceb2f 8dba3a9d67a1344dd7
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0x433ebce2ce9b0dc314425cf c2b234614d3c34f 2c9dadf f f 4f dddd1lce242d035b
0x33ac69e6be858dde7b83a9f f 6f 11de443128b39cec6e410e8d3b570e405f f 896
Oxdab71e2ae94e6530a501ed8cf 3df 26731dd1d41cd81578341el12dca3ch7l1laa3
0x537f 58d52d18ce5b1d5a6bd3a420e796e64173491ad43dd4d1083a7dcc7dd201
0x49c2f 6af a93f dcc4e0f 8128a8b06dadc75049bel4edf 3e103821ab604c60f 8ae
Ox10a333eabd6135aeaadf 5f 5f 7e73d102e4f d7e4bf 0902f c55b00da235f alad08
Oxf 5c86044bf 6032f 5102e601f 2a0f 73c7bce9384bedd120f 3e72d78484179d9c
Ox1
Coefficients of W x)

0x3da24d42421264f 30939f f 00203880f 2b017eb3f ecf 8933ae61e18df 8c8ball6
0x457f 20bc393cdc9a66848cel74e2f a4dld77e6dbae05a317alf b6e3ae78760f 8
Ox7f 608a2285c480d5¢c9592c435431f ae94695beef 79d770bb6d029¢c1d10a53295
0x3832accc520a485100a0a1695792465142a5572bed1b2e50elf 8f 662ac7289bb
Ox2df 1b0559e31b328eb34beedd5e537c3f 4d7b9bef b0749f 75d6d0d866d26f baa
0x25396820381d04015a9f 655ddd41c74303ded05d54a7750e2f 58006659adda28
Ox6f a070a70ca2bc6d4d0795f b28d4990b2cc80cd72d48b603a8ac8c8268bef 6a6
0x27f 488578357388b20f bc7503328e1d10de602b082b3c7b8ceb33c29f ea7a0d2
0x15776851a7cabcf e84c632118306915¢c0c15¢c75068a47021968¢c7438d46076e6
0x101565b08a9af 015¢c172f b194b940a4df 25c4f b1d85f 72d153ef c79131d45e8f
0x196b0f f bf 92f 3229f ealdac0d74591b905ccaab6b83f 905ee813ee8449f 8ab62c
Ox1f 55784691719f 765f 04ee9051ec95d5deb42ae45405a9d87833855a6d95a94
0x628858f 79cca86305739d084d365d5a9e56e51a4485d253ae3f 2e4a379f a8af f
O0x4a842dcd943a80dle6eldab3622a8c4d390dal592d1e56d1c14c4d3f 72dd01a5

Oxf 3bf c9cb17a1125f 94766a4097d0f 1018963bcllcb7bc0c7ald94d65e282477
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0x1c4bd70488c4882846500691f a7543b7ef 694446d9c3e3b4707ea2c99383e53c
0x2d7017e47b24b89b0528932c4ade43f 09091b91db0072e6ebdc5e777cb215e35
0x781d69243b6c86f 59416f 91f 7decaca93eab9cdc36a184191810c56ed85e0f dc
Ox5f 20526f 4177357da40a18da054731d442ad2a5a4727322ba8ed10d32eca24f b
0x33e4cab64ed8a00d8012104f e8f 928e6173c428ef f 95bbbe569ea46126a4f 3cd
0x50555b6f 07e308d33776922b6566829d122e19b25b7bbacbb0ad4bla7dc40192
0x533f ad4bf 1e2a2aae2f 979065f dbb5b667ede2f 85543f ddbbal46aal3adef 2d281
Ox5a742cac1952010f c5aba200a635a7bed3ef 868194f 45b5a6a2647d6d6b289d2
Ox1
Dual |sogeny Paraneters

Coefficients of u (x)
Oxf Oeddb584a20aaac8f 1419ef dd02a5cca77b21le4cf ae78c49b5127d98bc5882
0x7115e60d44a58630417df 33dd45b8a546f a00b79f ea3b2bdc449694bade87c0a
Oxb3f 3a6f 3c445¢c7dc1f 91121275414e88c32f f 3f 367baledad4d75b7e7b94b65
0x1eb31bb333d7048b87f 2b3d4ec76d69035927b41¢c30274368649c87c52e1ab30
0x552c886c2044153e280832264066cce2a7dall27dc9720e2a380e9d37049ac64
0x4504f 27908db2elf 5840b74ae42445298755d9493141f 5417c02f 04d47797dda
0x82c242cceleb19698a4f a30b5af f e64e5051c04ae8b52ch68d89ee85222e628
0x480473406add76cf 1d77661b3f f 506c038d9cdd5ad6elead1969430bb876d223
0x25f 47bb506f ba80c79d1763365f a9076d4c4cb6644f 73ed37918074397e88588
0x10f 13ed36eab593f a20817f 6bb70cac292e18d300498f 6642e35cbhdf 772f 0855
0x7d28329d695f b3305620f 83a58df 1531e89a43c7b3151d16f 3b60a8246c36ade
Ox2c5ec8c42b16dc6409bdd2c7b4f f e9d65d7209e886badbd5f 865dec35e4ab4a

Ox7f 4f 33cd50255537e6cdel5a4a327a5790c37e081802654b56c956434354e133
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0x7d30431a121d9240c761998cf 83d228237e80c3ef 5¢7191ec9617208e0ab8cec
0x4d2a7d6609610cldeed56425a4615b92f 70a507e1079b2681d96a2b874cf 0630
0x74676df 60a9906901d1dc316¢c639f f 6ae0f cdb02b5571d4b83f c2eedcd2936a8
0x22f 8212219aca01410f 06eb234ed53bd5b8f be7c08652b8002bcdlea3cdae387
0x7edb04449565d7¢c566b934a87f adade5515f 23bdalce25daalof f f 0c6a5ccc2f
0x106ef 71aa3aa34e8ecf 4c07a67d03f 0949d7d015ef 2c1e32eb698dd3bec5al8c
0x17913eb705db126ac3172447bcd811a62744d505ad0eea94cf cf dde5ca7428
0x2cc793e6d3b592dcf 5472057a991f f 1a5ab43b4680bb34c0f 5f af f c5307827c1
Ox6daf ccOb16f 98300cddb5e0a7d7f f 04a0e73ca558c54461781d5a5cchlea0122
Ox7e418891cf 222c021b0ae5f 5232b9¢c0dc8270d4925a13174a0f Oac5e7a4c8045
0x76553bd26f ecb019ead31142684789f ea7754c2dc9ab9197c623f 45d60749058
0x693ef b3f 81086043656d81840902b6f 3a9a4b0e8f 2a5a5edf 5celc7f 50a3898e
0x46c630eac2b86d36f 18a061882b756917718a359f 44752a5caf 41be506788921
Ox1dcfa01773628753bc6f 448acllbe8a3bffa0011b9284967629b827e064f 614
0x8430b5b97d49b0938d1f 66ech9d2043025c6eec624f 8f 02042b9621b2b5¢ch19
0x66f 66a6669272d47d3eclef ea36ee0ld4a54ed50e9ec84475f 668a5a9850f 9be
0x539128823b5ef 3e87e901ab22f 06d518a9bad15f 5d375b49f e1e893ab38b1345
0x2bd01c49d6f ff 22c213a8688924c10bf 29269388a69a08d7f 326695b3c213931
Ox3f 7bealbaeccea3980201dc40d67c26db0e3b15b5al9b6cdac6ded77aa7l7acl
0x6e0a72d94867807f 7150f cb1233062f 911b46e2adllal3eac3c6c4c91e0f 4a3f a
0x5963f 3cc262253f 56f c103e50217e7e5b823ae8e1617f 9ellf 4c9c595f bb5bf 6
0x41440b6f e787777bc7b63af ac9f 4a38ddadcebc3d72f 8f c73835247ba05f 3ald
0x66d185401c1d2d0b84f cf 6758a6a985bf 9695651271c08f 4b69ce89175f b7b34

0x2673f b8c65bc4f e41905381093429a2601c46a309c03077ca229bac7d6ccf 239
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Ox1ce4d895ee601918a080de353633c82b75a3f 61e8247763767d146554dd2f 862
Ox18ef abc72f a908347547a89028a44f 79f 22542baa588601f 2b3ed25a5e56d27c
0x53de362e2f 8f f 220f 8921620a71e8f aalaa57f 8886f cbb6808f a3a5560570543
Oxdc29a73b97f 08aa8774911474e651130ed364e8d8cf f d4a80dee633aacecc4?

Ox4e7eb8584ae4de525389d1e9300f c4480b3d9c8a5a45ecf be33311029d8f 6b99
Ox6c3chbad4aa9229550f a82elcf aee4b02f 2c0ch86f 79e0d412b8e32b00b7959d80
0x5a9d104ae585b94af 68eeb16b1349776b601f 97b7ce716701645b1a75b68dcf 3
0x754e014b5e87af 035b3d5f e6f b49f 4631e32549f 6341¢c6693c5172a6388e273e
0x6710d8265118e22eaceba09566c86f 642ab42da58c435083a353eaal2d866c39
Ox6e88ac659cel46¢c369f 8b24c3a49f 8dca547827250cf 7963a455851cf c4f 8d22
0x971eb5f 253356cd1f de9f b21f 4a4902aa5b8d804a2b57ba775dc130181ae2e8

Coefficients of v’ (x)

0x43c9b67cc5b16e167b55f 190db61e44d48d813a7112910f 10e3f d8da85d61d3

0x72046db07e0e7882f f 3f Of 38b54b45ca84153be47a7f d1dd8f 6402e17c47966f
0x1593d97b65a070b6b3f 879f e3dc4dlef 03c0e781¢c997111d5¢c1748f 956f 1f f cO
0x54e5f ec076b8779338432bdc5a449e36823a0a7c905f d37f 232330b026a143a0
0x46328dd9bc336e0873abd453db472468393333f bf 2010c6ac283933216e98038
0x25d0c64deldf elc6d5f 5f 2d98ab637d8b39bcf 0d886a23dabac18c80d7eb03ce
0x3al75c46b2cd8e2b313dde2d5f 3097b78114a6295f 283cf 58a33844b0c8d8hb34
Ox5cf 4e6f 745bdd61181a7d1b4db31dc4c30c84957f 63cdf 163bee5e466a7a8d38
0x639071c39b723eea51cf d870478331d60396b31f 39a593ebdd9b1eb543875283
Ox7ea8f 895dcd85f c6cb2b58793789bd9246e62f a7a8c7116936876f 4d8df f 869b
0x503818ach535bcaacf 8ad44a83c213a9ce83af 7¢937dc9b3e5h6ef edc0a7428c

0xe815373920ec3cbf 3f 8cae20d4389d367dc4398e01691244af 90edc3e6d42b8
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Ox7e4b23e1e0b739087f 77910cc635a92a3dc184a791400cbhceae056¢19c853815
0x145322201db4b5ec0a643229e07c0ab7c36e4274745689be2c19cf a8a702129d
Oxf de79514935d9b40f 52e33429621a200acc092f 6e5dec14b49e73f 2f 59¢780d

0x37517ac5c04dc48145a9d6e14803b8ce9ch6a5d01c6f 0Oad1lb04f f 3353d02d815
0x58ae96b8eef e9e80f 24d3b886932f e3c27aaea810f a189c702f 93987¢c8c97854
0x6f 6402c90f a379096d5f 436035bebc9d29302126e9b117887abf a7d4b3c5709a
Ox1dbdf 2b9ec09a8def eb485cc16ea98d0d45c5b9877f f 16bd04c0110d2f 64961

0x53c51706af 523ab5b32291de6c6blee7c5cbd0a5b317218f 917b12f f 38421452
0x1b1051c7aec7d37a349208e3950b679d14e39f 979db4f cd7b50d7d27dc918650
0x1547e8d36262d5434cf b029cdd29385353124c3c35b1423c6ccalf 87910b305b
0x198ef e984ef c817835e28f 704d41e4583a1e2398f 7ce14045¢c4575d0445c6ce7”
0x492276df e9588ee5cd9f 553d990f 377935d721822ecd0333ce2eb1d4324d539c
Ox77bad5319bacd5ed99e1905ce2ae89294ef a7eelf 74314e4095c618a4e580c9b
0x2cb3d532b8eac41c61b683f 7b02f eb9c2761f 8b4286a54c3c4b60dd8081a312e
0x37d189ea60443e2f ee9b7baB8a34ed79f f 3883dcef c06592836d2a9dd2ee3656e
0x79a80f 9a0e6b8dedl17a3d6ecef 71eb565e3704c3543b77d70bca854345e880aba
0x47718530ef 8e8c75f 069ach2d9925¢5537908e220b28c8a2859b856f 46d5f 8db
Ox7dc518f 82b55a36b4f a084b05bf 21e3ef ce481d278a9f 5c6a49701e56dacOlec
0x340a318dad4b8d348a0838659672792a0f 00b7105881e6080a340f 708a9c7f 94
0x55f 04d9d8891636d4e9c808alf a95ad0dae7a8492257b20448023aad3203278e
0x39dc465d58259f 9f 70bb430d27e2f 0ab384a550e1259655443e14bdecha85530
0x757385464cf f 265379aladf adf d6f 6a03f a8a2278761d4889ab097ef f 4dlac28
0x4d575654dbe39778857f 4e688cc657416ce524d54864ebe8995ba766ef a7ca2b

Ox47adb6aecc1949f 2dc9f 01206cc23eb4a0c29585d475dd24dc463¢c5087809298
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0x30d39e8b0c451a8f cf 3d2abab4b86f f a374265abbe77c5903db4clbe8cec7672
0x28cf 47b39112297f Odaeaa621f 8e777875adc26f 35decOba475c2eel48562hb41
0x36199723cc59867e2e309f e9941¢cd33722c807bb2d0a06eeb41de93f 1b93f 2f 5
Ox5cdeblf 2eelc7d694bdd884chlc5c22de206684elcaf b8d3adb9a33ch85e19a2
Oxf 6e6b3f c54c2d25871011b1499bb0ef 015c6d0da802ae7eccf 1d8c3f b73856¢

0xc1422c98b672414344a9¢c05492b926f 473f 05033b9f 85b8788b4bbh9a080053c

0x19a8527de35d4f aacbh00184e0423962247319703a815eecf 355f 143c2c18f 17f
0x7812dc3313e6¢f 093dad617f 06062e8e8969d648df e6b5¢c331bccd58eb428383
0x61e537180c84c79elf d2d4f 9d386elc4f 0442247605b8d8904d122ee7ef 9f 7be
0x544d8621d05540576cf c9b58a3dab19145332b88eb0b86f 4c15567c37205adf 9
Ox11be3ef 96e6e07556356b51e2479436d9966b7b083892b390caec22all7aa48e
0x205cda31289cf 75ab0759c14c43chb30f 7287969ea3dc0d5286a3853a4d403187
0x48d8f c6934f 4f 0a99f 0f 2cc59010389e2a0b20d6909bf cf 8d7d0249f 360acdc

Ox42cecc6d9bdca6d382e97f cead46a79c3eda2853091a8f 399a2252115bf 9a1454
0x117d41b24f 2f 69¢cb3270b359¢181607931f 62c56d070bbd14dc9e3f 9ab1432e

0x7c51564c66f 68e2ad4ce6ea0d68f 920f af a375376709c606c88a0ed44207aale
0x48f 25191f c8ac7d9f 21adf 6df 23b76ccbca9ch02b815acdbebf a3f 4eddc71b34
Ox4f c21a62c4688de70e28ad3d5956633f c9833bc7be09dc7bc500b7f aelelc9a8
Ox1f 23f 25be0912173c3ef 98e1¢c9990205a69d0bf 2303d201d27a5499247f 06789
0x3131495618a0ac4cb11a702f 3f 8bab66c4f a1066d0a741af 3c92d5¢c246edd579
0xd93f e40f aa53913638e497328a1b47603cb062c7af c9e96278603f 29f d11f d4

0x6b348bc59€984c91d696d1e3c3cf ae44021f 06f 74798c787¢c355437f b696093d
Ox65af 00e73043edch479620c8b48098b89809d577a4071c8e33e8678829138b8a

0x5e62f f b032b2ddb06591f 86a46al18ef f d5d6ecf 3f 129bb2bacf d51a3739a98b6
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0x62c974ef 3593f c86f 7d78883b8727a2f 7359a282¢cbc0196948e7a793e60celal
0x204d708e3f 500aad64283f 753e7d9bab976aa42ad4calce5e9d2264639e8b1110
0xa90f 0059da81a012e9d0a756809f ab2ce61cb45965d4d1513a06227783eedea
0x39f a55971¢c9e833f 61139¢c39e243d40869f d7e8aldl7eede7719dd2dd242766f
0x22677cle659caa324f 0c74a013921f acf 62d0d78f 273563145cclddccfcc4421
0x3468cf 6df 7e93f 7f f 1f eldd7e180a89dec3ed4f 72843b4ea8a8d780011a245b2
0x68f 75a0€2210f 52a90704ed5f 511918d1f 6bcf cd26b462cc4975252369db6e9d
0x6220c0699696e9bcab0f e3a80d437519bd2bdf 3caef 665e106b2dd47585ddd9f
0x553ad47b129f b347992b576479b0a89f 8d71f 1196f 83e5eaab5f 533aldd6f 6d7
Ox239aef 387e116ec8730f al5af 053485¢ca707650d9f 8917a75f 22acf 6213197df
Coefficients of w (x)
Ox6bd7f 1f c5dd51b7d832848c180f 019bcbdb101d4b3435230a79cc4f 95¢35el5e
0x17413bb3ee505184a504e€14419b8d7¢c8517a0d268f 65b0d7f 5b0ba68d6166dd0
O0x47f 4471beed06e5e2b6d5569c20e30346bdba2921d9676603¢c58e55431572f 90
Ox2af 7eaaf d04f 6910a5b01cdb0c27dca09487f 1cd1116b38db34563e7b0b414eb
Ox57f 0a593459732eef 11d2e2f 7085bf 9adf 534879ba56f 7af d17c4a40d3d3477b
Ox4da04e912f 145c8d1e5957e0a9e44cca83e74345b38583b70840bdf dbd0288ed
0x7cc9c3a51a3767d9d37c6652c349adc09bf e477d99f 249a2a7bc803c1c5f 39ed
0x425d7e58b8adf 87eebf 445b424ba308ee7880228921651995a7eab548180ad49
0x48156db5c99248234c09f 43f edf 509005943d3d5f 5d7422621617467b06d314f
0xd837dbbdlaf 32d04e2699ch026399¢c1928472aala7f Oald3af d24bc9923456a
0x5b8806e0f 924e67c1f 207464a9d025758c078b43ddcOea9af €9993641e5650be
0x29c91284e5d14939a6c9bc848908bdodf 1f 8346c259bbd40f 3ed65182f 3a2f 39

0x25550b0f 3bceef 18a6bf 4a46c45bf 1b92f 22a76d456bf df 19d07398c80b0f 946
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13 0x495d289b1db16229d7d4630ch65d52500256547401f 121a9b09f b8e82cf 01953
14 0x718c8c610ea7048a370eabf d9888c633ee31dd70f 8bcc58361962bb08619963e
15 0x55d8ab5ceef 588ab52a07f a6047d6045550a5¢52¢91cc8b6b82eeb033c8ca557d
16 0x620b5a4974cc3395f 96b2a0f a9e6454202ef 2c00d82b0e6c534b3b1d20f 9a572
17 0x4991b763929b00241a1a9a68e00e90c5df 087f 90b3352c0f 4d8094a51429524e
18 0x18b6b49c5650f h82e36e25f d4eb6decf dd40b46c37425e6597c7444alb6af bde
19 0x6868305b4f 40654460aad63af 3ch9151ab67c775eaac5e5df 90d3aea58deelsl
20 0x16bc90219a36063a22889db810730a8b719¢267d538cd28f a7c0d04f 124c8580
21 0x3628f 9cf 1f be3eb559854e3b1lc06a4cd6a26906b4e2d2e70616a493bba2dc574
22 0x64abcc6759f 1celab57d41el17c2633f 717064e35a7233a6682f 8cf 8e9538af ec
23 0x1
Appendi x |. Point Conpression

Poi nt conpression allows a shorter representation of affine points of
an elliptic curve by exploiting al gebraic relationships between the
coordi nate val ues based on the defining equation of the curve in
guestion. Point deconpression refers to the reverse process, where
one tries and recover the affine point fromits conpressed
representation and i nformati on on the domain paraneters of the curve.
Consequent |y, point conpression foll owed by point deconpression is
the identity map.

The description bel ow makes use of an auxiliary function (the parity
function), which we first define for prine fields G-(p) and then
extend to all fields G-(qg), where q is an odd prinme power. W assune
each finite field to be unanbi guously defi ned.

Let y be a nonzero elenent of G-(q). |If g:=p is an odd prine nunber,
y and p-y can be uniquely represented as integers in the interval
[1,p-1] and have odd sum p. Consequently, one can distinguish y from
-y via the parity of this representation, i.e., via par(y):=y (nod

2). If g:=p"m where p is an odd prine nunber and where nm»0, both y
and -y can be uniquely represented as vectors of length m wth
coefficients in G-(p) (see Appendix B.2). 1In this case, the |eftnost
nonzero coordi nate values of y and -y are in the sane position and
have representations in [1,p-1] wth different parity. As a result,
one can distinguish y from-y via the parity of the representation of
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this coordinate value. This extends the definition of the parity
function to any odd-size field GF(q), where one defines par(0):=0.

I.1. Point Conpression for Wierstrass Curves

If P:=(X Y) is an affine point of the Wierstrass curve W{a, b}
defined over the field G-(qg), then sois -P:=(X, -Y). Since the
defini ng equation Y*2=X"2+a*X+b has at nost two solutions with fixed
X-val ue, one can represent P by its X-coordi nate and one bit of
information that allows one to distinguish Pfrom-P, i.e., one can
represent P as the ordered pair conpr(P):=(X, par(Y)). If Pis a
poi nt of order two, one can uniquely represent P by its X-coordinate
al one, since Y=0 and has fixed parity. Conversely, given the ordered
pair (X, t), where X is an elenent of GF(q) and where t=0 or t=1, and
t he domai n paraneters of the curve, one can use the defining equation
of the curve to try and determ ne candi date val ues for the

Y-coordi nate given X, by solving the quadratic equation Y*2:=al pha,
wher e al pha: =X"3+a*X+b. |If alpha is not a square in G-(q), this
equation does not have a solution in GF(q) and the ordered pair (X

t) does not correspond to a point of this curve. Oherw se, there
are two solutions, viz. Y=sqgrt(alpha) and -Y. |If alpha is a nonzero
el enent of GF(q), one can uniquely recover the Y-coordinate for which
par(Y):=t and, thereby, the point P.=(X Y). This is also the case
if alpha=0 and t=0, in which case Y=0 and the point P has order two.
However, if al pha=0 and t=1, the ordered pair (X t) does not
correspond to the outcone of the point conpression function.

We extend the definition of the point conpression function to al
points of the curve W{a, b}, by associating the (non-affine) point at
infinity Owith any ordered pair conpr(O:=(X 0), where X is any

el ement of GF(q) for which al pha: =X*3+a*X+b is a non-square in G~(q),
and recover this point accordingly. 1In this case, the point at
infinity O can be represented by any ordered pair (X 0) of elenents
of G-(q) for which X"3+a*X+b is a non-square in GF(q). Note that
this ordered pair does not satisfy the defining equation of the curve
in question. An application may fix a specific suitable value of X
or choose multiple such values and use this to encode additonal
information. Further details are out of scope.

I.2. Point Conpression for Montgomery Curves

If P.=(u, v) is an affine point of the Montgonery curve M{A, B}
defined over the field G-(q), then so is -P:=(u, -v). Since the
defini ng equati on B*v"2=u"3+A*u”2+u has at nost two solutions with

fi xed u-val ue, one can represent P by its u-coordinate and one bit of
information that allows one to distinguish Pfrom-P, i.e., one can
represent P as the ordered pair conpr(P):=(u, par(v)). If Pis a
poi nt of order two, one can uniquely represent P by its u-coordinate
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al one, since v=0 and has fixed parity. Conversely, given the ordered
pair (u, t), where u is an elenent of GF(q) and where t=0 or t=1, and
t he domai n paraneters of the curve, one can use the defining equation
of the curve to try and determ ne candi date val ues for the

v-coordi nate given u, by solving the quadratic equation v~2:=al pha,
wher e al pha: =(u*3+A*u”2+u)/B. |If alpha is not a square in G=(q),
this equation does not have a solution in GF(q) and the ordered pair
(u, t) does not correspond to a point of this curve. O herw se,
there are two solutions, viz. v=sqgrt(alpha) and -v. |If alphais a
nonzero el enent of GF(q), one can uniquely recover the v-coordinate
for which par(v):=t and, thereby, the affine point P.=(u, v). This
is also the case if alpha=0 and t=0, in which case v=0 and the point
P has order two. However, if alpha=0 and t=1, the ordered pair (u,

t) does not correspond to the outconme of the point conpression
function.

We extend the definition of the point conpression function to al
points of the curve M{A B}, by associating the (non-affine) point at
infinity Owth the ordered pair conmpr(O:=(0,1) and recover this
poi nt accordingly. (Note that this corresponds to the case al pha=0
and t=1 above.) The point at infinity O can be represented by the
ordered pair (0, 1) of elements of G-(q). Note that this ordered
pair does not satisfy the defining equation of the curve in question.

I.3. Point Conpression for Tw sted Edwards Curves

If P.=(x, y) is an affine point of the twi sted Edwards curve E {a, d}
defined over the field G-(qg), then so is -P:.=(-x, y). Since the
defining equation a*x"2+y"2=1+d*x"2*y"2 has at nost two sol utions
with fixed y-value, one can represent P by its y-coordi nate and one
bit of information that allows one to distinguish Pfrom-P, i.e.,
one can represent P as the ordered pair compr(P):=(par(x), y). If P
is a point of order one or two, one can uniquely represent P by its
y-coordi nate al one, since x=0 and has fixed parity. Conversely,
given the ordered pair (t, y), where y is an elenent of G~(q) and
where t=0 or t=1, and the domain paraneters of the curve, one can use
t he defining equation of the curve to try and determ ne candi date

val ues for the x-coordinate given y, by solving the quadratic
equation x"2: =al pha, where al pha: =(1-y*2)/(a-d*y*2). |If alpha is not
a square in G-(q), this equation does not have a solution in G-(Qq)
and the ordered pair (t, y) does not correspond to a point of this
curve. Oherwise, there are two solutions, viz. x=sqrt(al pha) and
-x. |If alpha is a nonzero elenent of G-(q), one can uni quely recover
the x-coordinate for which par(x):=t and, thereby, the affine point
P.=(x, y). This is also the case if alpha=0 and t=0, in which case
x=0 and the point P has order one or two. However, if al pha=0 and
t=1, the ordered pair (t, y) does not correspond to the outcone of

t he point conpression function.
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Note that the point conpression function is defined for all points of
the twi sted Edwards curve E {a,d} (subject to the Note in

Appendix C. 3). Here, the identity element O =(0,1) is associ ated
with the conpressed point conpr(O:=(0,1). (Note that this
corresponds to the case al pha=0 and t=0 above.)

We extend the definition of the conpression function further, to al so
i nclude a special marker elenment 'btm, by associating this marker

el ement with the ordered pair conpr(btn):=(1,1) and recover this

mar ker el ement accordingly. (Note that this corresponds to the case
al pha=0 and t=1 above.) The marker elenent 'btmi can be represented
by the ordered pair (1,1) of elenments of G-(q). Note that this
ordered pair does not satisfy the defining equation of the curve in
guesti on.

Appendi x J. Data Conversions

The string over sone al phabet S consisting of the synbols x_{I-1},
x_{I-2}y, ..., x_1, x_ 0 (each in S), in this order, is denoted by
str(x_{1-1}, x {1-2}, ..., x_ 1, x 0). The length of this string
(over S) is the nunber of synbols it contains (here: |). The enpty
string is the (unique) string of length |=0.

The right-concatenation of two strings X and Y (defined over the sane
al phabet) is the string Z consisting of the synbols of X (in the sane
order) followed by the synbols of Y (in the sanme order). The |length
of the resulting string Zis the sumof the lengths of X and Y. This
string operation is denoted by Z:=X||Y. The string Xis called a
prefix of Z; the string Y a postfix. The t-prefix of a string Z of
length | is its unique prefix X of length t; the t-postfix its unique
postfix Y of length t (where we define these notions as well if t is
outside the interval [0,1]: a t-prefix or t-postfix is the enpty
string if t is negative and is the entire string Zif t is |arger
than I). Sonetinmes, a t-prefix of a string Z is denoted by trunc-
left(Z,t); a t-postfix by trunc-right(Z,t). A string Xis called a
substring of Zif it is a prefix of sonme postfix of Z  The string
resulting fromprepending the string Y with Xis the string X|Y.

An octet is an integer in the interval [0,256). An octet string is a
string, where the al phabet is the set of all octets. A binary string
(or bit string, for short) is a string, where the al phabet is the set
{0,1}. Note that the length of a string is defined in ternms of the

underlying al phabet, as are the operations in the previous paragraph.
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J.1. Conversion between Bit Strings and Integers

There is a 1-1 correspondence between bit strings of length | and the
integers in the interval [0, 2*l), where the bit string
Xo=str(x_{I-1}, x {I-2}, ..., x_ 1, x 0) corresponds to the integer
xi=x_{I-1}*2M{I -1} + x_{l-2}*2~{I-2} + ... + x_1*2 + x_0*1. (If [|=0,
the enpty bit string corresponds to the integer zero.) Note that
while the mapping frombit strings to integers is uniquely defined,
the inverse mapping fromintegers to bit strings is not, since any
non- negative integer smaller than 2"t can be represented as a bit
string of length at least t (due to |eading zero coefficients in base
2 representation). The latter representation is called tight if the
bit string representation has m nimal |ength.

J.2. Conversion between COctet Strings and Integers (OS2I, |208)

There is a 1-1 correspondence between octet strings of length | and
the integers in the interval [0, 256"), where the octet string
Xo=str( X {I-1}, X {I-2}, ..., X1, X 0) corresponds to the integer
X: =X {I-1}*2567{1 -1} + X7 {I-2}*256"{I-2} + ... + X 1*256 + X 0O*1.

(I'f 1=0, the enpty string corresponds to the integer zero.) Note
that while the mapping fromoctet strings to integers is uniquely
defined, the inverse mapping fromintegers to octet strings is not,
since any non-negative integer smaller than 2567t can be represented
as an octet string of length at least t (due to | eading zero
coefficients in base 256 representation). The latter representation
is called tight if the octet string representation has m ni nal
length. This defines the mapping OS2l fromoctet strings to integers
and the mapping 1205(x,1) from non-negative integers smaller than
256" to octet strings of length I.

J.3. Conversion between Octet Strings and Bit Strings (BS20S, 0OS2BS)

There is a 1-1 correspondence between octet strings of length | and
and bit strings of length 8%, where the octet string X =str(X {Il-1},
XAlI-2}, ..., X1, X 0) corresponds to the right-concatenation of the
8-bit strings x_{I-1}, x {I-2}, ..., x_1, x 0, where each octet X_i
corresponds to the 8-bit string x_i according to the mappi ng of
Appendi x J.1 above. Note that the mapping fromoctet strings to bit
strings is uniquely defined and so is the inverse mapping from bit
strings to octet strings, if one prepends each bit string with the
smal | est nunber of O bits so as to result in a bit string of |ength
divisible by eight (i.e., one uses pre-padding). This defines the
mappi ng OS2BS fromoctet strings to bit strings and the correspondi ng
mappi ng BS20S frombit strings to octet strings.
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J.4. Conversion between Field Elenents and Octet Strings (FE20S, OS2FE)

There is a 1-1 correspondence between el enents of a fixed finite
field G-(gq), where g=p"m and nm»0, and vectors of length m wth
coefficients in GF(p), where each elenent x of G-(q) is a vector

(x_ {m1}, x {m2}, ..., x_ 1, x 0) according to the conventions of
Appendix B.2. In this case, this field el enent can be uniquely
represented by the right-concatenation of the octet strings X {m1},
X{m2}, ..., X1, X 0, where each octet string X i corresponds to
the integer x_i in the interval [0, p-1] according to the mapping of
Appendi x J. 2 above. Note that both the mapping fromfield el enents
to octet strings and the inverse mapping are only uniquely defined if
each octet string X i has the sane fixed size (e.g., the smallest
integer | so that 2567 >= p) and if all integers are reduced nodul o
p. If so, the latter representation is called tight if | is mninmal
so that 2567 >= p. This defines the mappi ng FE20S(x,1) fromfield
el ements to octet strings and the mapping OS2FE( X, 1) from oct et
strings to field elenents, where the underlying field is inplicit and
assuned to be known fromcontext. |In this case, the octet string has
length [ *m

J.5. Conversion between Elenents of Z nod n and Octet Strings (ZnE2CS,
0S2ZnE)

There is a 1-1 correspondence between el enents of a fixed set Z(n) of
integers nodulo n and integers in the interval [0,n), where each

el ement x can be uniquely represented by the octet string
corresponding to the integer x nodul o n according to the mappi ng of
Appendi x J. 2 above. Note that both the mapping fromel enents of Z(n)
to octet strings and the inverse mapping are only uniquely defined if
the octet string has a fixed size (e.g., the smallest integer | so
that 256" >=n) and if all integers are reduced nodulo n. If so,
the latter representation is called tight if | is mninmal so that
256" >= n. This defines the mappi ng ZnE20OS(x,1) from el enents of
Z(n) to octet strings and the mappi ng OS2ZnE( X, 1) from octet strings
to elenments of Z(n), where the underlying nodulus nis inplicit and
assuned to be known fromcontext. |In this case, the octet string has
| ength |.

Note that if nis a prime nunber p, the conversions ZneE20S and FE20S
are consistent, as are 0OS2ZnE and OS2FE. This is, however, no | onger
the case if nis a strict prinme power.

The conversion rules for conposite n values are useful, e.g., when

encodi ng the nodulus n of RSA (or elenents of any other non-prine set
Z(n), for that matter).
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J.6. Odering Conventions

One can consi der various representation functions, depending on bit-
ordering and octet-ordering conventions.

The description bel ow makes use of an auxiliary function (the
reversion function), which we define both for bit strings and octet
strings. For a bit string [octet string] X =str(x_{Il-1}, x_{I-2},
..., X1, x 0), its reverse is the bit string [octet string]

X :=rev(X):=str(x_0, x 1, ..., x {I-2}, x {l-1}).

W& now describe representations in nost-significant-bit first (nsb)
or least-significant-bit first (lsb) order and those in nost-
significant-byte first (MSB) or |east-significant-byte first (LSB)
order.

One distinguishes the follow ng octet-string representations of
integers and field el enents:

1. MSB, nsb: represent field elenents and i ntegers as above,
yielding the octet string str(X {I-1}, X {I-2}, ..., X1, X O0).

2. MBB, |sh: reverse the bit-order of each octet, viewed as 8-bit
string, yielding the octet string str((rev(X {l-1}),
rev(X {1-2}), ..., rev(X.1), rev(X.D0)).

3. LSB, Isb: reverse the octet string and bit-order of each octet,
yielding the octet string str(rev(X {0}), rev(X {1}), ...,
rev(X_{1-2}), rev(X {l-1})).

4. LSB, nsb: reverse the octet string, yielding the octet string
str(X {0}, X {1}, ..., X {I-2}, X {I-1}).

Thus, the 2-octet string "07e3" represents the integer 2019 (=0x07e3)
in M5B/ nsb order, the integer 57,543 (0xeOc7) in MSB/Isb order, the

i nteger 51,168 (0xc7e0) in LSB/Isb order, and the integer 58,119
(=0xe307) in LSB/ nsb order.

Note that, with the above data conversions, there is still sone
anbiguity as to howto represent an integer or a field elenent as a
bit string or octet string (due to |eading zeros). However, tight
representations (as defined above) are non-anbi guous. (Note, in
particular, that tightness inplies that elenents of GF(q) are al ways
uni quel y represented.)

Note that elenents of a prine field GF(p), where p is a 255-bit prine

nunber, have a tight representation as a 32-byte string, where a
fixed bit position is always set to zero. (This is the leftnost bit
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position of this octet string if one follows the MSB/ nsb
representation conventions.) This allows the parity bit of a
conpressed point (see Appendix |I) to be encoded in this bit position
and, thereby, allows a conpressed point and a field el ement of G-(p)
to be represented by an octet string of the sane length. This is
call ed the squeezed point representation. Qoviously, other
representations (e.g., those of elenents of Z(n)) nmay al so have fi xed
bit values on certain positions, which can be used to squeeze-in
additional information. Further details are out of scope.

Appendi x K. Representation Exanpl es Curve25519 Fam |y Menbers
We present sone exanpl es of conputations using the curves introduced
in this docunent. 1In each case, we indicate the values of P, k*P
and (k+1)*P, where Pis a fixed nmultiple (here: 2019) of the base
poi nt of the curve in question and where the private key k is the
i nt eger

k 45467544759954639344191351164156560595299236761702065033670739677
691372543056

(=0x6485b7e6 cd83e5c2 0d5dbfe4 f915494d 9cf5¢c65d 778c32c3
c08d5abd 15e29c¢50).

K.1. Exanple with Curve25519
Pme(u, v), k*Pme(ul, vl1), and (k+1)*Pme(u2, v2) with Curve25519:

u 53025657538808013645618620393754461319535915376830819974982289332
088255623750

(=0x753b7566 df 35d574 4734142c 9abf931c ea290160 aa75853c
7f 972467 b7f13246).

% 53327798092436462013048370302019946300826511459161905709144645521
233690313086

(=0x75e676ce deee3b3c 12942357 22f1d884 ac06de07 330f b07b
ae35ca26 df 75417e).

ul 42039618818474335439333192910143029294450651736166602435248528442
691717668056

(=0x5cf 194be fObdd6d6 be58el8a 8f 16740a ec25f4b0 67f 7980a
23bb6468 88bb9cd8) .

vl 76981661982917351630937517222412729130882368858134322156485762195
67913357634
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(=0x110501f 6 1dff511le d6c4e9b9 bf dSacbe 8bf043b8 c3e381dd
f5771306 479adl142).

u2 34175116482377882355440137752573651838273760818624557524643126101
82464621878

(=0x078e3e38 41c3e0d0 373e5454 ecffae33 2798b10a 55c72117
62629f 97 f1394d36) .

v2 43046985853631671610553834968785204191967171967937842531656254539
962663994648

(=0x5f 2bbb06 f7ec5953 2c2ala62 21124585 1d2682e0 cc37307e
fbcl7f 7f 7f da8518).

As suggested in Appendix C. 2, the v-coordinate of k*Pm can be
indirectly conputed fromthe u-coordinates of Pm k*Pm and (k+1)*Pm
and the v-coordinate of Pm which allows conputation of the entire
poi nt k*Pm (and not just its u-coordinate) if k*Pmis conputed using
t he Montgonery | adder (as, e.g., [RFC7748] reconmends), since that

al gorithm conputes both ul and u2 and the v-coordi nate of the point
Pm may be avail abl e from cont ext.

The representation of k and the conpressed representations of Pm and
k*Pmin tight LSB/ nsb-order are given by

repr (k) 0x509ce215 bd5a8dc0 c¢3328c77 5dc6f59c 4d4915f9 edbf 5d0d
c2e583cd e6b78564

repr (Pm 0x4632f 1b7 6724977f 3c8575aa 600129%ea 1c93bf9a 2c143447
74d535df 66753b75;

repr (k*Pm) 0xd89chbb88 6864bb23 0a98f 767 bOf 425ec 0a74168f 8ael58be
d6d6bdf 0 be94f 15c,

where the leftnost bit of the rightnost octet indicates the parity of
t he v-coordinate of the point of Curve25519 in question (which, in
this case, are both zero, since v and vl are even). See Appendix |.2
and Appendix J for further detail on (squeezed) point conpression.

The scal ar representation and (squeezed) point representation
illustrated above are consistent with the representations specified
in [RFC7748], except that in [RFC7748] only an affine point’s
u-coordinate is represented (i.e., the v-coordinate of any point is
always inplicitly assumed to have an even value) and that the
representation of the point at infinity is not specified. Another
difference is that [ RFC7748] all ows non-uni que representations of
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sonme el enents of GF(p), whereas our representation conventions do not

(si

K. 2.

Pe=

X

x1

yl

X2

y2

The

nce tight).
Exanpl e with Edwar ds25519
(x, y), k*Pe=(x1, yl), and (k+1)*Pe=(x2, y2) with Edwards25519:

25301662348702136092602268236183361085863932475593120475382959053
365387223252

(=0x37f 03bcO 1070ed12 d3218f8b balabb74 fd6b94eb 62033d09
83851e21 d6a460d4).

54434749145175762798550436656748568411099702168121592090608501578
942019473360

(=0x7858f 9e7 6774ed8e 23d614d2 36715fc7 56813b02 9aal3cl8
960705c5 b3a30f doO).

42966967796585460733861724865699548279978730460766025087444502812
416557284873

(=0x5ef e7124 465b5bdb b364bb3e e4f 106e2 18d59b36 48f 4f e83
cllafc91l 785d7e09).

46006463385134057167371782068441558951541960707376246310705917936
352255317084

(=0x65b6bc49 985badaf bc5fdd96 fbl189502 35d5effd 540b439d
60508827 80bc945¢c) .

42629294840915692510487991904657367226900127896202625319538173473
104931719808

(=0x5e3f 536a 3be2364a 1fa775a3 5f 8f 65ae 93f 4a89d 8lal4aze
87783748 00120a80) .

29739282897206659585364020239089516293417836047563355347155817358
737209129078

(=0x41bf d66e 64bdd801 c581a720 f48172a8 187445fa 350924a2
c92c791e 38d57876).

representation of k and the conpressed representations of Pe and

k*Pe in tight LSB/|sb-order are given by

repr (k) =0x0a3947a8 bd5ab103 c34c3lee ba63af 39 b292a89f 27f dbabO

Strui k

43a7c1b3 67edal?26;
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repr ( Pe) =0x0bf Oc5cd a3a0e069 183c8559 40dc81l6a e3f a8e6c 4b286bc4
71b72ee6 e79f lale;

repr(k*Pe) =0x3a293d01 e4110a06 b9c2d02a bff7abac 40a918df 69bbf a3d
f 5b5dal9 923d6da7,

where the rightnost bit of the rightnost octet indicates the parity
of the x-coordinate of the point of Edwards25519 in question (which,
in this case, are zero and one, respectively, since x is even and x1
is odd). See Appendix |I.3 and Appendix J for further detail on
(squeezed) point conpression.

The scal ar representati on and (squeezed) point representation
illustrated above are fully consistent with the representations
specified in [RFC8032]. Note that, contrary to [ RFC7748], [ RFC8032]
requires unique representations of all elenents of G-(p).

K. 3. Exanple with Wi 25519
Pa=(X, Y), k*Pw=(X1, Y1), and (k+1)*Pw=(X2, Y2) with Wi 25519:

X 14428294459702615171094958724191825368445920488283965295163094662
783879239338

(=0x1f e62011 89e0801le fldebed7 456a3dc7 94d3acOb 55202f e7
2a4lcf 12 629e56aa).

Y  53327798092436462013048370302019946300826511459161905709144645521
233690313086

(=0x75e676ce deee3b3c 12942357 22f1d884 ac06de07 330f b07b
ae35caz26 df 75417e).

X1 34422557393689369648095312405803933433606568476197477554293337733
87341283644

(=0x079c3f 69 9b688181 69038c35 39clleb5 96d09f 5b 12a242b4
ce660f 13 3368c13c).

Y1 76981661982917351630937517222412729130882368858134322156485762195
67913357634

(=0x110501f 6 1dff511le d6c4e9b9 bf dSacbe 8bf043b8 c3e381dd
f5771306 479adl1l42).

X2 22716193187790487472805844610038683159372373526135883092373909944
834653057415
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(=0x3238e8e2 ec6e8b7a ele8feff 97aa58dd d2435bb5 0071cbc2
0d0d4a42 9be67187).

Y2 43046985853631671610553834968785204191967171967937842531656254539
962663994648

(=0x5f 2bbb06 f7ec5953 2c2ala62 21124585 1d2682e0 cc37307e
fbcl7f 7f 7f da8518).

The representation of k and the conpressed representations of Pw and
k*Pw in tight MSB/ nsb-order are given by

repr (k) =0x6485b7e6 cd83e5c2 0d5dbfed f915494d 9cf5c65d 778c32c3
c08d5abd 15e29c¢50;

repr ( Pw) =0x1f e62011 89e0801le f ldebed7 456a3dc7 94d3acOb 55202f e7
2a4lcf 12 629e56aa;

repr (k*Pw) =0x079c3f69 9b688181 69038c35 39clleb5 96d09f 5b 12a242b4
ce660f 13 3368c13c,

where the leftnost bit of the | eftnost octet indicates the parity of

the Y-coordi nate of the point of Wi 25519 in question (which, in this
case, are both zero, since Y and Y1 are even). See Appendix |I.1 and

Appendi x J for further detail on (squeezed) point conpression.

The scal ar representation is consistent with the representations
specified in [SECl]; the (squeezed) point representation illustrated
above is "new'. For conpleteness, we include a SECl-consi stent
representation of the point Pwin affine format and in conpressed
format bel ow.

The SECI1-conpliant affine representation of the point Pwin tight
VBB/ nsb-order is given by

af f (Pw) =0x04 1fe62011 89e0801e f ldebed7 456a3dc7 94d3acOb
55202f e7 2a4lcf12 629e56aa

75e676ce deee3b3c 12942357 22f 1d884 ac06de07 330f b07b
ae35ca26 df 75417e,

wher eas the SECl-conpliant conpressed representation of the point Pw
in tight NMSB/ nsb-order is given by

conpr ( Pw) =0x02 1fe62011 89e0801e fldebed7 456a3dc7 94d3acOb
55202f e7 2a4lcf 12 629e56aa;
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The SEC1-conpliant unconpressed format aff(Pw) of an affine point Pw
corresponds to the right-concatenation of its X- and Y-coordinates,
each in tight NMSB/ nsb-order, prepended by the string 0x04, where the
reverse procedure is uniquely defined, since elenents of G-(p) have a
uni que fixed-size representation. The (squeezed) conpressed format
repr(Pw) corresponds to the SECl-conpliant conpressed format by
extracting the parity bit t fromthe leftnost bit of the |eftnost
octet of repr(Pw), replacing the bit position by the value zero, and
prependi ng the octet string with 0x02 or 0x03, dependi ng on whet her
t=0 or t=1, respectively, where the reverse procedure is uniquely
defined, since GF(p) is a 255-bit prine field. For further details,
see [ SEC1].

K. 4. Exanple with Wi 25519. 2
Pw2=(X, Y), k*Pw2=(X1, Y1), and (k+1)*Pw2=(X2, Y2) wi th Wi 25519. 2:

X 17830493209951148331008014701079988862634531394137235438571836389
227198459763

(=0x276bb396 d766b695 bfe60abl 3c0260dd c09f 5bcf 7b3cad7c
f21c8672 dlecaf 73).

Y 21064492012933896105338241940477778461866060481408222122979836206
137075789640

(=0x2e921479 5ad47af 7 784831de 572ed8e9 7e20el37 cc67378c
184cal9of f9136f48).

X1 65470988951686461979789632362377759464688342154017353834939203791
39281908968

(=0x0e7986d2 e94354ab 8abd8806 3154536a 4dcf8e6e 65557183
€242192d 3b87f 4e8) .

Y1l 51489590494292183562535790579480033229043271539297275888817125227
35262330110

(=0x0b623521 c1ff84bc 1522ff26 3376796d be77fcad 1f cabc28
98f 1be85 d7576¢cfe).

X2 83741788501517200942826153677682120998854086551751663061374935388
3494226693

(=0x01d9f 633 b2ac2606 9e6e93f7 6917446¢c 2b27cl6f 729121d7
709c0a58 00ef 9b05) .
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Y2 42567334190622848157611574766896093933050043101247319937794684825
168161540336

(=0x5elc4lel fb74e41b 3al9ce50 elb2caf7 7cabcbb3 Oclcl474
a4f d13e6 6¢4c08f0).

The representation of k and the conpressed representations of Pw2 and
k*Pw2 in tight MSB/ nsb-order are given by

repr (k) =0x6485b7e6 cd83e5c2 0d5dbfed4 f915494d 9cf5c65d 778c32c3
c08d5abd 15e29c50;

repr (Pw2) =0x276bb396 d766b695 bfe60abl 3c0260dd c09f S5bcf 7b3ca4d7c
f21c8672 dlecaf 73;

repr (k*Pw2) =0x0e7986d2 e94354ab 8abd8806 3154536a 4dcf8ebe 65557183
€242192d 3b87f 4e8,

where the leftnost bit of the Ieftnost octet indicates the parity of
t he Y-coordinate of the point of Wi 25519.2 in question (which, in
this case, are both zero, since Y and Y1 are even). See
Appendi x Appendi x |.1 and Appendix J for further detail on (squeezed)
poi nt conpressi on.

K. 5. Exanple with Wi 25519. -3
Pn3=(X, Y), k*Pw3=(X1, Y1), and (k+1)*Pw3=(X2, Y2) with Wi 25519. - 3:

X 14780197759513083469009623947734627174363231692126610860256057394
455099634096

(=0x20ad4ba4 612f 0586 221787b0 dO0lba46c dld8cd5a 0348ef 00
eb4c9272 03ca71b0).

Y  45596733430378470319805536538617129933663237960146030424392249401
952949482817

(=0x64ced628 e€982648e 4bfcf30c 71c4d267 ba48bOce fee20062
b43ef 4c9 73f 7b541).

X1 47362979975244556396292400751828272600887612546997532158738958926
60745725532

(=0x0a78a650 a39995ef dcf4de88 940d4ce9 5b2ca35c c5d70e06
63b8455e 2e04e65¢c) .

Y1 30318112837157047703426636957515037640997356617656007157255559136
153389790354
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(=0x64ced628 e€982648e 4bfcf30c 71c4d267 ba48bOce fee20062
b43ef 4c9 73f 7b541).

X2 23778942085873786433506063022059853212880296499622328201295446580
293591664363

(=0x3492677e 6ae9d1lc3 e08f908b 61033f3d 4e8322c9 fba6da8l
2c95b067 9b1486eb) .

Y2 44846366394651736248316749170687053272682847823018287439056537991
969511150494

(=0x632624d4 ab94c83a 796511c0 5f5412a3 876e56d2 edl8eca3
21b95bef 7bf 9939e).

The representation of k and the conpressed representations of Pw3 and
k*Pw3 in tight MSB/ nsb-order are given by

repr (k) =0x6485b7e6 cd83e5c2 0d5dbfed4 f915494d 9cf5c65d 778c32c3
c08d5abd 15e29c50;

repr ( Pw3) =0xal0ad4bad4 612f 0586 221787b0 dOlbad46c dld8cd5a 0348ef 00
eb4c9272 03ca71b0;

repr (k*Pw3) =0x0a78a650 a39995ef dcf4de88 940d4ce9 5b2ca35c c5d70e06
63b8455e 2e04e65c,

where the leftnost bit of the | eftnost octet indicates the parity of
the Y-coordi nate of the point of Wi 25519.-3 in question (which, in
this case, are one and zero, respectively, since Yis odd and Y1 is
even). See Appendix |I.1 and Appendix J for further detail on
(squeezed) point conpression.

Appendi x L. Auxiliary Functions

L.1. Square Roots in G-(q)
Square roots are easy to conpute in G-(q) if g =3 (nod 4) (see
Appendix L.1.1) or if q =5 (nod 8) (see Appendix L.1.2). Details on
how t o conpute square roots for other values of g are out of scope.
If square roots are easy to conpute in G-(q), then so are these in
GF(gn2).

L.1.1. Square Roots in G-(q), where g = 3 (nod 4)
If yis a nonzero elenment of G-(q) and z:= y*{(qg-3)/4}, theny is a

square in G(q) only if y*z~2=1. If y*z"2=1, z is a square root of
1/y and y*z is a square root of y in G-(qQ).
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L.1.2. Square Roots in G-(q), where g = 5 (nod 8)

If yis a nonzero elenment of G-(qgq) and z:=y~{z-5)/8}, theny is a
square in G-(qg) only if ynr2*zh4=1.

a. |If y*z~"2=+1, z is a square root of 1/y and y*z is a square root
of y in G-(q);

b. If y*z7"2=-1, i*z is a square root of 1/y and i*y*z is a square
root of vy.

Here, i is an element of GF(q) for which i”"2=-1 (e.g.,

i:=2"{(qg-1)/4}). This field elenment can be preconputed.
L.2. Inversion

If yis an integer and gcd(y,n)=1, one can efficiently conpute 1l/y
(mod n) via the extended Euclidean Al gorithm (see Section 2.2.5 of
[GECC]). One can use this algorithmas well to conpute the inverse
of a nonzero element y of a prinme field GF(p), since gcd(y,p)=1.

The inverse of a nonzero elenent y of G-(q) can be conputed as

1/y:=y™{g-2} (since y*{g-1}=1).

Further details are out of scope. |If inverses are easy to conpute in
G-(q), then so are these in G-(g"2).

The inverses of two nonzero elenents yl and y2 of G-(q) can be
conputed by first conputing the inverse z of yl*y2 and by
subsequent|ly conputing y2*z=:1/yl and yl*z=:1/y2.

L.3. Mapping to Curve Points

One can map elenents of GF(g) that are not a square in G-(q) to
points of a Weierstrass curve (see Appendix L.3.1), to points of a
Mont gonmery curve (see Appendix L.3.2), or to points of a tw sted
Edwar ds curve (see Appendix L.3.3), under sone mld conditions on the
domai n paraneters. Details on mappings that apply if these
conditions are not satisfied are out of scope.

L.3.1. Mapping to Points of Wierstrass Curve
The description bel ow assunes that the domain paraneters a and b of
the Weierstrass curve W{a, b} are nonzero. For ease of exposition,

we define f(z):=z"3+a*z+b. (Note that for an affine point (X Y) of
W{a, b} one has Y*2=f(X).)
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If t is an element of G-(q) that is not a square in GF(q) and that is
unequal to -1, then the elenent X =(-b/a)*(1+1/(t+t”~2)) is the unique
solution of the equation f(t*X)=t~3*f(X). Consequently, either X or
X :=t*X is the x-coordinate of an affine point of Wa, b}, depending
on whether f(X) is a square in G-(qQ).

a. If f(X) is a square in G-(q) and Y:=sqrt(f(X)) then t is mapped
to the point P(t):=(X Y);

b. If f(X) is not a square in GF(q) and Y :=sqrt(f(X)), thent is
mapped to the point P(t):=(X, -Y).

Formal ly, this mapping is not properly defined, since a nonzero
square y:=x"2 in G-(qg) has two solutions, viz. x and -x; it is
properly defined, however, if one designates for each elenent in
GF(q) that is a square in GF(q) precisely one square root as "the"
square root of this elenent. Note that always picking the square
root with zero parity (see Appendix |) satisfies this condition, as
does using one of the square root functions specified in

Appendi x L. 1.

If -1 is not a square in G-(q), this elenment is napped to the point
at infinity O of W{a, b}.

The set of points of W{a,b} that arises this way has size roughly
3/8 of the order of the curve and each such point arises as inmage of
one or two t values. Further details are out of scope.

L.3.2. Mapping to Points of Montgonery Curve

The description bel ow assunes that the domain paraneter A of the
Mont gonmery curve M {A B} is nonzero. For ease of exposition, we
define f(z):=z"3+A*z"2+z. (Note that for an affine point (u,v) of
M {A B} one has B*v”"2=f(u).)

If t is an elenment of G-(q) that is not a square in G-(q) and that is
unequal to -1, then the elenent u:=-(1+1/t)/A is the unique sol ution
of the equation f(t*u)=t~3*f(u). Consequently, either u or u :=t*u
is the u-coordinate of an affine point of MA B}, depending on
whether f(u)/Bis a square in G-(q).

a. |If f(u)/Bis a square in G-(q) and v:=sqrt(f(u)/B), thent is
mapped to the point P(t):=(u, v);

b. If f(u/Bis a not a square in G-(q) and v’ :=sqrt(f(u’)/B), then
t is mapped to the point P(t):=(u, -v').
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As before, formally, this mapping is not properly defined, since a
nonzero square y:=x"2 in G~(q) has two solutions, viz. x and -x; it
is properly defined, however, if one designates for each elenent in
GF(q) that is a square in GF(q) precisely one square root as "the"
square root of this elenent. Note that always picking the square
root with zero parity (see Appendix |) satisfies this condition, as
does using one of the square root functions specified in

Appendi x L. 1.

If -1 is not a square in G-(q), this elenment is napped to the point
at infinity O of M{A B}.

The set of points of M{A B} that arises this way has size roughly
1/2 of the order of the curve and each such point arises as inage of
precisely one t value. Further details are out of scope.

L.3.3. Mapping to Points of Tw sted Edwards Curve

One can map elenments of GF(q) that are not a square in GF(q) to
points of the tw sted Edwards curve E {a,d} via function conposition,
where one uses the mapping of Appendix L.3.1 to arrive at a point of
the Wi erstrass curve W{a, b} and where one subsequently uses the

i sonor phi ¢ mappi ng between tw sted Edwards curves and Wi erstrass
curves of Appendix D.3 to arrive at a point of E {a,d}. Another
mappi ng i s obtained by function conposition, where one instead uses

t he mapping of Appendix L.3.2 to arrive at a point of the Montgonery
curve M{A B} and where one subsequently uses the isonorphic mapping
bet ween tw sted Edwards curves and Montgomery curves of Appendix D.1
to arrive at a point of E {a,d}. Cbviously, one can use function
conposition (now using the respective pre-inages - if these exist) to
realize the pre-inmages of either mapping.

L. 4. Random zed Representation of Curve Points

The mappi ngs of Appendi x L.3.1, Appendix L.3.2, and Appendix L.3.3
allow one to represent a curve point Qas a specific el enment of
GF(q), provided this point arises as a point in the range of the
mappi ng at hand. For Montgonmery curves and tw sted Edwards curves,
this covers roughly half of the curve points; for Wierstrass curves,
roughly 3/8 of the curve points. One can extend the nappi ngs above,
by mapping a pair (tl1, t2) of inputs to the point Q =P2(t1,
t2):=P(tl) + P(t2). 1In this case, each curve point has roughly qg/4
representations as a pair (tl1l, t2) on average. In fact, one can show
that if the input pairs are generated uniformy at random then the
correspondi ng curve points follow a distribution that is also
(statistically indistinguishable from a uniformdistribution. Here,
each pair (tl1, t2) determnistically yields a curve point, whereas
for each curve point Q a random zed algorithmyields a pair (tl1, t2)
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of pre-imges of Q where the expected nunber of random zed pre-
i mages one has to try is small (four if one uses the mapping of
Appendix L.3.1; two if one uses the mapping of Appendix L.3.2). For
further details, see [Tibouchi].
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